com.johnsnowlabs.nlp.annotators.spell.symmetric
SymmetricDeleteApproach
Companion object SymmetricDeleteApproach
class SymmetricDeleteApproach extends AnnotatorApproach[SymmetricDeleteModel] with SymmetricDeleteParams
Trains a Symmetric Delete spelling correction algorithm. Retrieves tokens and utilizes distance metrics to compute possible derived words.
The Symmetric Delete spelling correction algorithm reduces the complexity of edit candidate
generation and dictionary lookup for a given Damerau-Levenshtein distance. It is six orders of
magnitude faster (than the standard approach with deletes + transposes + replaces + inserts)
and language independent. A dictionary of correct spellings must be provided with
setDictionary either in the form of a text file or directly as an
ExternalResource, where each word is parsed
by a regex pattern.
Inspired by SymSpell.
For instantiated/pretrained models, see SymmetricDeleteModel.
See SymmetricDeleteModelTestSpec for further reference.
Example
In this example, the dictionary "words.txt" has the form of
... gummy gummic gummier gummiest gummiferous ...
This dictionary is then set to be the basis of the spell checker.
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.annotators.spell.symmetric.SymmetricDeleteApproach import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val tokenizer = new Tokenizer() .setInputCols("document") .setOutputCol("token") val spellChecker = new SymmetricDeleteApproach() .setInputCols("token") .setOutputCol("spell") .setDictionary("src/test/resources/spell/words.txt") val pipeline = new Pipeline().setStages(Array( documentAssembler, tokenizer, spellChecker )) val pipelineModel = pipeline.fit(trainingData)
- See also
NorvigSweetingApproach for an alternative approach to spell checking
ContextSpellCheckerApproach for a DL based approach
- Grouped
- Alphabetic
- By Inheritance
- SymmetricDeleteApproach
- SymmetricDeleteParams
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): SymmetricDeleteModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): SymmetricDeleteApproach.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- final def copy(extra: ParamMap): Estimator[SymmetricDeleteModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val deletesThreshold: IntParam
Minimum frequency of corrections a word needs to have to be considered from training.
Minimum frequency of corrections a word needs to have to be considered from training. Increase if training set is LARGE (Default:
0).- Definition Classes
- SymmetricDeleteParams
- def derivedWordDistances(wordFrequencies: List[(String, Long)], maxEditDistance: Int): Map[String, (List[String], Long)]
Computes derived words from a frequency of words
- val description: String
Spell checking algorithm inspired on Symmetric Delete algorithm
Spell checking algorithm inspired on Symmetric Delete algorithm
- Definition Classes
- SymmetricDeleteApproach → AnnotatorApproach
- val dictionary: ExternalResourceParam
Optional dictionary of properly written words.
Optional dictionary of properly written words. If provided, significantly boosts spell checking performance.
Needs
"tokenPattern"(Default:\S+) for parsing the resource.Example
... gummy gummic gummier gummiest gummiferous ...
- val dupsLimit: IntParam
Maximum duplicate of characters in a word to consider (Default:
2).Maximum duplicate of characters in a word to consider (Default:
2).- Definition Classes
- SymmetricDeleteParams
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- final def fit(dataset: Dataset[_]): SymmetricDeleteModel
- Definition Classes
- AnnotatorApproach → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[SymmetricDeleteModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): SymmetricDeleteModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): SymmetricDeleteModel
- Definition Classes
- Estimator
- Annotations
- @varargs() @Since("2.0.0")
- val frequencyThreshold: IntParam
Minimum frequency of words to be considered from training.
Minimum frequency of words to be considered from training. Increase if training set is LARGE (Default:
0).- Definition Classes
- SymmetricDeleteParams
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDeletes(word: String, med: Int): List[String]
Given a word, derive strings with up to maxEditDistance characters deleted
- def getDeletesThreshold: Int
Minimum frequency of corrections a word needs to have to be considered from training.
Minimum frequency of corrections a word needs to have to be considered from training. Increase if training set is LARGE (Default:
0).- Definition Classes
- SymmetricDeleteParams
- def getDupsLimit: Int
Maximum duplicate of characters in a word to consider (Default:
2).Maximum duplicate of characters in a word to consider (Default:
2).- Definition Classes
- SymmetricDeleteParams
- def getFrequencyThreshold: Int
Minimum frequency of words to be considered from training.
Minimum frequency of words to be considered from training. Increase if training set is LARGE (Default:
0).- Definition Classes
- SymmetricDeleteParams
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMaxEditDistance: Int
Max edit distance characters to derive strings from a word
Max edit distance characters to derive strings from a word
- Definition Classes
- SymmetricDeleteParams
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : TOKEN
Input annotator type : TOKEN
- Definition Classes
- SymmetricDeleteApproach → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val longestWordLength: IntParam
Length of longest word in corpus
Length of longest word in corpus
- Definition Classes
- SymmetricDeleteParams
- val maxEditDistance: IntParam
Max edit distance characters to derive strings from a word (Default:
3)Max edit distance characters to derive strings from a word (Default:
3)- Definition Classes
- SymmetricDeleteParams
- val maxFrequency: LongParam
Maximum frequency of a word in the corpus
Maximum frequency of a word in the corpus
- Definition Classes
- SymmetricDeleteParams
- val minFrequency: LongParam
Minimum frequency of a word in the corpus
Minimum frequency of a word in the corpus
- Definition Classes
- SymmetricDeleteParams
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onTrained(model: SymmetricDeleteModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
Output annotator type : TOKEN
Output annotator type : TOKEN
- Definition Classes
- SymmetricDeleteApproach → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- final def set(paramPair: ParamPair[_]): SymmetricDeleteApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): SymmetricDeleteApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): SymmetricDeleteApproach.this.type
- Definition Classes
- Params
- final def setDefault(paramPairs: ParamPair[_]*): SymmetricDeleteApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): SymmetricDeleteApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDeletesThreshold(value: Int): SymmetricDeleteApproach.this.type
Minimum frequency of corrections a word needs to have to be considered from training.
Minimum frequency of corrections a word needs to have to be considered from training. Increase if training set is LARGE (Default:
0).- Definition Classes
- SymmetricDeleteParams
- def setDictionary(path: String, tokenPattern: String = "\\S+", readAs: Format = ReadAs.TEXT, options: Map[String, String] = Map("format" -> "text")): SymmetricDeleteApproach.this.type
Path to file with properly spelled words,
tokenPatternis the regex pattern to identify them in text, readAs can beReadAs.TEXTorReadAs.SPARK, with options passed to Spark reader if the latter is set.Path to file with properly spelled words,
tokenPatternis the regex pattern to identify them in text, readAs can beReadAs.TEXTorReadAs.SPARK, with options passed to Spark reader if the latter is set. Dictionary needstokenPatternregex for separating words. - def setDictionary(value: ExternalResource): SymmetricDeleteApproach.this.type
External dictionary already in the form of ExternalResource, for which the Map member
optionshas an entry defined for"tokenPattern".External dictionary already in the form of ExternalResource, for which the Map member
optionshas an entry defined for"tokenPattern".Example
val resource = ExternalResource( "src/test/resources/spell/words.txt", ReadAs.TEXT, Map("tokenPattern" -> "\\S+") ) val spellChecker = new SymmetricDeleteApproach() .setInputCols("token") .setOutputCol("spell") .setDictionary(resource)
- def setDupsLimit(value: Int): SymmetricDeleteApproach.this.type
Maximum duplicate of characters in a word to consider (Default:
2)Maximum duplicate of characters in a word to consider (Default:
2)- Definition Classes
- SymmetricDeleteParams
- def setFrequencyThreshold(value: Int): SymmetricDeleteApproach.this.type
Minimum frequency of words to be considered from training.
Minimum frequency of words to be considered from training. Increase if training set is LARGE (Default:
0)- Definition Classes
- SymmetricDeleteParams
- final def setInputCols(value: String*): SymmetricDeleteApproach.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): SymmetricDeleteApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): SymmetricDeleteApproach.this.type
- Definition Classes
- CanBeLazy
- def setLongestWordLength(value: Int): SymmetricDeleteApproach.this.type
Length of longest word in corpus
Length of longest word in corpus
- Definition Classes
- SymmetricDeleteParams
- def setMaxEditDistance(value: Int): SymmetricDeleteApproach.this.type
Max edit distance characters to derive strings from a word
Max edit distance characters to derive strings from a word
- Definition Classes
- SymmetricDeleteParams
- def setMaxFrequency(value: Long): SymmetricDeleteApproach.this.type
Maximum frequency of a word in the corpus
Maximum frequency of a word in the corpus
- Definition Classes
- SymmetricDeleteParams
- def setMinFrequency(value: Long): SymmetricDeleteApproach.this.type
Minimum frequency of a word in the corpus
Minimum frequency of a word in the corpus
- Definition Classes
- SymmetricDeleteParams
- final def setOutputCol(value: String): SymmetricDeleteApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): SymmetricDeleteModel
- Definition Classes
- SymmetricDeleteApproach → AnnotatorApproach
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- SymmetricDeleteApproach → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from SymmetricDeleteParams
Inherited from AnnotatorApproach[SymmetricDeleteModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[SymmetricDeleteModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types