com.johnsnowlabs.nlp.annotators.cv
BLIPForQuestionAnswering
Companion object BLIPForQuestionAnswering
class BLIPForQuestionAnswering extends AnnotatorModel[BLIPForQuestionAnswering] with HasBatchedAnnotateImage[BLIPForQuestionAnswering] with HasImageFeatureProperties with WriteTensorflowModel with HasEngine
BLIPForQuestionAnswering can load BLIP models for visual question answering. The model consists of a vision encoder, a text encoder as well as a text decoder. The vision encoder will encode the input image, the text encoder will encode the input question together with the encoding of the image, and the text decoder will output the answer to the question.
Pretrained models can be loaded with pretrained of the companion object:
val visualQAClassifier = BLIPForQuestionAnswering.pretrained() .setInputCols("image_assembler") .setOutputCol("answer")
The default model is "blip_vqa_base", if no name is provided.
For available pretrained models please see the Models Hub.
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see https://github.com/JohnSnowLabs/spark-nlp/blob/master/src/test/scala/com/johnsnowlabs/nlp/annotators/cv/BLIPForQuestionAnsweringTest.scala.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base._ import com.johnsnowlabs.nlp.annotator._ import org.apache.spark.ml.Pipeline val imageDF: DataFrame = ResourceHelper.spark.read .format("image") .option("dropInvalid", value = true) .load(imageFolder) val testDF: DataFrame = imageDF.withColumn("text", lit("What's this picture about?")) val imageAssembler: ImageAssembler = new ImageAssembler() .setInputCol("image") .setOutputCol("image_assembler") val visualQAClassifier = BLIPForQuestionAnswering.pretrained() .setInputCols("image_assembler") .setOutputCol("answer") val pipeline = new Pipeline().setStages(Array( imageAssembler, visualQAClassifier )) val result = pipeline.fit(testDF).transform(testDF) result.select("image_assembler.origin", "answer.result").show(false) +--------------------------------------+------+ |origin |result| +--------------------------------------+------+ |[file:///content/images/cat_image.jpg]|[cats]| +--------------------------------------+------+
- See also
CLIPForZeroShotClassification for Zero Shot Image Classifier
Annotators Main Page for a list of transformer based classifiers
- Grouped
- Alphabetic
- By Inheritance
- BLIPForQuestionAnswering
- HasEngine
- WriteTensorflowModel
- HasImageFeatureProperties
- HasBatchedAnnotateImage
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- def afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def batchAnnotate(batchedAnnotations: Seq[Array[AnnotationImage]]): Seq[Seq[Annotation]]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations in batches that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every batch of input annotations. Not necessary one to one relationship
- Definition Classes
- BLIPForQuestionAnswering → HasBatchedAnnotateImage
- def batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotateImage
- val batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotateImage
- def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): BLIPForQuestionAnswering.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- val configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- def copy(extra: ParamMap): BLIPForQuestionAnswering
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val doNormalize: BooleanParam
Whether or not to normalize the input with mean and standard deviation
Whether or not to normalize the input with mean and standard deviation
- Definition Classes
- HasImageFeatureProperties
- val doResize: BooleanParam
Whether to resize the input to a certain size
Whether to resize the input to a certain size
- Definition Classes
- HasImageFeatureProperties
- val engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val featureExtractorType: Param[String]
Name of model's architecture for feature extraction
Name of model's architecture for feature extraction
- Definition Classes
- HasImageFeatureProperties
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateImage
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def getConfigProtoBytes: Option[Array[Byte]]
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDoNormalize: Boolean
- Definition Classes
- HasImageFeatureProperties
- def getDoResize: Boolean
- Definition Classes
- HasImageFeatureProperties
- def getEngine: String
- Definition Classes
- HasEngine
- def getFeatureExtractorType: String
- Definition Classes
- HasImageFeatureProperties
- def getImageMean: Array[Double]
- Definition Classes
- HasImageFeatureProperties
- def getImageStd: Array[Double]
- Definition Classes
- HasImageFeatureProperties
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMaxSentenceLength: Int
- def getModelIfNotSet: BLIPClassifier
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getResample: Int
- Definition Classes
- HasImageFeatureProperties
- def getSignatures: Option[Map[String, String]]
- def getSize: Int
- Definition Classes
- HasImageFeatureProperties
- def getVocabulary: Map[String, Int]
- Attributes
- protected[nlp]
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hasParent: Boolean
- Definition Classes
- Model
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val imageMean: DoubleArrayParam
The sequence of means for each channel, to be used when normalizing images
The sequence of means for each channel, to be used when normalizing images
- Definition Classes
- HasImageFeatureProperties
- val imageStd: DoubleArrayParam
The sequence of standard deviations for each channel, to be used when normalizing images
The sequence of standard deviations for each channel, to be used when normalizing images
- Definition Classes
- HasImageFeatureProperties
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[AnnotatorType]
Annotator reference id.
Annotator reference id. Used to identify elements in metadata or to refer to this annotator type
- Definition Classes
- BLIPForQuestionAnswering → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val maxSentenceLength: IntParam
Max sentence length to process (Default:
512) - def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- BLIPForQuestionAnswering → ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
- Definition Classes
- BLIPForQuestionAnswering → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- var parent: Estimator[BLIPForQuestionAnswering]
- Definition Classes
- Model
- val resample: IntParam
An optional resampling filter.
An optional resampling filter. This can be one of PIL.Image.NEAREST, PIL.Image.BOX, PIL.Image.BILINEAR, PIL.Image.HAMMING, PIL.Image.BICUBIC or PIL.Image.LANCZOS. Only has an effect if do_resize is set to True
- Definition Classes
- HasImageFeatureProperties
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): BLIPForQuestionAnswering.this.type
- Definition Classes
- Params
- def setBatchSize(size: Int): BLIPForQuestionAnswering.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateImage
- def setConfigProtoBytes(bytes: Array[Int]): BLIPForQuestionAnswering.this.type
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- def setDefault[T](feature: StructFeature[T], value: () => T): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): BLIPForQuestionAnswering.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): BLIPForQuestionAnswering.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDoNormalize(value: Boolean): BLIPForQuestionAnswering.this.type
- Definition Classes
- HasImageFeatureProperties
- def setDoResize(value: Boolean): BLIPForQuestionAnswering.this.type
- Definition Classes
- HasImageFeatureProperties
- def setFeatureExtractorType(value: String): BLIPForQuestionAnswering.this.type
- Definition Classes
- HasImageFeatureProperties
- def setImageMean(value: Array[Double]): BLIPForQuestionAnswering.this.type
- Definition Classes
- HasImageFeatureProperties
- def setImageStd(value: Array[Double]): BLIPForQuestionAnswering.this.type
- Definition Classes
- HasImageFeatureProperties
- final def setInputCols(value: String*): BLIPForQuestionAnswering.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): BLIPForQuestionAnswering.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): BLIPForQuestionAnswering.this.type
- Definition Classes
- CanBeLazy
- def setMaxSentenceLength(value: Int): BLIPForQuestionAnswering.this.type
- def setModelIfNotSet(spark: SparkSession, preprocessor: Preprocessor, tensorflow: TensorflowWrapper): BLIPForQuestionAnswering.this.type
- final def setOutputCol(value: String): BLIPForQuestionAnswering.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setParent(parent: Estimator[BLIPForQuestionAnswering]): BLIPForQuestionAnswering
- Definition Classes
- Model
- def setResample(value: Int): BLIPForQuestionAnswering.this.type
- Definition Classes
- HasImageFeatureProperties
- def setSignatures(value: Map[String, String]): BLIPForQuestionAnswering.this.type
- def setSize(value: Int): BLIPForQuestionAnswering.this.type
- Definition Classes
- HasImageFeatureProperties
- def setVocabulary(value: Map[String, Int]): BLIPForQuestionAnswering.this.type
- val signatures: MapFeature[String, String]
It contains TF model signatures for the laded saved model
- val size: IntParam
Resize the input to the given size.
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True.
- Definition Classes
- HasImageFeatureProperties
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- final def transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @varargs() @Since("2.0.0")
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- BLIPForQuestionAnswering → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
- val vocabulary: MapFeature[String, Int]
Vocabulary used to encode the words to ids with WordPieceEncoder
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
- def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from HasEngine
Inherited from WriteTensorflowModel
Inherited from HasImageFeatureProperties
Inherited from HasBatchedAnnotateImage[BLIPForQuestionAnswering]
Inherited from AnnotatorModel[BLIPForQuestionAnswering]
Inherited from CanBeLazy
Inherited from RawAnnotator[BLIPForQuestionAnswering]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[BLIPForQuestionAnswering]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.