com.johnsnowlabs.nlp.annotators.cv
SwinForImageClassification
Companion object SwinForImageClassification
class SwinForImageClassification extends ViTForImageClassification with HasRescaleFactor
SwinImageClassification is an image classifier based on Swin.
The Swin Transformer was proposed in Swin Transformer: Hierarchical Vision Transformer using Shifted Windows by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.
Pretrained models can be loaded with pretrained of the companion object:
val imageClassifier = SwinForImageClassification.pretrained() .setInputCols("image_assembler") .setOutputCol("class")
The default model is "image_classifier_swin_base_patch4_window7_224", if no name is
provided.
For available pretrained models please see the Models Hub.
Models from the HuggingFace 🤗 Transformers library are also compatible with Spark NLP 🚀. To see which models are compatible and how to import them see https://github.com/JohnSnowLabs/spark-nlp/discussions/5669 and to see more extended examples, see SwinForImageClassificationTest.
References:
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Paper Abstract:
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test- dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the- art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.
Example
import com.johnsnowlabs.nlp.annotator._ import com.johnsnowlabs.nlp.ImageAssembler import org.apache.spark.ml.Pipeline val imageDF: DataFrame = spark.read .format("image") .option("dropInvalid", value = true) .load("src/test/resources/image/") val imageAssembler = new ImageAssembler() .setInputCol("image") .setOutputCol("image_assembler") val imageClassifier = SwinForImageClassification .pretrained() .setInputCols("image_assembler") .setOutputCol("class") val pipeline = new Pipeline().setStages(Array(imageAssembler, imageClassifier)) val pipelineDF = pipeline.fit(imageDF).transform(imageDF) pipelineDF .selectExpr("reverse(split(image.origin, '/'))[0] as image_name", "class.result") .show(truncate = false) +-----------------+----------------------------------------------------------+ |image_name |result | +-----------------+----------------------------------------------------------+ |palace.JPEG |[palace] | |egyptian_cat.jpeg|[tabby, tabby cat] | |hippopotamus.JPEG|[hippopotamus, hippo, river horse, Hippopotamus amphibius]| |hen.JPEG |[hen] | |ostrich.JPEG |[ostrich, Struthio camelus] | |junco.JPEG |[junco, snowbird] | |bluetick.jpg |[bluetick] | |chihuahua.jpg |[Chihuahua] | |tractor.JPEG |[tractor] | |ox.JPEG |[ox] | +-----------------+----------------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- SwinForImageClassification
- HasRescaleFactor
- ViTForImageClassification
- HasEngine
- WriteOpenvinoModel
- WriteOnnxModel
- WriteTensorflowModel
- HasImageFeatureProperties
- HasBatchedAnnotateImage
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- def afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def batchAnnotate(batchedAnnotations: Seq[Array[AnnotationImage]]): Seq[Seq[Annotation]]
Takes a document and annotations and produces new annotations of this annotator's annotation type
Takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- SwinForImageClassification → ViTForImageClassification → HasBatchedAnnotateImage
- def batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotateImage
- val batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotateImage
- def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): SwinForImageClassification.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- val configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- ViTForImageClassification
- def copy(extra: ParamMap): ViTForImageClassification
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val doNormalize: BooleanParam
Whether or not to normalize the input with mean and standard deviation
Whether or not to normalize the input with mean and standard deviation
- Definition Classes
- HasImageFeatureProperties
- val doRescale: BooleanParam
Whether to rescale the image values by rescaleFactor.
Whether to rescale the image values by rescaleFactor.
- Definition Classes
- HasRescaleFactor
- val doResize: BooleanParam
Whether to resize the input to a certain size
Whether to resize the input to a certain size
- Definition Classes
- HasImageFeatureProperties
- val engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val featureExtractorType: Param[String]
Name of model's architecture for feature extraction
Name of model's architecture for feature extraction
- Definition Classes
- HasImageFeatureProperties
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateImage
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def getClasses: Array[String]
Returns labels used to train this model
Returns labels used to train this model
- Definition Classes
- ViTForImageClassification
- def getConfigProtoBytes: Option[Array[Byte]]
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- ViTForImageClassification
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDoNormalize: Boolean
- Definition Classes
- HasImageFeatureProperties
- def getDoRescale: Boolean
- Definition Classes
- HasRescaleFactor
- def getDoResize: Boolean
- Definition Classes
- HasImageFeatureProperties
- def getEngine: String
- Definition Classes
- HasEngine
- def getFeatureExtractorType: String
- Definition Classes
- HasImageFeatureProperties
- def getImageMean: Array[Double]
- Definition Classes
- HasImageFeatureProperties
- def getImageStd: Array[Double]
- Definition Classes
- HasImageFeatureProperties
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getModelIfNotSet: ViTClassifier
- Definition Classes
- ViTForImageClassification
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getResample: Int
- Definition Classes
- HasImageFeatureProperties
- def getRescaleFactor: Double
- Definition Classes
- HasRescaleFactor
- def getSignatures: Option[Map[String, String]]
- Definition Classes
- ViTForImageClassification
- def getSize: Int
- Definition Classes
- HasImageFeatureProperties
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hasParent: Boolean
- Definition Classes
- Model
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val imageMean: DoubleArrayParam
The sequence of means for each channel, to be used when normalizing images
The sequence of means for each channel, to be used when normalizing images
- Definition Classes
- HasImageFeatureProperties
- val imageStd: DoubleArrayParam
The sequence of standard deviations for each channel, to be used when normalizing images
The sequence of standard deviations for each channel, to be used when normalizing images
- Definition Classes
- HasImageFeatureProperties
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : IMAGE
Input annotator type : IMAGE
- Definition Classes
- ViTForImageClassification → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val labels: MapFeature[String, BigInt]
Labels used to decode predicted IDs back to string tags
Labels used to decode predicted IDs back to string tags
- Definition Classes
- ViTForImageClassification
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- SwinForImageClassification → ViTForImageClassification → ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
Output annotator type : CATEGORY
Output annotator type : CATEGORY
- Definition Classes
- ViTForImageClassification → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- var parent: Estimator[ViTForImageClassification]
- Definition Classes
- Model
- val resample: IntParam
An optional resampling filter.
An optional resampling filter. This can be one of PIL.Image.NEAREST, PIL.Image.BOX, PIL.Image.BILINEAR, PIL.Image.HAMMING, PIL.Image.BICUBIC or PIL.Image.LANCZOS. Only has an effect if do_resize is set to True
- Definition Classes
- HasImageFeatureProperties
- val rescaleFactor: DoubleParam
Factor to scale the image values (Default:
1 / 255.0).Factor to scale the image values (Default:
1 / 255.0).- Definition Classes
- HasRescaleFactor
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): SwinForImageClassification.this.type
- Definition Classes
- Params
- def setBatchSize(size: Int): SwinForImageClassification.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotateImage
- def setConfigProtoBytes(bytes: Array[Int]): SwinForImageClassification.this.type
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- ViTForImageClassification
- def setDefault[T](feature: StructFeature[T], value: () => T): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): SwinForImageClassification.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): SwinForImageClassification.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDoNormalize(value: Boolean): SwinForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
- def setDoRescale(value: Boolean): SwinForImageClassification.this.type
- Definition Classes
- HasRescaleFactor
- def setDoResize(value: Boolean): SwinForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
- def setFeatureExtractorType(value: String): SwinForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
- def setImageMean(value: Array[Double]): SwinForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
- def setImageStd(value: Array[Double]): SwinForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
- final def setInputCols(value: String*): SwinForImageClassification.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): SwinForImageClassification.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLabels(value: Map[String, BigInt]): SwinForImageClassification.this.type
- Definition Classes
- ViTForImageClassification
- def setLazyAnnotator(value: Boolean): SwinForImageClassification.this.type
- Definition Classes
- CanBeLazy
- def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: Option[TensorflowWrapper], onnxWrapper: Option[OnnxWrapper], openvinoWrapper: Option[OpenvinoWrapper], preprocessor: Preprocessor): SwinForImageClassification.this.type
- Definition Classes
- ViTForImageClassification
- final def setOutputCol(value: String): SwinForImageClassification.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setParent(parent: Estimator[ViTForImageClassification]): ViTForImageClassification
- Definition Classes
- Model
- def setResample(value: Int): SwinForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
- def setRescaleFactor(value: Double): SwinForImageClassification.this.type
- Definition Classes
- HasRescaleFactor
- def setSignatures(value: Map[String, String]): SwinForImageClassification.this.type
- Definition Classes
- ViTForImageClassification
- def setSize(value: Int): SwinForImageClassification.this.type
- Definition Classes
- HasImageFeatureProperties
- val signatures: MapFeature[String, String]
It contains TF model signatures for the laded saved model
It contains TF model signatures for the laded saved model
- Definition Classes
- ViTForImageClassification
- val size: IntParam
Resize the input to the given size.
Resize the input to the given size. If a tuple is provided, it should be (width, height). If only an integer is provided, then the input will be resized to (size, size). Only has an effect if do_resize is set to True.
- Definition Classes
- HasImageFeatureProperties
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- final def transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @varargs() @Since("2.0.0")
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- SwinForImageClassification → ViTForImageClassification → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
- def writeOnnxModel(path: String, spark: SparkSession, onnxWrapper: OnnxWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOnnxModel
- def writeOnnxModels(path: String, spark: SparkSession, onnxWrappersWithNames: Seq[(OnnxWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOnnxModel
- def writeOpenvinoModel(path: String, spark: SparkSession, openvinoWrapper: OpenvinoWrapper, suffix: String, fileName: String): Unit
- Definition Classes
- WriteOpenvinoModel
- def writeOpenvinoModels(path: String, spark: SparkSession, ovWrappersWithNames: Seq[(OpenvinoWrapper, String)], suffix: String): Unit
- Definition Classes
- WriteOpenvinoModel
- def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from HasRescaleFactor
Inherited from ViTForImageClassification
Inherited from HasEngine
Inherited from WriteOpenvinoModel
Inherited from WriteOnnxModel
Inherited from WriteTensorflowModel
Inherited from HasImageFeatureProperties
Inherited from HasBatchedAnnotateImage[ViTForImageClassification]
Inherited from AnnotatorModel[ViTForImageClassification]
Inherited from CanBeLazy
Inherited from RawAnnotator[ViTForImageClassification]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[ViTForImageClassification]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types