class NerDLModel extends AnnotatorModel[NerDLModel] with HasBatchedAnnotate[NerDLModel] with WriteTensorflowModel with HasStorageRef with ParamsAndFeaturesWritable with HasEngine
This Named Entity recognition annotator is a generic NER model based on Neural Networks.
Neural Network architecture is Char CNNs - BiLSTM - CRF that achieves state-of-the-art in most datasets.
This is the instantiated model of the NerDLApproach. For training your own model, please see the documentation of that class.
Pretrained models can be loaded with pretrained of the companion object:
val nerModel = NerDLModel.pretrained() .setInputCols("sentence", "token", "embeddings") .setOutputCol("ner")
The default model is "ner_dl", if no name is provided.
For available pretrained models please see the Models Hub. Additionally, pretrained pipelines are available for this module, see Pipelines.
Note that some pretrained models require specific types of embeddings, depending on which they
were trained on. For example, the default model "ner_dl" requires the
WordEmbeddings "glove_100d".
For extended examples of usage, see the Examples and the NerDLSpec.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.annotators.sbd.pragmatic.SentenceDetector import com.johnsnowlabs.nlp.embeddings.WordEmbeddingsModel import com.johnsnowlabs.nlp.annotators.ner.dl.NerDLModel import org.apache.spark.ml.Pipeline // First extract the prerequisites for the NerDLModel val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentence = new SentenceDetector() .setInputCols("document") .setOutputCol("sentence") val tokenizer = new Tokenizer() .setInputCols("sentence") .setOutputCol("token") val embeddings = WordEmbeddingsModel.pretrained() .setInputCols("sentence", "token") .setOutputCol("bert") // Then NER can be extracted val nerTagger = NerDLModel.pretrained() .setInputCols("sentence", "token", "bert") .setOutputCol("ner") val pipeline = new Pipeline().setStages(Array( documentAssembler, sentence, tokenizer, embeddings, nerTagger )) val data = Seq("U.N. official Ekeus heads for Baghdad.").toDF("text") val result = pipeline.fit(data).transform(data) result.select("ner.result").show(false) +------------------------------------+ |result | +------------------------------------+ |[B-ORG, O, O, B-PER, O, O, B-LOC, O]| +------------------------------------+
- See also
NerCrfModel for a generic CRF approach
NerConverter to further process the results
- Grouped
- Alphabetic
- By Inheritance
- NerDLModel
- HasEngine
- HasStorageRef
- WriteTensorflowModel
- HasBatchedAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- def afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- batchedAnnotations
Annotations in batches that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every batch of input annotations. Not necessary one to one relationship IMPORTANT: !MUST! return sequences of equal lengths !! IMPORTANT: !MUST! return sentences that belong to the same original row !! (challenging)
- Definition Classes
- NerDLModel → HasBatchedAnnotate
- def batchProcess(rows: Iterator[_]): Iterator[Row]
- Definition Classes
- HasBatchedAnnotate
- val batchSize: IntParam
Size of every batch (Default depends on model).
Size of every batch (Default depends on model).
- Definition Classes
- HasBatchedAnnotate
- def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- NerDLModel → AnnotatorModel
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- val classes: StringArrayParam
- final def clear(param: Param[_]): NerDLModel.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- val configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- def copy(extra: ParamMap): NerDLModel
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- def createDatabaseConnection(database: Name): RocksDBConnection
- Definition Classes
- HasStorageRef
- val datasetParams: StructFeature[DatasetEncoderParams]
datasetParams
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val engine: Param[String]
This param is set internally once via loadSavedModel.
This param is set internally once via loadSavedModel. That's why there is no setter
- Definition Classes
- HasEngine
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBatchSize: Int
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def getClasses: Array[String]
get the tags used to trained this NerDLModel
- def getConfigProtoBytes: Option[Array[Byte]]
datasetParams
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getEngine: String
- Definition Classes
- HasEngine
- def getIncludeAllConfidenceScores: Boolean
whether to include all confidence scores in annotation metadata or just the score of the predicted tag
- def getIncludeConfidence: Boolean
Whether to include confidence scores in annotation metadata
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getMinProba: Float
Minimum probability.
Minimum probability. Used only if there is no CRF on top of LSTM layer.
- def getModelIfNotSet: TensorflowNer
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getStorageRef: String
- Definition Classes
- HasStorageRef
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hasParent: Boolean
- Definition Classes
- Model
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val includeAllConfidenceScores: BooleanParam
whether to include all confidence scores in annotation metadata or just score of the predicted tag
- val includeConfidence: BooleanParam
Whether to include confidence scores in annotation metadata (Default:
false) - def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[String]
Input Annotator Types: DOCUMENT, TOKEN, WORD_EMBEDDINGS
Input Annotator Types: DOCUMENT, TOKEN, WORD_EMBEDDINGS
- Definition Classes
- NerDLModel → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val minProba: FloatParam
Minimum probability.
Minimum probability. Used only if there is no CRF on top of LSTM layer.
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onWrite(path: String, spark: SparkSession): Unit
- Definition Classes
- NerDLModel → ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: String
Output Annnotator type: NAMED_ENTITY
Output Annnotator type: NAMED_ENTITY
- Definition Classes
- NerDLModel → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- var parent: Estimator[NerDLModel]
- Definition Classes
- Model
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): NerDLModel.this.type
- Definition Classes
- Params
- def setBatchSize(size: Int): NerDLModel.this.type
Size of every batch.
Size of every batch.
- Definition Classes
- HasBatchedAnnotate
- def setConfigProtoBytes(bytes: Array[Int]): NerDLModel.this.type
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- def setDatasetParams(params: DatasetEncoderParams): NerDLModel.this.type
datasetParams
- def setDefault[T](feature: StructFeature[T], value: () => T): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): NerDLModel.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): NerDLModel.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setIncludeAllConfidenceScores(value: Boolean): NerDLModel.this.type
whether to include confidence scores for all tags rather than just for the predicted one
- def setIncludeConfidence(value: Boolean): NerDLModel.this.type
Whether to include confidence scores in annotation metadata
- final def setInputCols(value: String*): NerDLModel.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): NerDLModel.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): NerDLModel.this.type
- Definition Classes
- CanBeLazy
- def setMinProbability(minProba: Float): NerDLModel.this.type
Minimum probability.
Minimum probability. Used only if there is no CRF on top of LSTM layer.
- def setModelIfNotSet(spark: SparkSession, tf: TensorflowWrapper): NerDLModel.this.type
- final def setOutputCol(value: String): NerDLModel.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setParent(parent: Estimator[NerDLModel]): NerDLModel
- Definition Classes
- Model
- def setStorageRef(value: String): NerDLModel.this.type
- Definition Classes
- HasStorageRef
- val storageRef: Param[String]
Unique identifier for storage (Default:
this.uid)Unique identifier for storage (Default:
this.uid)- Definition Classes
- HasStorageRef
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def tag(tokenized: Array[Array[WordpieceEmbeddingsSentence]]): Seq[Array[NerTaggedSentence]]
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- final def transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @varargs() @Since("2.0.0")
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- NerDLModel → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
- Definition Classes
- HasStorageRef
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
- def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
- Definition Classes
- WriteTensorflowModel
- def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
- Definition Classes
- WriteTensorflowModel
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from HasEngine
Inherited from HasStorageRef
Inherited from WriteTensorflowModel
Inherited from HasBatchedAnnotate[NerDLModel]
Inherited from AnnotatorModel[NerDLModel]
Inherited from CanBeLazy
Inherited from RawAnnotator[NerDLModel]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[NerDLModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types