class NerDLApproach extends AnnotatorApproach[NerDLModel] with NerApproach[NerDLApproach] with Logging with ParamsAndFeaturesWritable with EvaluationDLParams
This Named Entity recognition annotator allows to train generic NER model based on Neural Networks.
The architecture of the neural network is a Char CNNs - BiLSTM - CRF that achieves state-of-the-art in most datasets.
For instantiated/pretrained models, see NerDLModel.
The training data should be a labeled Spark Dataset, in the format of
CoNLL 2003 IOB with Annotation type columns. The
data should have columns of type DOCUMENT, TOKEN, WORD_EMBEDDINGS and an additional label
column of annotator type NAMED_ENTITY. Excluding the label, this can be done with for
example
- a SentenceDetector,
- a Tokenizer and
- a WordEmbeddingsModel (any embeddings can be chosen, e.g. BertEmbeddings for BERT based embeddings).
Setting a test dataset to monitor model metrics can be done with .setTestDataset. The method
expects a path to a parquet file containing a dataframe that has the same required columns as
the training dataframe. The pre-processing steps for the training dataframe should also be
applied to the test dataframe. The following example will show how to create the test dataset
with a CoNLL dataset:
val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val embeddings = WordEmbeddingsModel .pretrained() .setInputCols("document", "token") .setOutputCol("embeddings") val preProcessingPipeline = new Pipeline().setStages(Array(documentAssembler, embeddings)) val conll = CoNLL() val Array(train, test) = conll .readDataset(spark, "src/test/resources/conll2003/eng.train") .randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") val nerTagger = new NerDLApproach() .setInputCols("document", "token", "embeddings") .setLabelColumn("label") .setOutputCol("ner") .setTestDataset("test_data")
For extended examples of usage, see the Examples and the NerDLSpec.
Example
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.Tokenizer import com.johnsnowlabs.nlp.annotators.sbd.pragmatic.SentenceDetector import com.johnsnowlabs.nlp.embeddings.BertEmbeddings import com.johnsnowlabs.nlp.annotators.ner.dl.NerDLApproach import com.johnsnowlabs.nlp.training.CoNLL import org.apache.spark.ml.Pipeline // This CoNLL dataset already includes a sentence, token and label // column with their respective annotator types. If a custom dataset is used, // these need to be defined with for example: val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val sentence = new SentenceDetector() .setInputCols("document") .setOutputCol("sentence") val tokenizer = new Tokenizer() .setInputCols("sentence") .setOutputCol("token") // Then the training can start val embeddings = BertEmbeddings.pretrained() .setInputCols("sentence", "token") .setOutputCol("embeddings") val nerTagger = new NerDLApproach() .setInputCols("sentence", "token", "embeddings") .setLabelColumn("label") .setOutputCol("ner") .setMaxEpochs(1) .setRandomSeed(0) .setVerbose(0) val pipeline = new Pipeline().setStages(Array( embeddings, nerTagger )) // We use the sentences, tokens and labels from the CoNLL dataset val conll = CoNLL() val trainingData = conll.readDataset(spark, "src/test/resources/conll2003/eng.train") val pipelineModel = pipeline.fit(trainingData)
- See also
NerCrfApproach for a generic CRF approach
NerConverter to further process the results
- Grouped
- Alphabetic
- By Inheritance
- NerDLApproach
- EvaluationDLParams
- ParamsAndFeaturesWritable
- HasFeatures
- Logging
- NerApproach
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): NerDLModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- val batchSize: IntParam
Batch size (Default:
8) - def beforeTraining(spark: SparkSession): Unit
- Definition Classes
- NerDLApproach → AnnotatorApproach
- val bestModelMetric: Param[String]
Whether to check F1 Micro-average or F1 Macro-average as a final metric for the best model This will fall back to loss if there is no validation or test dataset
- def calculateEmbeddingsDim(sentences: Seq[WordpieceEmbeddingsSentence]): Int
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): NerDLApproach.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- val configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- final def copy(extra: ParamMap): Estimator[NerDLModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val description: String
Trains Tensorflow based Char-CNN-BLSTM model
Trains Tensorflow based Char-CNN-BLSTM model
- Definition Classes
- NerDLApproach → AnnotatorApproach
- val dropout: FloatParam
Dropout coefficient (Default:
0.5f) - val enableMemoryOptimizer: BooleanParam
Whether to optimize for large datasets or not (Default:
false).Whether to optimize for large datasets or not (Default:
false). Enabling this option can slow down training. - val enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default:
false)Whether to output to annotators log folder (Default:
false)- Definition Classes
- EvaluationDLParams
- val entities: StringArrayParam
Entities to recognize
Entities to recognize
- Definition Classes
- NerApproach
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- val evaluationLogExtended: BooleanParam
Whether logs for validation to be extended (Default:
false): it displays time and evaluation of each labelWhether logs for validation to be extended (Default:
false): it displays time and evaluation of each label- Definition Classes
- EvaluationDLParams
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- final def fit(dataset: Dataset[_]): NerDLModel
- Definition Classes
- AnnotatorApproach → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[NerDLModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): NerDLModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): NerDLModel
- Definition Classes
- Estimator
- Annotations
- @varargs() @Since("2.0.0")
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBatchSize: Int
Batch size
- def getBestModelMetric: String
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def getConfigProtoBytes: Option[Array[Byte]]
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getDropout: Float
Dropout coefficient
- def getEnableMemoryOptimizer: Boolean
Memory Optimizer
- def getEnableOutputLogs: Boolean
Whether to output to annotators log folder (Default:
false)Whether to output to annotators log folder (Default:
false)- Definition Classes
- EvaluationDLParams
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getLogName: String
- Definition Classes
- NerDLApproach → Logging
- def getLr: Float
Learning Rate
- def getMaxEpochs: Int
Maximum number of epochs to train
Maximum number of epochs to train
- Definition Classes
- NerApproach
- def getMinEpochs: Int
Minimum number of epochs to train
Minimum number of epochs to train
- Definition Classes
- NerApproach
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getOutputLogsPath: String
Folder path to save training logs (Default:
"")Folder path to save training logs (Default:
"")- Definition Classes
- EvaluationDLParams
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getPo: Float
Learning rate decay coefficient.
Learning rate decay coefficient. Real Learning Rage = lr / (1 + po * epoch)
- def getRandomSeed: Int
Random seed
Random seed
- Definition Classes
- NerApproach
- def getUseBestModel: Boolean
useBestModel
- def getUseContrib: Boolean
Whether to use contrib LSTM Cells.
Whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy.
- def getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
- val graphFolder: Param[String]
Folder path that contain external graph files
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val includeAllConfidenceScores: BooleanParam
whether to include all confidence scores in annotation metadata or just score of the predicted tag
- val includeConfidence: BooleanParam
Whether to include confidence scores in annotation metadata (Default:
false) - def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[String]
Input annotator types: DOCUMENT, TOKEN, WORD_EMBEDDINGS
Input annotator types: DOCUMENT, TOKEN, WORD_EMBEDDINGS
- Definition Classes
- NerDLApproach → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val labelColumn: Param[String]
Column with label per each token
Column with label per each token
- Definition Classes
- NerApproach
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log(value: => String, minLevel: Level): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val logger: Logger
- Attributes
- protected
- Definition Classes
- Logging
- val lr: FloatParam
Learning Rate (Default:
1e-3f) - val maxEpochs: IntParam
Maximum number of epochs to train
Maximum number of epochs to train
- Definition Classes
- NerApproach
- val minEpochs: IntParam
Minimum number of epochs to train
Minimum number of epochs to train
- Definition Classes
- NerApproach
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onTrained(model: NerDLModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- def onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: String
Output annotator types: NAMED_ENTITY
Output annotator types: NAMED_ENTITY
- Definition Classes
- NerDLApproach → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- def outputLog(value: => String, uuid: String, shouldLog: Boolean, outputLogsPath: String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val outputLogsPath: Param[String]
Folder path to save training logs (Default:
"")Folder path to save training logs (Default:
"")- Definition Classes
- EvaluationDLParams
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- val po: FloatParam
Learning rate decay coefficient (Default:
0.005f).Learning rate decay coefficient (Default:
0.005f). Real Learning Rate calculates tolr / (1 + po * epoch) - val randomSeed: IntParam
Random seed
Random seed
- Definition Classes
- NerApproach
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): NerDLApproach.this.type
- Definition Classes
- Params
- def setBatchSize(batch: Int): NerDLApproach.this.type
Batch size
- def setBestModelMetric(value: String): NerDLApproach.this.type
- def setConfigProtoBytes(bytes: Array[Int]): NerDLApproach.this.type
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- def setDefault[T](feature: StructFeature[T], value: () => T): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): NerDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): NerDLApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setDropout(dropout: Float): NerDLApproach.this.type
Dropout coefficient
- def setEnableMemoryOptimizer(value: Boolean): NerDLApproach.this.type
Whether to optimize for large datasets or not.
Whether to optimize for large datasets or not. Enabling this option can slow down training.
- def setEnableOutputLogs(enableOutputLogs: Boolean): NerDLApproach.this.type
Whether to output to annotators log folder (Default:
false)Whether to output to annotators log folder (Default:
false)- Definition Classes
- EvaluationDLParams
- def setEntities(tags: Array[String]): NerDLApproach
Entities to recognize
Entities to recognize
- Definition Classes
- NerApproach
- def setEvaluationLogExtended(evaluationLogExtended: Boolean): NerDLApproach.this.type
Whether logs for validation to be extended: it displays time and evaluation of each label.
Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false.
- Definition Classes
- EvaluationDLParams
- def setGraphFolder(path: String): NerDLApproach.this.type
Folder path that contain external graph files
- def setIncludeAllConfidenceScores(value: Boolean): NerDLApproach.this.type
whether to include confidence scores for all tags rather than just for the predicted one
- def setIncludeConfidence(value: Boolean): NerDLApproach.this.type
Whether to include confidence scores in annotation metadata
- final def setInputCols(value: String*): NerDLApproach.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): NerDLApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLabelColumn(column: String): NerDLApproach
Column with label per each token
Column with label per each token
- Definition Classes
- NerApproach
- def setLazyAnnotator(value: Boolean): NerDLApproach.this.type
- Definition Classes
- CanBeLazy
- def setLr(lr: Float): NerDLApproach.this.type
Learning Rate
- def setMaxEpochs(epochs: Int): NerDLApproach
Maximum number of epochs to train
Maximum number of epochs to train
- Definition Classes
- NerApproach
- def setMinEpochs(epochs: Int): NerDLApproach
Minimum number of epochs to train
Minimum number of epochs to train
- Definition Classes
- NerApproach
- final def setOutputCol(value: String): NerDLApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setOutputLogsPath(path: String): NerDLApproach.this.type
Folder path to save training logs (Default:
"")Folder path to save training logs (Default:
"")- Definition Classes
- EvaluationDLParams
- def setPo(po: Float): NerDLApproach.this.type
Learning rate decay coefficient.
Learning rate decay coefficient. Real Learning Rage = lr / (1 + po * epoch)
- def setRandomSeed(seed: Int): NerDLApproach
Random seed
Random seed
- Definition Classes
- NerApproach
- def setTestDataset(er: ExternalResource): NerDLApproach.this.type
ExternalResource to a parquet file of a test dataset.
ExternalResource to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
When using an ExternalResource, only parquet files are accepted for this function.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT,TOKEN,WORD_EMBEDDINGS(Features) andNAMED_ENTITY(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
- def setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): NerDLApproach.this.type
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT,TOKEN,WORD_EMBEDDINGS(Features) andNAMED_ENTITY(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
- def setUseBestModel(value: Boolean): NerDLApproach.this.type
- def setUseContrib(value: Boolean): NerDLApproach.this.type
Whether to use contrib LSTM Cells.
Whether to use contrib LSTM Cells. Not compatible with Windows. Might slightly improve accuracy.
- def setValidationSplit(validationSplit: Float): NerDLApproach.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
- def setVerbose(verbose: Level): NerDLApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id)Level of verbosity during training (Default:
Verbose.Silent.id)- Definition Classes
- EvaluationDLParams
- def setVerbose(verbose: Int): NerDLApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id)Level of verbosity during training (Default:
Verbose.Silent.id)- Definition Classes
- EvaluationDLParams
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val testDataset: ExternalResourceParam
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
- Definition Classes
- EvaluationDLParams
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): NerDLModel
- Definition Classes
- NerDLApproach → AnnotatorApproach
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- NerDLApproach → Identifiable
- val useBestModel: BooleanParam
Whether to restore and use the model that has achieved the best performance at the end of the training.
Whether to restore and use the model that has achieved the best performance at the end of the training. The metric that is being monitored is F1 for testDataset and if it's not set it will be validationSplit, and if it's not set finally looks for loss.
- val useContrib: BooleanParam
Whether to use contrib LSTM Cells (Default:
true).Whether to use contrib LSTM Cells (Default:
true). Not compatible with Windows. Might slightly improve accuracy. This param is deprecated and only exists for backward compatibility - def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- val validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
- val verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id)Level of verbosity during training (Default:
Verbose.Silent.id)- Definition Classes
- EvaluationDLParams
- val verboseLevel: Level
- Definition Classes
- NerDLApproach → Logging
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from EvaluationDLParams
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from Logging
Inherited from NerApproach[NerDLApproach]
Inherited from AnnotatorApproach[NerDLModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[NerDLModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types