trait EvaluationDLParams extends Params
- Grouped
- Alphabetic
- By Inheritance
- EvaluationDLParams
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Abstract Value Members
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- final def clear(param: Param[_]): EvaluationDLParams.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default:
false) - final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- val evaluationLogExtended: BooleanParam
Whether logs for validation to be extended (Default:
false): it displays time and evaluation of each label - def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getEnableOutputLogs: Boolean
Whether to output to annotators log folder (Default:
false) - final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- def getOutputLogsPath: String
Folder path to save training logs (Default:
"") - def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off. - final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- val outputLogsPath: Param[String]
Folder path to save training logs (Default:
"") - lazy val params: Array[Param[_]]
- Definition Classes
- Params
- final def set(paramPair: ParamPair[_]): EvaluationDLParams.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): EvaluationDLParams.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): EvaluationDLParams.this.type
- Definition Classes
- Params
- final def setDefault(paramPairs: ParamPair[_]*): EvaluationDLParams.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): EvaluationDLParams.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setEnableOutputLogs(enableOutputLogs: Boolean): EvaluationDLParams.this.type
Whether to output to annotators log folder (Default:
false) - def setEvaluationLogExtended(evaluationLogExtended: Boolean): EvaluationDLParams.this.type
Whether logs for validation to be extended: it displays time and evaluation of each label.
Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false.
- def setOutputLogsPath(path: String): EvaluationDLParams.this.type
Folder path to save training logs (Default:
"") - def setTestDataset(er: ExternalResource): EvaluationDLParams.this.type
ExternalResource to a parquet file of a test dataset.
ExternalResource to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
When using an ExternalResource, only parquet files are accepted for this function.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT,TOKEN,WORD_EMBEDDINGS(Features) andNAMED_ENTITY(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- def setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): EvaluationDLParams.this.type
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT,TOKEN,WORD_EMBEDDINGS(Features) andNAMED_ENTITY(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- def setValidationSplit(validationSplit: Float): EvaluationDLParams.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off. - def setVerbose(verbose: Level): EvaluationDLParams.this.type
Level of verbosity during training (Default:
Verbose.Silent.id) - def setVerbose(verbose: Int): EvaluationDLParams.this.type
Level of verbosity during training (Default:
Verbose.Silent.id) - final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val testDataset: ExternalResourceParam
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- val validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off. - val verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id) - final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)