Packages

class ClassifierDLApproach extends AnnotatorApproach[ClassifierDLModel] with ParamsAndFeaturesWritable with ClassifierEncoder

Trains a ClassifierDL for generic Multi-class Text Classification.

ClassifierDL uses the state-of-the-art Universal Sentence Encoder as an input for text classifications. The ClassifierDL annotator uses a deep learning model (DNNs) we have built inside TensorFlow and supports up to 100 classes.

For instantiated/pretrained models, see ClassifierDLModel.

Notes:

Setting a test dataset to monitor model metrics can be done with .setTestDataset. The method expects a path to a parquet file containing a dataframe that has the same required columns as the training dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe. The following example will show how to create the test dataset:

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val embeddings = UniversalSentenceEncoder.pretrained()
  .setInputCols("document")
  .setOutputCol("sentence_embeddings")

val preProcessingPipeline = new Pipeline().setStages(Array(documentAssembler, embeddings))

val Array(train, test) = data.randomSplit(Array(0.8, 0.2))
preProcessingPipeline
  .fit(test)
  .transform(test)
  .write
  .mode("overwrite")
  .parquet("test_data")

val classifier = new ClassifierDLApproach()
  .setInputCols("sentence_embeddings")
  .setOutputCol("category")
  .setLabelColumn("label")
  .setTestDataset("test_data")

For extended examples of usage, see the Examples [1] [2] and the ClassifierDLTestSpec.

Example

In this example, the training data "sentiment.csv" has the form of

text,label
This movie is the best movie I have wached ever! In my opinion this movie can win an award.,0
This was a terrible movie! The acting was bad really bad!,1
...

Then traning can be done like so:

import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder
import com.johnsnowlabs.nlp.annotators.classifier.dl.ClassifierDLApproach
import org.apache.spark.ml.Pipeline

val smallCorpus = spark.read.option("header","true").csv("src/test/resources/classifier/sentiment.csv")

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val useEmbeddings = UniversalSentenceEncoder.pretrained()
  .setInputCols("document")
  .setOutputCol("sentence_embeddings")

val docClassifier = new ClassifierDLApproach()
  .setInputCols("sentence_embeddings")
  .setOutputCol("category")
  .setLabelColumn("label")
  .setBatchSize(64)
  .setMaxEpochs(20)
  .setLr(5e-3f)
  .setDropout(0.5f)

val pipeline = new Pipeline()
  .setStages(
    Array(
      documentAssembler,
      useEmbeddings,
      docClassifier
    )
  )

val pipelineModel = pipeline.fit(smallCorpus)
See also

MultiClassifierDLApproach for multi-class classification

SentimentDLApproach for sentiment analysis

Linear Supertypes
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. ClassifierDLApproach
  2. ClassifierEncoder
  3. EvaluationDLParams
  4. ParamsAndFeaturesWritable
  5. HasFeatures
  6. AnnotatorApproach
  7. CanBeLazy
  8. DefaultParamsWritable
  9. MLWritable
  10. HasOutputAnnotatorType
  11. HasOutputAnnotationCol
  12. HasInputAnnotationCols
  13. Estimator
  14. PipelineStage
  15. Logging
  16. Params
  17. Serializable
  18. Identifiable
  19. AnyRef
  20. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new ClassifierDLApproach()
  2. new ClassifierDLApproach(uid: String)

Type Members

  1. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): ClassifierDLModel
    Attributes
    protected
    Definition Classes
    AnnotatorApproach
  10. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  11. val batchSize: IntParam

    Batch size (Default: 64)

    Batch size (Default: 64)

    Definition Classes
    ClassifierEncoder
  12. def beforeTraining(spark: SparkSession): Unit
    Definition Classes
    AnnotatorApproach
  13. def buildDatasetWithLabels(dataset: Dataset[_], inputCols: String): (DataFrame, Array[String])
    Attributes
    protected
    Definition Classes
    ClassifierEncoder
  14. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  15. final def clear(param: Param[_]): ClassifierDLApproach.this.type
    Definition Classes
    Params
  16. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
  17. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

    Definition Classes
    ClassifierEncoder
  18. final def copy(extra: ParamMap): Estimator[ClassifierDLModel]
    Definition Classes
    AnnotatorApproach → Estimator → PipelineStage → Params
  19. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  20. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  21. val description: String

    Trains TensorFlow model for multi-class text classification

    Trains TensorFlow model for multi-class text classification

    Definition Classes
    ClassifierDLApproachAnnotatorApproach
  22. val dropout: FloatParam

    Dropout coefficient (Default: 0.5f)

  23. val enableOutputLogs: BooleanParam

    Whether to output to annotators log folder (Default: false)

    Whether to output to annotators log folder (Default: false)

    Definition Classes
    EvaluationDLParams
  24. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  25. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  26. val evaluationLogExtended: BooleanParam

    Whether logs for validation to be extended (Default: false): it displays time and evaluation of each label

    Whether logs for validation to be extended (Default: false): it displays time and evaluation of each label

    Definition Classes
    EvaluationDLParams
  27. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  28. def explainParams(): String
    Definition Classes
    Params
  29. def extractInputs(encoder: ClassifierDatasetEncoder, dataframe: DataFrame): (Array[Array[Float]], Array[String])
    Attributes
    protected
    Definition Classes
    ClassifierEncoder
  30. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  31. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  32. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  33. final def fit(dataset: Dataset[_]): ClassifierDLModel
    Definition Classes
    AnnotatorApproach → Estimator
  34. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[ClassifierDLModel]
    Definition Classes
    Estimator
    Annotations
    @Since("2.0.0")
  35. def fit(dataset: Dataset[_], paramMap: ParamMap): ClassifierDLModel
    Definition Classes
    Estimator
    Annotations
    @Since("2.0.0")
  36. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): ClassifierDLModel
    Definition Classes
    Estimator
    Annotations
    @varargs() @Since("2.0.0")
  37. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  41. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  42. def getBatchSize: Int

    Batch size (Default: 64)

    Batch size (Default: 64)

    Definition Classes
    ClassifierEncoder
  43. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @HotSpotIntrinsicCandidate() @native()
  44. def getConfigProtoBytes: Option[Array[Byte]]

    Tensorflow config Protobytes passed to the TF session

    Tensorflow config Protobytes passed to the TF session

    Definition Classes
    ClassifierEncoder
  45. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  46. def getDropout: Float

    Dropout coefficient (Default: 0.5f)

  47. def getEnableOutputLogs: Boolean

    Whether to output to annotators log folder (Default: false)

    Whether to output to annotators log folder (Default: false)

    Definition Classes
    EvaluationDLParams
  48. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  49. def getLabelColumn: String

    Column with label per each document

    Column with label per each document

    Definition Classes
    ClassifierEncoder
  50. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  51. def getLr: Float

    Learning Rate (Default: 5e-3f)

    Learning Rate (Default: 5e-3f)

    Definition Classes
    ClassifierEncoder
  52. def getMaxEpochs: Int

    Maximum number of epochs to train (Default: 10)

    Maximum number of epochs to train (Default: 10)

    Definition Classes
    ClassifierEncoder
  53. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  54. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  55. def getOutputLogsPath: String

    Folder path to save training logs (Default: "")

    Folder path to save training logs (Default: "")

    Definition Classes
    EvaluationDLParams
  56. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  57. def getRandomSeed: Int

    Random seed

    Random seed

    Definition Classes
    ClassifierEncoder
  58. def getValidationSplit: Float

    Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f).

    Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    EvaluationDLParams
  59. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  60. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  61. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @HotSpotIntrinsicCandidate() @native()
  62. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  63. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  64. val inputAnnotatorTypes: Array[AnnotatorType]

    Input annotator type : SENTENCE_EMBEDDINGS

    Input annotator type : SENTENCE_EMBEDDINGS

    Definition Classes
    ClassifierDLApproachHasInputAnnotationCols
  65. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  66. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  67. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  68. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  69. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  70. val labelColumn: Param[String]

    Column with label per each document

    Column with label per each document

    Definition Classes
    ClassifierEncoder
  71. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  72. def loadSavedModel(): TensorflowWrapper
  73. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  74. def logDebug(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logDebug(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logError(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. def logError(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logInfo(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  79. def logInfo(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  80. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  81. def logTrace(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  82. def logTrace(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  83. def logWarning(msg: => String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  84. def logWarning(msg: => String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  85. val lr: FloatParam

    Learning Rate (Default: 5e-3f)

    Learning Rate (Default: 5e-3f)

    Definition Classes
    ClassifierEncoder
  86. val maxEpochs: IntParam

    Maximum number of epochs to train (Default: 10)

    Maximum number of epochs to train (Default: 10)

    Definition Classes
    ClassifierEncoder
  87. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  88. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  89. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @HotSpotIntrinsicCandidate() @native()
  90. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @HotSpotIntrinsicCandidate() @native()
  91. def onTrained(model: ClassifierDLModel, spark: SparkSession): Unit
    Definition Classes
    AnnotatorApproach
  92. def onWrite(path: String, spark: SparkSession): Unit
    Attributes
    protected
    Definition Classes
    ParamsAndFeaturesWritable
  93. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  94. val outputAnnotatorType: String

    Output annotator type : CATEGORY

    Output annotator type : CATEGORY

    Definition Classes
    ClassifierDLApproachHasOutputAnnotatorType
  95. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  96. val outputLogsPath: Param[String]

    Folder path to save training logs (Default: "")

    Folder path to save training logs (Default: "")

    Definition Classes
    EvaluationDLParams
  97. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  98. val randomSeed: IntParam

    Random seed for shuffling the dataset

    Random seed for shuffling the dataset

    Definition Classes
    ClassifierEncoder
  99. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
  100. def set[T](feature: StructFeature[T], value: T): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  101. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  102. def set[T](feature: SetFeature[T], value: Set[T]): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  103. def set[T](feature: ArrayFeature[T], value: Array[T]): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  104. final def set(paramPair: ParamPair[_]): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  105. final def set(param: String, value: Any): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  106. final def set[T](param: Param[T], value: T): ClassifierDLApproach.this.type
    Definition Classes
    Params
  107. def setBatchSize(batch: Int): ClassifierDLApproach.this.type

    Batch size (Default: 64)

    Batch size (Default: 64)

    Definition Classes
    ClassifierEncoder
  108. def setConfigProtoBytes(bytes: Array[Int]): ClassifierDLApproach.this.type

    Tensorflow config Protobytes passed to the TF session

    Tensorflow config Protobytes passed to the TF session

    Definition Classes
    ClassifierEncoder
  109. def setDefault[T](feature: StructFeature[T], value: () => T): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  110. def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  111. def setDefault[T](feature: SetFeature[T], value: () => Set[T]): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  112. def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  113. final def setDefault(paramPairs: ParamPair[_]*): ClassifierDLApproach.this.type
    Attributes
    protected
    Definition Classes
    Params
  114. final def setDefault[T](param: Param[T], value: T): ClassifierDLApproach.this.type
    Attributes
    protected[org.apache.spark.ml]
    Definition Classes
    Params
  115. def setDropout(dropout: Float): ClassifierDLApproach.this.type

    Dropout coefficient (Default: 0.5f)

  116. def setEnableOutputLogs(enableOutputLogs: Boolean): ClassifierDLApproach.this.type

    Whether to output to annotators log folder (Default: false)

    Whether to output to annotators log folder (Default: false)

    Definition Classes
    EvaluationDLParams
  117. def setEvaluationLogExtended(evaluationLogExtended: Boolean): ClassifierDLApproach.this.type

    Whether logs for validation to be extended: it displays time and evaluation of each label.

    Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false.

    Definition Classes
    EvaluationDLParams
  118. final def setInputCols(value: String*): ClassifierDLApproach.this.type
    Definition Classes
    HasInputAnnotationCols
  119. def setInputCols(value: Array[String]): ClassifierDLApproach.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  120. def setLabelColumn(column: String): ClassifierDLApproach.this.type

    Column with label per each document

    Column with label per each document

    Definition Classes
    ClassifierEncoder
  121. def setLazyAnnotator(value: Boolean): ClassifierDLApproach.this.type
    Definition Classes
    CanBeLazy
  122. def setLr(lr: Float): ClassifierDLApproach.this.type

    Learning Rate (Default: 5e-3f)

    Learning Rate (Default: 5e-3f)

    Definition Classes
    ClassifierEncoder
  123. def setMaxEpochs(epochs: Int): ClassifierDLApproach.this.type

    Maximum number of epochs to train (Default: 10)

    Maximum number of epochs to train (Default: 10)

    Definition Classes
    ClassifierEncoder
  124. final def setOutputCol(value: String): ClassifierDLApproach.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  125. def setOutputLogsPath(path: String): ClassifierDLApproach.this.type

    Folder path to save training logs (Default: "")

    Folder path to save training logs (Default: "")

    Definition Classes
    EvaluationDLParams
  126. def setRandomSeed(seed: Int): ClassifierDLApproach.this.type

    Random seed

    Random seed

    Definition Classes
    ClassifierEncoder
  127. def setTestDataset(er: ExternalResource): ClassifierDLApproach.this.type

    ExternalResource to a parquet file of a test dataset.

    ExternalResource to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.

    When using an ExternalResource, only parquet files are accepted for this function.

    The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input DOCUMENT, TOKEN, WORD_EMBEDDINGS (Features) and NAMED_ENTITY (label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.

    An example on how to create such a parquet file could be:

    // assuming preProcessingPipeline
    val Array(train, test) = data.randomSplit(Array(0.8, 0.2))
    
    preProcessingPipeline
      .fit(test)
      .transform(test)
      .write
      .mode("overwrite")
      .parquet("test_data")
    
    annotator.setTestDataset("test_data")
    Definition Classes
    EvaluationDLParams
  128. def setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): ClassifierDLApproach.this.type

    Path to a parquet file of a test dataset.

    Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.

    The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input DOCUMENT, TOKEN, WORD_EMBEDDINGS (Features) and NAMED_ENTITY (label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.

    An example on how to create such a parquet file could be:

    // assuming preProcessingPipeline
    val Array(train, test) = data.randomSplit(Array(0.8, 0.2))
    
    preProcessingPipeline
      .fit(test)
      .transform(test)
      .write
      .mode("overwrite")
      .parquet("test_data")
    
    annotator.setTestDataset("test_data")
    Definition Classes
    EvaluationDLParams
  129. def setValidationSplit(validationSplit: Float): ClassifierDLApproach.this.type

    Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f).

    Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    EvaluationDLParams
  130. def setVerbose(verbose: Level): ClassifierDLApproach.this.type

    Level of verbosity during training (Default: Verbose.Silent.id)

    Level of verbosity during training (Default: Verbose.Silent.id)

    Definition Classes
    EvaluationDLParams
  131. def setVerbose(verbose: Int): ClassifierDLApproach.this.type

    Level of verbosity during training (Default: Verbose.Silent.id)

    Level of verbosity during training (Default: Verbose.Silent.id)

    Definition Classes
    EvaluationDLParams
  132. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  133. val testDataset: ExternalResourceParam

    Path to a parquet file of a test dataset.

    Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.

    Definition Classes
    EvaluationDLParams
  134. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  135. def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): ClassifierDLModel
  136. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    AnnotatorApproach → PipelineStage
  137. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  138. val uid: String
    Definition Classes
    ClassifierDLApproach → Identifiable
  139. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    AnnotatorApproach
  140. val validationSplit: FloatParam

    Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f).

    Choose the proportion of training dataset to be validated against the model on each Epoch (Default: 0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.

    Definition Classes
    EvaluationDLParams
  141. val verbose: IntParam

    Level of verbosity during training (Default: Verbose.Silent.id)

    Level of verbosity during training (Default: Verbose.Silent.id)

    Definition Classes
    EvaluationDLParams
  142. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  143. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  144. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  145. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable

Deprecated Value Members

  1. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable]) @Deprecated
    Deprecated

    (Since version 9)

Inherited from ClassifierEncoder

Inherited from EvaluationDLParams

Inherited from HasFeatures

Inherited from CanBeLazy

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from HasOutputAnnotatorType

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from Estimator[ClassifierDLModel]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters