class MultiClassifierDLApproach extends AnnotatorApproach[MultiClassifierDLModel] with ParamsAndFeaturesWritable with ClassifierEncoder
Trains a MultiClassifierDL for Multi-label Text Classification.
MultiClassifierDL uses a Bidirectional GRU with a convolutional model that we have built inside TensorFlow and supports up to 100 classes.
For instantiated/pretrained models, see MultiClassifierDLModel.
The input to MultiClassifierDL are Sentence Embeddings such as the state-of-the-art
UniversalSentenceEncoder,
BertSentenceEmbeddings, or
SentenceEmbeddings.
In machine learning, multi-label classification and the strongly related problem of multi-output classification are variants of the classification problem where multiple labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of more than two classes; in the multi-label problem there is no constraint on how many of the classes the instance can be assigned to. Formally, multi-label classification is the problem of finding a model that maps inputs x to binary vectors y (assigning a value of 0 or 1 for each element (label) in y).
Notes:
- This annotator requires an array of labels in type of String.
- UniversalSentenceEncoder,
BertSentenceEmbeddings, or
SentenceEmbeddings can be used for
the
inputCol.
Setting a test dataset to monitor model metrics can be done with .setTestDataset. The method
expects a path to a parquet file containing a dataframe that has the same required columns as
the training dataframe. The pre-processing steps for the training dataframe should also be
applied to the test dataframe. The following example will show how to create the test dataset:
val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val embeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("sentence_embeddings") val preProcessingPipeline = new Pipeline().setStages(Array(documentAssembler, embeddings)) val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") val multiClassifier = new MultiClassifierDLApproach() .setInputCols("sentence_embeddings") .setOutputCol("category") .setLabelColumn("label") .setTestDataset("test_data")
For extended examples of usage, see the Examples and the MultiClassifierDLTestSpec.
Example
In this example, the training data has the form (Note: labels can be arbitrary)
mr,ref "name[Alimentum], area[city centre], familyFriendly[no], near[Burger King]",Alimentum is an adult establish found in the city centre area near Burger King. "name[Alimentum], area[city centre], familyFriendly[yes]",Alimentum is a family-friendly place in the city centre. ...
It needs some pre-processing first, so the labels are of type Array[String]. This can be
done like so:
import spark.implicits._ import com.johnsnowlabs.nlp.annotators.classifier.dl.MultiClassifierDLApproach import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.embeddings.UniversalSentenceEncoder import org.apache.spark.ml.Pipeline import org.apache.spark.sql.functions.{col, udf} // Process training data to create text with associated array of labels def splitAndTrim = udf { labels: String => labels.split(", ").map(x=>x.trim) } val smallCorpus = spark.read .option("header", true) .option("inferSchema", true) .option("mode", "DROPMALFORMED") .csv("src/test/resources/classifier/e2e.csv") .withColumn("labels", splitAndTrim(col("mr"))) .withColumn("text", col("ref")) .drop("mr") smallCorpus.printSchema() // root // |-- ref: string (nullable = true) // |-- labels: array (nullable = true) // | |-- element: string (containsNull = true) // Then create pipeline for training val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") .setCleanupMode("shrink") val embeddings = UniversalSentenceEncoder.pretrained() .setInputCols("document") .setOutputCol("embeddings") val docClassifier = new MultiClassifierDLApproach() .setInputCols("embeddings") .setOutputCol("category") .setLabelColumn("labels") .setBatchSize(128) .setMaxEpochs(10) .setLr(1e-3f) .setThreshold(0.5f) .setValidationSplit(0.1f) val pipeline = new Pipeline() .setStages( Array( documentAssembler, embeddings, docClassifier ) ) val pipelineModel = pipeline.fit(smallCorpus)
- See also
ClassifierDLApproach for single-class classification
SentimentDLApproach for sentiment analysis
- Grouped
- Alphabetic
- By Inheritance
- MultiClassifierDLApproach
- ClassifierEncoder
- EvaluationDLParams
- ParamsAndFeaturesWritable
- HasFeatures
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): MultiClassifierDLModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- val batchSize: IntParam
Batch size (Default:
64)Batch size (Default:
64)- Definition Classes
- ClassifierEncoder
- def beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- def buildDatasetWithLabels(dataset: Dataset[_], inputCols: String): (DataFrame, Array[String])
- Attributes
- protected
- Definition Classes
- MultiClassifierDLApproach → ClassifierEncoder
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): MultiClassifierDLApproach.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- val configProtoBytes: IntArrayParam
ConfigProto from tensorflow, serialized into byte array.
ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()
- Definition Classes
- ClassifierEncoder
- final def copy(extra: ParamMap): Estimator[MultiClassifierDLModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val description: String
Trains TensorFlow model for multi-class text classification
Trains TensorFlow model for multi-class text classification
- Definition Classes
- MultiClassifierDLApproach → AnnotatorApproach
- val enableOutputLogs: BooleanParam
Whether to output to annotators log folder (Default:
false)Whether to output to annotators log folder (Default:
false)- Definition Classes
- EvaluationDLParams
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- val evaluationLogExtended: BooleanParam
Whether logs for validation to be extended (Default:
false): it displays time and evaluation of each labelWhether logs for validation to be extended (Default:
false): it displays time and evaluation of each label- Definition Classes
- EvaluationDLParams
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extractInputs(encoder: ClassifierDatasetEncoder, dataframe: DataFrame): (Array[Array[Float]], Array[String])
- Attributes
- protected
- Definition Classes
- ClassifierEncoder
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- final def fit(dataset: Dataset[_]): MultiClassifierDLModel
- Definition Classes
- AnnotatorApproach → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[MultiClassifierDLModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): MultiClassifierDLModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): MultiClassifierDLModel
- Definition Classes
- Estimator
- Annotations
- @varargs() @Since("2.0.0")
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getBatchSize: Int
Batch size (Default:
64)Batch size (Default:
64)- Definition Classes
- ClassifierEncoder
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def getConfigProtoBytes: Option[Array[Byte]]
Tensorflow config Protobytes passed to the TF session
Tensorflow config Protobytes passed to the TF session
- Definition Classes
- ClassifierEncoder
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getEnableOutputLogs: Boolean
Whether to output to annotators log folder (Default:
false)Whether to output to annotators log folder (Default:
false)- Definition Classes
- EvaluationDLParams
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLabelColumn: String
Column with label per each document
Column with label per each document
- Definition Classes
- ClassifierEncoder
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getLr: Float
Learning Rate (Default:
5e-3f)Learning Rate (Default:
5e-3f)- Definition Classes
- ClassifierEncoder
- def getMaxEpochs: Int
Maximum number of epochs to train (Default:
10)Maximum number of epochs to train (Default:
10)- Definition Classes
- ClassifierEncoder
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getOutputLogsPath: String
Folder path to save training logs (Default:
"")Folder path to save training logs (Default:
"")- Definition Classes
- EvaluationDLParams
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- def getRandomSeed: Int
Random seed
Random seed
- Definition Classes
- ClassifierEncoder
- def getShufflePerEpoch: Boolean
Max sequence length to feed into TensorFlow
- def getThreshold: Float
The minimum threshold for each label to be accepted (Default:
0.5f) - def getValidationSplit: Float
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[AnnotatorType]
Input annotator type : SENTENCE_EMBEDDINGS
Input annotator type : SENTENCE_EMBEDDINGS
- Definition Classes
- MultiClassifierDLApproach → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val labelColumn: Param[String]
Column with label per each document
Column with label per each document
- Definition Classes
- ClassifierEncoder
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def loadSavedModel(): TensorflowWrapper
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val lr: FloatParam
Learning Rate (Default:
5e-3f)Learning Rate (Default:
5e-3f)- Definition Classes
- ClassifierEncoder
- val maxEpochs: IntParam
Maximum number of epochs to train (Default:
10)Maximum number of epochs to train (Default:
10)- Definition Classes
- ClassifierEncoder
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onTrained(model: MultiClassifierDLModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- def onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: String
Output annotator type : CATEGORY
Output annotator type : CATEGORY
- Definition Classes
- MultiClassifierDLApproach → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- val outputLogsPath: Param[String]
Folder path to save training logs (Default:
"")Folder path to save training logs (Default:
"")- Definition Classes
- EvaluationDLParams
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- val randomSeed: IntParam
Random seed for shuffling the dataset
Random seed for shuffling the dataset
- Definition Classes
- ClassifierEncoder
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): MultiClassifierDLApproach.this.type
- Definition Classes
- Params
- def setBatchSize(batch: Int): MultiClassifierDLApproach.this.type
Batch size (Default:
64)Batch size (Default:
64)- Definition Classes
- ClassifierEncoder
- def setConfigProtoBytes(bytes: Array[Int]): MultiClassifierDLApproach.this.type
Tensorflow config Protobytes passed to the TF session
Tensorflow config Protobytes passed to the TF session
- Definition Classes
- ClassifierEncoder
- def setDefault[T](feature: StructFeature[T], value: () => T): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): MultiClassifierDLApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): MultiClassifierDLApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setEnableOutputLogs(enableOutputLogs: Boolean): MultiClassifierDLApproach.this.type
Whether to output to annotators log folder (Default:
false)Whether to output to annotators log folder (Default:
false)- Definition Classes
- EvaluationDLParams
- def setEvaluationLogExtended(evaluationLogExtended: Boolean): MultiClassifierDLApproach.this.type
Whether logs for validation to be extended: it displays time and evaluation of each label.
Whether logs for validation to be extended: it displays time and evaluation of each label. Default is false.
- Definition Classes
- EvaluationDLParams
- final def setInputCols(value: String*): MultiClassifierDLApproach.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): MultiClassifierDLApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLabelColumn(column: String): MultiClassifierDLApproach.this.type
Column with label per each document
Column with label per each document
- Definition Classes
- ClassifierEncoder
- def setLazyAnnotator(value: Boolean): MultiClassifierDLApproach.this.type
- Definition Classes
- CanBeLazy
- def setLr(lr: Float): MultiClassifierDLApproach.this.type
Learning Rate (Default:
5e-3f)Learning Rate (Default:
5e-3f)- Definition Classes
- ClassifierEncoder
- def setMaxEpochs(epochs: Int): MultiClassifierDLApproach.this.type
Maximum number of epochs to train (Default:
10)Maximum number of epochs to train (Default:
10)- Definition Classes
- ClassifierEncoder
- final def setOutputCol(value: String): MultiClassifierDLApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setOutputLogsPath(path: String): MultiClassifierDLApproach.this.type
Folder path to save training logs (Default:
"")Folder path to save training logs (Default:
"")- Definition Classes
- EvaluationDLParams
- def setRandomSeed(seed: Int): MultiClassifierDLApproach.this.type
Random seed
Random seed
- Definition Classes
- ClassifierEncoder
- def setShufflePerEpoch(value: Boolean): MultiClassifierDLApproach.this.type
shufflePerEpoch
- def setTestDataset(er: ExternalResource): MultiClassifierDLApproach.this.type
ExternalResource to a parquet file of a test dataset.
ExternalResource to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
When using an ExternalResource, only parquet files are accepted for this function.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT,TOKEN,WORD_EMBEDDINGS(Features) andNAMED_ENTITY(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
- def setTestDataset(path: String, readAs: Format = ReadAs.SPARK, options: Map[String, String] = Map("format" -> "parquet")): MultiClassifierDLApproach.this.type
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
The parquet file must be a dataframe that has the same columns as the model that is being trained. For example, if the model needs as input
DOCUMENT,TOKEN,WORD_EMBEDDINGS(Features) andNAMED_ENTITY(label) then these columns also need to be present while saving the dataframe. The pre-processing steps for the training dataframe should also be applied to the test dataframe.An example on how to create such a parquet file could be:
// assuming preProcessingPipeline val Array(train, test) = data.randomSplit(Array(0.8, 0.2)) preProcessingPipeline .fit(test) .transform(test) .write .mode("overwrite") .parquet("test_data") annotator.setTestDataset("test_data")
- Definition Classes
- EvaluationDLParams
- def setThreshold(threshold: Float): MultiClassifierDLApproach.this.type
The minimum threshold for each label to be accepted (Default:
0.5f) - def setValidationSplit(validationSplit: Float): MultiClassifierDLApproach.this.type
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
- def setVerbose(verbose: Level): MultiClassifierDLApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id)Level of verbosity during training (Default:
Verbose.Silent.id)- Definition Classes
- EvaluationDLParams
- def setVerbose(verbose: Int): MultiClassifierDLApproach.this.type
Level of verbosity during training (Default:
Verbose.Silent.id)Level of verbosity during training (Default:
Verbose.Silent.id)- Definition Classes
- EvaluationDLParams
- val shufflePerEpoch: BooleanParam
Whether to shuffle the training data on each Epoch (Default:
false) - final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val testDataset: ExternalResourceParam
Path to a parquet file of a test dataset.
Path to a parquet file of a test dataset. If set, it is used to calculate statistics on it during training.
- Definition Classes
- EvaluationDLParams
- val threshold: FloatParam
The minimum threshold for each label to be accepted (Default:
0.5f) - def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): MultiClassifierDLModel
- Definition Classes
- MultiClassifierDLApproach → AnnotatorApproach
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- MultiClassifierDLApproach → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- val validationSplit: FloatParam
Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f).Choose the proportion of training dataset to be validated against the model on each Epoch (Default:
0.0f). The value should be between 0.0 and 1.0 and by default it is 0.0 and off.- Definition Classes
- EvaluationDLParams
- val verbose: IntParam
Level of verbosity during training (Default:
Verbose.Silent.id)Level of verbosity during training (Default:
Verbose.Silent.id)- Definition Classes
- EvaluationDLParams
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from ClassifierEncoder
Inherited from EvaluationDLParams
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from AnnotatorApproach[MultiClassifierDLModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[MultiClassifierDLModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types