class WordSegmenterApproach extends AnnotatorApproach[WordSegmenterModel] with PerceptronTrainingUtils
Trains a WordSegmenter which tokenizes non-english or non-whitespace separated texts.
Many languages are not whitespace separated and their sentences are a concatenation of many symbols, like Korean, Japanese or Chinese. Without understanding the language, splitting the words into their corresponding tokens is impossible. The WordSegmenter is trained to understand these languages and split them into semantically correct parts.
This annotator is based on the paper Chinese Word Segmentation as Character Tagging [1]. Word segmentation is treated as a tagging problem. Each character is be tagged as on of four different labels: LL (left boundary), RR (right boundary), MM (middle) and LR (word by itself). The label depends on the position of the word in the sentence. LL tagged words will combine with the word on the right. Likewise, RR tagged words combine with words on the left. MM tagged words are treated as the middle of the word and combine with either side. LR tagged words are words by themselves.
Example (from [1], Example 3(a) (raw), 3(b) (tagged), 3(c) (translation)):
- 上海 计划 到 本 世纪 末 实现 人均 国内 生产 总值 五千 美元
- 上/LL 海/RR 计/LL 划/RR 到/LR 本/LR 世/LL 纪/RR 末/LR 实/LL 现/RR 人/LL 均/RR 国/LL 内/RR 生/LL 产/RR 总/LL 值/RR 五/LL 千/RR 美/LL 元/RR
- Shanghai plans to reach the goal of 5,000 dollars in per capita GDP by the end of the century.
For instantiated/pretrained models, see WordSegmenterModel.
To train your own model, a training dataset consisting of
Part-Of-Speech tags is required. The
data has to be loaded into a dataframe, where the column is an
Annotation of type "POS". This can be set with
setPosColumn.
Tip: The helper class POS might be useful to read training data into data frames. nl For extended examples of usage, see the Examples and the WordSegmenterTest.
References:
- [1] Xue, Nianwen. “Chinese Word Segmentation as Character Tagging.” International Journal of Computational Linguistics & Chinese Language Processing, Volume 8, Number 1, February 2003: Special Issue on Word Formation and Chinese Language Processing, 2003, pp. 29-48. ACLWeb, https://aclanthology.org/O03-4002.
Example
In this example, "chinese_train.utf8" is in the form of
十|LL 四|RR 不|LL 是|RR 四|LL 十|RR
and is loaded with the POS class to create a dataframe of "POS" type Annotations.
import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotators.ws.WordSegmenterApproach import com.johnsnowlabs.nlp.training.POS import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val wordSegmenter = new WordSegmenterApproach() .setInputCols("document") .setOutputCol("token") .setPosColumn("tags") .setNIterations(5) val pipeline = new Pipeline().setStages(Array( documentAssembler, wordSegmenter )) val trainingDataSet = POS().readDataset( spark, "src/test/resources/word-segmenter/chinese_train.utf8" ) val pipelineModel = pipeline.fit(trainingDataSet)
- Grouped
- Alphabetic
- By Inheritance
- WordSegmenterApproach
- PerceptronTrainingUtils
- PerceptronUtils
- AnnotatorApproach
- CanBeLazy
- DefaultParamsWritable
- MLWritable
- HasOutputAnnotatorType
- HasOutputAnnotationCol
- HasInputAnnotationCols
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _fit(dataset: Dataset[_], recursiveStages: Option[PipelineModel]): WordSegmenterModel
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- val ambiguityThreshold: DoubleParam
How much percentage of total amount of words are covered to be marked as frequent (Default:
0.97) - final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def beforeTraining(spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- def buildTagBook(taggedSentences: Array[TaggedSentence], frequencyThreshold: Int, ambiguityThreshold: Double): Map[String, String]
Finds very frequent tags on a word in training, and marks them as non ambiguous based on tune parameters ToDo: Move such parameters to configuration
Finds very frequent tags on a word in training, and marks them as non ambiguous based on tune parameters ToDo: Move such parameters to configuration
- taggedSentences
Takes entire tagged sentences to find frequent tags
- frequencyThreshold
How many times at least a tag on a word to be marked as frequent
- ambiguityThreshold
How much percentage of total amount of words are covered to be marked as frequent
- Definition Classes
- PerceptronTrainingUtils
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): WordSegmenterApproach.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- final def copy(extra: ParamMap): Estimator[WordSegmenterModel]
- Definition Classes
- AnnotatorApproach → Estimator → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- val description: String
- Definition Classes
- WordSegmenterApproach → AnnotatorApproach
- val enableRegexTokenizer: BooleanParam
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- final def fit(dataset: Dataset[_]): WordSegmenterModel
- Definition Classes
- AnnotatorApproach → Estimator
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[WordSegmenterModel]
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): WordSegmenterModel
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): WordSegmenterModel
- Definition Classes
- Estimator
- Annotations
- @varargs() @Since("2.0.0")
- val frequencyThreshold: IntParam
How many times at least a tag on a word to be marked as frequent (Default:
20) - def generatesTagBook(dataset: Dataset[_]): Array[TaggedSentence]
Generates TagBook, which holds all the word to tags mapping that are not ambiguous
Generates TagBook, which holds all the word to tags mapping that are not ambiguous
- Definition Classes
- PerceptronTrainingUtils
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getNIterations: Int
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[String]
Input Annotator Types: DOCUMENT
Input Annotator Types: DOCUMENT
- Definition Classes
- WordSegmenterApproach → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- val nIterations: IntParam
Number of iterations in training, converges to better accuracy (Default:
5) - final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onTrained(model: WordSegmenterModel, spark: SparkSession): Unit
- Definition Classes
- AnnotatorApproach
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
Output Annotator Types: TOKEN
Output Annotator Types: TOKEN
- Definition Classes
- WordSegmenterApproach → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- val pattern: Param[String]
Regex pattern used to match delimiters (Default:
"\\s+") - val posCol: Param[String]
Column of Array of POS tags that match tokens
- def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- final def set(paramPair: ParamPair[_]): WordSegmenterApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): WordSegmenterApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): WordSegmenterApproach.this.type
- Definition Classes
- Params
- def setAmbiguityThreshold(value: Double): WordSegmenterApproach.this.type
- final def setDefault(paramPairs: ParamPair[_]*): WordSegmenterApproach.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): WordSegmenterApproach.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setEnableRegexTokenizer(value: Boolean): WordSegmenterApproach.this.type
- def setFrequencyThreshold(value: Int): WordSegmenterApproach.this.type
- final def setInputCols(value: String*): WordSegmenterApproach.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): WordSegmenterApproach.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): WordSegmenterApproach.this.type
- Definition Classes
- CanBeLazy
- def setNIterations(value: Int): WordSegmenterApproach.this.type
- final def setOutputCol(value: String): WordSegmenterApproach.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setPattern(value: String): WordSegmenterApproach.this.type
- def setPosColumn(value: String): WordSegmenterApproach.this.type
- def setToLowercase(value: Boolean): WordSegmenterApproach.this.type
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val toLowercase: BooleanParam
Indicates whether to convert all characters to lowercase before tokenizing (Default:
false). - def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def train(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): WordSegmenterModel
- Definition Classes
- WordSegmenterApproach → AnnotatorApproach
- def trainPerceptron(nIterations: Int, initialModel: TrainingPerceptronLegacy, taggedSentences: Array[TaggedSentence], taggedWordBook: Map[String, String]): AveragedPerceptron
Iterates for training
Iterates for training
- Definition Classes
- PerceptronTrainingUtils
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- AnnotatorApproach → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- WordSegmenterApproach → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- AnnotatorApproach
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from PerceptronTrainingUtils
Inherited from PerceptronUtils
Inherited from AnnotatorApproach[WordSegmenterModel]
Inherited from CanBeLazy
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from HasOutputAnnotatorType
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from Estimator[WordSegmenterModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types