class WordSegmenterModel extends AnnotatorModel[WordSegmenterModel] with HasSimpleAnnotate[WordSegmenterModel] with PerceptronPredictionUtils
WordSegmenter which tokenizes non-english or non-whitespace separated texts.
Many languages are not whitespace separated and their sentences are a concatenation of many symbols, like Korean, Japanese or Chinese. Without understanding the language, splitting the words into their corresponding tokens is impossible. The WordSegmenter is trained to understand these languages and plit them into semantically correct parts.
This annotator is based on the paper Chinese Word Segmentation as Character Tagging. Word segmentation is treated as a tagging problem. Each character is be tagged as on of four different labels: LL (left boundary), RR (right boundary), MM (middle) and LR (word by itself). The label depends on the position of the word in the sentence. LL tagged words will combine with the word on the right. Likewise, RR tagged words combine with words on the left. MM tagged words are treated as the middle of the word and combine with either side. LR tagged words are words by themselves.
Example (from [1], Example 3(a) (raw), 3(b) (tagged), 3(c) (translation)):
- 上海 计划 到 本 世纪 末 实现 人均 国内 生产 总值 五千 美元
- 上/LL 海/RR 计/LL 划/RR 到/LR 本/LR 世/LL 纪/RR 末/LR 实/LL 现/RR 人/LL 均/RR 国/LL 内/RR 生/LL 产/RR 总/LL 值/RR 五/LL 千/RR 美/LL 元/RR
- Shanghai plans to reach the goal of 5,000 dollars in per capita GDP by the end of the century.
This is the instantiated model of the WordSegmenterApproach. For training your own model, please see the documentation of that class.
Pretrained models can be loaded with pretrained of the companion object:
val wordSegmenter = WordSegmenterModel.pretrained() .setInputCols("document") .setOutputCol("words_segmented")
The default model is "wordseg_pku", default language is "zh", if no values are provided.
For available pretrained models please see the
Models Hub.
For extended examples of usage, see the Examples and the WordSegmenterTest.
References:
- [1] Xue, Nianwen. “Chinese Word Segmentation as Character Tagging.” International Journal of Computational Linguistics & Chinese Language Processing, Volume 8, Number 1, February 2003: Special Issue on Word Formation and Chinese Language Processing, 2003, pp. 29-48. ACLWeb, https://aclanthology.org/O03-4002.
Example
import spark.implicits._ import com.johnsnowlabs.nlp.base.DocumentAssembler import com.johnsnowlabs.nlp.annotator.WordSegmenterModel import org.apache.spark.ml.Pipeline val documentAssembler = new DocumentAssembler() .setInputCol("text") .setOutputCol("document") val wordSegmenter = WordSegmenterModel.pretrained() .setInputCols("document") .setOutputCol("token") val pipeline = new Pipeline().setStages(Array( documentAssembler, wordSegmenter )) val data = Seq("然而,這樣的處理也衍生了一些問題。").toDF("text") val result = pipeline.fit(data).transform(data) result.select("token.result").show(false) +--------------------------------------------------------+ |result | +--------------------------------------------------------+ |[然而, ,, 這樣, 的, 處理, 也, 衍生, 了, 一些, 問題, 。 ]| +--------------------------------------------------------+
- Grouped
- Alphabetic
- By Inheritance
- WordSegmenterModel
- PerceptronPredictionUtils
- PerceptronUtils
- HasSimpleAnnotate
- AnnotatorModel
- CanBeLazy
- RawAnnotator
- HasOutputAnnotationCol
- HasInputAnnotationCols
- HasOutputAnnotatorType
- ParamsAndFeaturesWritable
- HasFeatures
- DefaultParamsWritable
- MLWritable
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- type AnnotationContent = Seq[Row]
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- type AnnotatorType = String
- Definition Classes
- HasOutputAnnotatorType
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
- def $$[T](feature: StructFeature[T]): T
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: SetFeature[T]): Set[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def $$[T](feature: ArrayFeature[T]): Array[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- def afterAnnotate(dataset: DataFrame): DataFrame
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- def annotate(annotations: Seq[Annotation]): Seq[Annotation]
takes a document and annotations and produces new annotations of this annotator's annotation type
takes a document and annotations and produces new annotations of this annotator's annotation type
- annotations
Annotations that correspond to inputAnnotationCols generated by previous annotators if any
- returns
any number of annotations processed for every input annotation. Not necessary one to one relationship
- Definition Classes
- WordSegmenterModel → HasSimpleAnnotate
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
- Attributes
- protected
- Definition Classes
- AnnotatorModel
- def buildWordSegments(taggedSentences: Array[TaggedSentence]): Seq[Annotation]
- final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def clear(param: Param[_]): WordSegmenterModel.this.type
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @HotSpotIntrinsicCandidate() @native()
- def copy(extra: ParamMap): WordSegmenterModel
requirement for annotators copies
requirement for annotators copies
- Definition Classes
- RawAnnotator → Model → Transformer → PipelineStage → Params
- def copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
- def dfAnnotate: UserDefinedFunction
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
Wraps annotate to happen inside SparkSQL user defined functions in order to act with org.apache.spark.sql.Column
- returns
udf function to be applied to inputCols using this annotator's annotate function as part of ML transformation
- Definition Classes
- HasSimpleAnnotate
- val enableRegexTokenizer: BooleanParam
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
- Definition Classes
- Params
- def explainParams(): String
- Definition Classes
- Params
- def extraValidate(structType: StructType): Boolean
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def extraValidateMsg: String
Override for additional custom schema checks
Override for additional custom schema checks
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def extractParamMap(): ParamMap
- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
- val features: ArrayBuffer[Feature[_, _, _]]
- Definition Classes
- HasFeatures
- def get[T](feature: StructFeature[T]): Option[T]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: SetFeature[T]): Option[Set[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- def get[T](feature: ArrayFeature[T]): Option[Array[T]]
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
- def getInputCols: Array[String]
- returns
input annotations columns currently used
- Definition Classes
- HasInputAnnotationCols
- def getLazyAnnotator: Boolean
- Definition Classes
- CanBeLazy
- def getModel: AveragedPerceptron
- final def getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
- final def getOutputCol: String
Gets annotation column name going to generate
Gets annotation column name going to generate
- Definition Classes
- HasOutputAnnotationCol
- def getParam(paramName: String): Param[Any]
- Definition Classes
- Params
- final def hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
- Definition Classes
- Params
- def hasParent: Boolean
- Definition Classes
- Model
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val inputAnnotatorTypes: Array[String]
Input Annotator Types: DOCUMENT
Input Annotator Types: DOCUMENT
- Definition Classes
- WordSegmenterModel → HasInputAnnotationCols
- final val inputCols: StringArrayParam
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- val lazyAnnotator: BooleanParam
- Definition Classes
- CanBeLazy
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val model: StructFeature[AveragedPerceptron]
POS model
- def msgHelper(schema: StructType): String
- Attributes
- protected
- Definition Classes
- HasInputAnnotationCols
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @HotSpotIntrinsicCandidate() @native()
- def onWrite(path: String, spark: SparkSession): Unit
- Attributes
- protected
- Definition Classes
- ParamsAndFeaturesWritable
- val optionalInputAnnotatorTypes: Array[String]
- Definition Classes
- HasInputAnnotationCols
- val outputAnnotatorType: AnnotatorType
Output Annotator Types: TOKEN
Output Annotator Types: TOKEN
- Definition Classes
- WordSegmenterModel → HasOutputAnnotatorType
- final val outputCol: Param[String]
- Attributes
- protected
- Definition Classes
- HasOutputAnnotationCol
- lazy val params: Array[Param[_]]
- Definition Classes
- Params
- var parent: Estimator[WordSegmenterModel]
- Definition Classes
- Model
- val pattern: Param[String]
Regex pattern used to match delimiters (Default:
"\\s+") - def save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @throws("If the input path already exists but overwrite is not enabled.") @Since("1.6.0")
- def set[T](feature: StructFeature[T], value: T): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: SetFeature[T], value: Set[T]): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def set[T](feature: ArrayFeature[T], value: Array[T]): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def set(paramPair: ParamPair[_]): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): WordSegmenterModel.this.type
- Definition Classes
- Params
- def setDefault[T](feature: StructFeature[T], value: () => T): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[K, V](feature: MapFeature[K, V], value: () => Map[K, V]): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: SetFeature[T], value: () => Set[T]): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- def setDefault[T](feature: ArrayFeature[T], value: () => Array[T]): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- HasFeatures
- final def setDefault(paramPairs: ParamPair[_]*): WordSegmenterModel.this.type
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): WordSegmenterModel.this.type
- Attributes
- protected[org.apache.spark.ml]
- Definition Classes
- Params
- def setEnableRegexTokenizer(value: Boolean): WordSegmenterModel.this.type
- final def setInputCols(value: String*): WordSegmenterModel.this.type
- Definition Classes
- HasInputAnnotationCols
- def setInputCols(value: Array[String]): WordSegmenterModel.this.type
Overrides required annotators column if different than default
Overrides required annotators column if different than default
- Definition Classes
- HasInputAnnotationCols
- def setLazyAnnotator(value: Boolean): WordSegmenterModel.this.type
- Definition Classes
- CanBeLazy
- def setModel(targetModel: AveragedPerceptron): WordSegmenterModel.this.type
- final def setOutputCol(value: String): WordSegmenterModel.this.type
Overrides annotation column name when transforming
Overrides annotation column name when transforming
- Definition Classes
- HasOutputAnnotationCol
- def setParent(parent: Estimator[WordSegmenterModel]): WordSegmenterModel
- Definition Classes
- Model
- def setPattern(value: String): WordSegmenterModel.this.type
- def setToLowercase(value: Boolean): WordSegmenterModel.this.type
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def tag(model: AveragedPerceptron, tokenizedSentences: Array[TokenizedSentence]): Array[TaggedSentence]
Tags a group of sentences into POS tagged sentences The logic here is to create a sentence context, run through every word and evaluate its context Based on how frequent a context appears around a word, such context is given a score which is used to predict Some words are marked as non ambiguous from the beginning
Tags a group of sentences into POS tagged sentences The logic here is to create a sentence context, run through every word and evaluate its context Based on how frequent a context appears around a word, such context is given a score which is used to predict Some words are marked as non ambiguous from the beginning
- tokenizedSentences
Sentence in the form of single word tokens
- returns
A list of sentences which have every word tagged
- Definition Classes
- PerceptronPredictionUtils
- val toLowercase: BooleanParam
Indicates whether to convert all characters to lowercase before tokenizing (Default:
false). - def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- final def transform(dataset: Dataset[_]): DataFrame
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content
- dataset
Dataset[Row]
- Definition Classes
- AnnotatorModel → Transformer
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
- Definition Classes
- Transformer
- Annotations
- @varargs() @Since("2.0.0")
- final def transformSchema(schema: StructType): StructType
requirement for pipeline transformation validation.
requirement for pipeline transformation validation. It is called on fit()
- Definition Classes
- RawAnnotator → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
- Definition Classes
- WordSegmenterModel → Identifiable
- def validate(schema: StructType): Boolean
takes a Dataset and checks to see if all the required annotation types are present.
takes a Dataset and checks to see if all the required annotation types are present.
- schema
to be validated
- returns
True if all the required types are present, else false
- Attributes
- protected
- Definition Classes
- RawAnnotator
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def wrapColumnMetadata(col: Column): Column
- Attributes
- protected
- Definition Classes
- RawAnnotator
- def write: MLWriter
- Definition Classes
- ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from PerceptronPredictionUtils
Inherited from PerceptronUtils
Inherited from HasSimpleAnnotate[WordSegmenterModel]
Inherited from AnnotatorModel[WordSegmenterModel]
Inherited from CanBeLazy
Inherited from RawAnnotator[WordSegmenterModel]
Inherited from HasOutputAnnotationCol
Inherited from HasInputAnnotationCols
Inherited from HasOutputAnnotatorType
Inherited from ParamsAndFeaturesWritable
Inherited from HasFeatures
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from Model[WordSegmenterModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.
Annotator types
Required input and expected output annotator types