object DifferentiableDouble
Author:
杨博 (Yang Bo) <[email protected]>
- Alphabetic
- By Inheritance
- DifferentiableDouble
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Type Members
- final class DoubleLayerOps [Input <: Batch] extends AnyRef
- implicit final class NativeDoubleOps extends AnyRef
- trait OptimizerFactory extends AnyRef
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
implicit
def
Double*Double[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]
Returns a Poly.MathMethods.*.Case that accepts two Double Layers for the polymorphic function Poly.MathMethods.*
Returns a Poly.MathMethods.*.Case that accepts two Double Layers for the polymorphic function Poly.MathMethods.*
import com.thoughtworks.deeplearning.DifferentiableDouble._ import com.thoughtworks.deeplearning.Symbolic def myNetwork(implicit inputDoubleLayer: Double @Symbolic)(anotherDoubleLayer: Double @Symbolic) = { Poly.MathMethods.*(inputDoubleLayer,anotherDoubleLayer) }
Example: -
implicit
def
Double+Double[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]
Returns a Poly.MathMethods.+.Case that accepts two Double Layers for the polymorphic function Poly.MathMethods.+
Returns a Poly.MathMethods.+.Case that accepts two Double Layers for the polymorphic function Poly.MathMethods.+
import com.thoughtworks.deeplearning.DifferentiableDouble._ import com.thoughtworks.deeplearning.Symbolic def myNetwork(implicit inputDoubleLayer: Double @Symbolic)(anotherDoubleLayer: Double @Symbolic) = { Poly.MathMethods.+(inputDoubleLayer,anotherDoubleLayer) }
Example: -
implicit
def
Double-Double[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]
Returns a Poly.MathMethods.-.Case that accepts two Double Layers for the polymorphic function Poly.MathMethods.-
Returns a Poly.MathMethods.-.Case that accepts two Double Layers for the polymorphic function Poly.MathMethods.-
import com.thoughtworks.deeplearning.DifferentiableDouble._ import com.thoughtworks.deeplearning.Symbolic def myNetwork(implicit inputDoubleLayer: Double @Symbolic)(anotherDoubleLayer: Double @Symbolic) = { Poly.MathMethods.-(inputDoubleLayer,anotherDoubleLayer) }
Example: -
implicit
def
Double/Double[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]
Returns a Poly.MathMethods./.Case that accepts two Double Layers for the polymorphic function Poly.MathMethods./
Returns a Poly.MathMethods./.Case that accepts two Double Layers for the polymorphic function Poly.MathMethods./
import com.thoughtworks.deeplearning.DifferentiableDouble._ import com.thoughtworks.deeplearning.Symbolic def myNetwork(implicit inputDoubleLayer: Double @Symbolic)(anotherDoubleLayer: Double @Symbolic) = { Poly.MathMethods./(inputDoubleLayer,anotherDoubleLayer) }
Example: -
implicit
def
abs(Double)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch]]
Returns a Poly.MathFunctions.abs.Case that accepts Double Layer for the polymorphic function Poly.MathFunctions.abs
Returns a Poly.MathFunctions.abs.Case that accepts Double Layer for the polymorphic function Poly.MathFunctions.abs
import com.thoughtworks.deeplearning.DifferentiableDouble._ import com.thoughtworks.deeplearning.Symbolic def myNetwork(implicit inputDoubleLayer: Double @Symbolic) = { Poly.MathFunctions.abs(inputDoubleLayer) }
Example: -
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- implicit def doubleToLiteral: Aux[Double, Double, Double]
- implicit def doubleTrainable: Trainable[Double, Double]
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
implicit
def
exp(Double)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch]]
Returns a Poly.MathFunctions.exp.Case that accepts Double Layer for the polymorphic function Poly.MathFunctions.exp
Returns a Poly.MathFunctions.exp.Case that accepts Double Layer for the polymorphic function Poly.MathFunctions.exp
import com.thoughtworks.deeplearning.DifferentiableDouble._ import com.thoughtworks.deeplearning.Symbolic def myNetwork(implicit inputDoubleLayer: Double @Symbolic) = { Poly.MathFunctions.exp(inputDoubleLayer) }
Example: -
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
implicit
def
log(Double)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch]]
Returns a Poly.MathFunctions.log.Case that accepts Double Layer for the polymorphic function Poly.MathFunctions.log
Returns a Poly.MathFunctions.log.Case that accepts Double Layer for the polymorphic function Poly.MathFunctions.log
import com.thoughtworks.deeplearning.DifferentiableDouble._ import com.thoughtworks.deeplearning.Symbolic def myNetwork(implicit inputDoubleLayer: Double @Symbolic) = { Poly.MathFunctions.log(inputDoubleLayer) }
Example: -
implicit
def
max(Double,Double)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]
Returns a Poly.MathFunctions.max.Case that accepts two Double Layers for the polymorphic function Poly.MathFunctions.max
Returns a Poly.MathFunctions.max.Case that accepts two Double Layers for the polymorphic function Poly.MathFunctions.max
import com.thoughtworks.deeplearning.DifferentiableDouble._ import com.thoughtworks.deeplearning.Symbolic def myNetwork(implicit inputDoubleLayer: Double @Symbolic)(anotherDoubleLayer: Double @Symbolic) = { Poly.MathFunctions.max(inputDoubleLayer,anotherDoubleLayer) }
Example: -
implicit
def
min(Double,Double)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]
Returns a Poly.MathFunctions.min.Case that accepts two Double Layers for the polymorphic function Poly.MathFunctions.min
Returns a Poly.MathFunctions.min.Case that accepts two Double Layers for the polymorphic function Poly.MathFunctions.min
import com.thoughtworks.deeplearning.DifferentiableDouble._ import com.thoughtworks.deeplearning.Symbolic def myNetwork(implicit inputDoubleLayer: Double @Symbolic)(anotherDoubleLayer: Double @Symbolic) = { Poly.MathFunctions.min(inputDoubleLayer,anotherDoubleLayer) }
Example: -
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
implicit
def
toDoubleLayerOps[From, Input <: Batch](from: From)(implicit toLayer: OfPlaceholder[From, Input, DoublePlaceholder]): DoubleLayerOps[Input]
A helper that contains common boilerplate code for all Double layers.
A helper that contains common boilerplate code for all Double layers.
import com.thoughtworks.deeplearning.DifferentiableDouble._
Example: -
def
toString(): String
- Definition Classes
- AnyRef → Any
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- object Layers
- object OptimizerFactory
-
object
Optimizers
Optimizers of Double