o

com.thoughtworks.deeplearning

DifferentiableFloat

object DifferentiableFloat

Author:

杨博 (Yang Bo) <[email protected]>

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. DifferentiableFloat
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. final class FloatLayerOps [Input <: Batch] extends AnyRef
  2. implicit final class NativeFloatOps extends AnyRef
  3. trait OptimizerFactory extends AnyRef

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. implicit def Float*Float[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.*.Case that accepts two Float Layers for the polymorphic function Poly.MathMethods.*

    Returns a Poly.MathMethods.*.Case that accepts two Float Layers for the polymorphic function Poly.MathMethods.*

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputFloatLayer: Float @Symbolic)(anotherFloatLayer: Float @Symbolic) = {
        Poly.MathMethods.*(inputFloatLayer,anotherFloatLayer)
      }
  5. implicit def Float+Float[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.+.Case that accepts two Float Layers for the polymorphic function Poly.MathMethods.+

    Returns a Poly.MathMethods.+.Case that accepts two Float Layers for the polymorphic function Poly.MathMethods.+

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputFloatLayer: Float @Symbolic)(anotherFloatLayer: Float @Symbolic) = {
        Poly.MathMethods.+(inputFloatLayer,anotherFloatLayer)
      }
  6. implicit def Float-Float[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods.-.Case that accepts two Float Layers for the polymorphic function Poly.MathMethods.-

    Returns a Poly.MathMethods.-.Case that accepts two Float Layers for the polymorphic function Poly.MathMethods.-

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputFloatLayer: Float @Symbolic)(anotherFloatLayer: Float @Symbolic) = {
        Poly.MathMethods.-(inputFloatLayer,anotherFloatLayer)
      }
  7. implicit def Float/Float[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathMethods./.Case that accepts two Float Layers for the polymorphic function Poly.MathMethods./

    Returns a Poly.MathMethods./.Case that accepts two Float Layers for the polymorphic function Poly.MathMethods./

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputFloatLayer: Float @Symbolic)(anotherFloatLayer: Float @Symbolic) = {
        Poly.MathMethods./(inputFloatLayer,anotherFloatLayer)
      }
  8. implicit def abs(Float)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathFunctions.abs.Case that accepts Float Layer for the polymorphic function Poly.MathFunctions.abs

    Returns a Poly.MathFunctions.abs.Case that accepts Float Layer for the polymorphic function Poly.MathFunctions.abs

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputFloatLayer: Float @Symbolic) = {
        Poly.MathFunctions.abs(inputFloatLayer)
      }
  9. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  10. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  11. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  13. implicit def exp(Float)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathFunctions.exp.Case that accepts Float Layer for the polymorphic function Poly.MathFunctions.exp

    Returns a Poly.MathFunctions.exp.Case that accepts Float Layer for the polymorphic function Poly.MathFunctions.exp

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputFloatLayer: Float @Symbolic) = {
        Poly.MathFunctions.exp(inputFloatLayer)
      }
  14. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. implicit def floatToLiteral: Aux[Float, Float, Float]
  16. implicit def floatTrainable: Trainable[Float, Float]
  17. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  18. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  19. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  20. implicit def log(Float)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathFunctions.log.Case that accepts Float Layer for the polymorphic function Poly.MathFunctions.log

    Returns a Poly.MathFunctions.log.Case that accepts Float Layer for the polymorphic function Poly.MathFunctions.log

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputFloatLayer: Float @Symbolic) = {
        Poly.MathFunctions.log(inputFloatLayer)
      }
  21. implicit def max(Float,Float)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathFunctions.max.Case that accepts two Float Layers for the polymorphic function Poly.MathFunctions.max

    Returns a Poly.MathFunctions.max.Case that accepts two Float Layers for the polymorphic function Poly.MathFunctions.max

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputFloatLayer: Float @Symbolic)(anotherFloatLayer: Float @Symbolic) = {
        Poly.MathFunctions.max(inputFloatLayer,anotherFloatLayer)
      }
  22. implicit def min(Float,Float)[Input <: Batch]: Aux[Aux[Input, Batch], Aux[Input, Batch], Aux[Input, Batch]]

    Returns a Poly.MathFunctions.min.Case that accepts two Float Layers for the polymorphic function Poly.MathFunctions.min

    Returns a Poly.MathFunctions.min.Case that accepts two Float Layers for the polymorphic function Poly.MathFunctions.min

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
      import com.thoughtworks.deeplearning.Symbolic
      def myNetwork(implicit inputFloatLayer: Float @Symbolic)(anotherFloatLayer: Float @Symbolic) = {
        Poly.MathFunctions.min(inputFloatLayer,anotherFloatLayer)
      }
  23. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  24. final def notify(): Unit
    Definition Classes
    AnyRef
  25. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  26. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  27. implicit def toFloatLayerOps[From, Input <: Batch](from: From)(implicit toLayer: OfPlaceholder[From, Input, FloatPlaceholder]): FloatLayerOps[Input]

    A helper that contains common boilerplate code for all Float layers.

    A helper that contains common boilerplate code for all Float layers.

    Example:
    1. import com.thoughtworks.deeplearning.DifferentiableFloat._
  28. def toString(): String
    Definition Classes
    AnyRef → Any
  29. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. object Layers
  33. object OptimizerFactory
  34. object Optimizers

    Optimizers of Float

Inherited from AnyRef

Inherited from Any

Ungrouped