io.opentelemetry.proto.metrics.v1
ExponentialHistogramDataPoint
Companion object ExponentialHistogramDataPoint
final case class ExponentialHistogramDataPoint(attributes: Seq[KeyValue] = _root_.scala.Seq.empty, startTimeUnixNano: Long = 0L, timeUnixNano: Long = 0L, count: Long = 0L, sum: Option[Double] = _root_.scala.None, scale: Int = 0, zeroCount: Long = 0L, positive: Option[Buckets] = _root_.scala.None, negative: Option[Buckets] = _root_.scala.None, flags: Int = 0, exemplars: Seq[Exemplar] = _root_.scala.Seq.empty, min: Option[Double] = _root_.scala.None, max: Option[Double] = _root_.scala.None, unknownFields: UnknownFieldSet = ...) extends GeneratedMessage with Updatable[ExponentialHistogramDataPoint] with Product with Serializable
ExponentialHistogramDataPoint is a single data point in a timeseries that describes the time-varying values of a ExponentialHistogram of double values. A ExponentialHistogram contains summary statistics for a population of values, it may optionally contain the distribution of those values across a set of buckets.
- attributes
The set of key/value pairs that uniquely identify the timeseries from where this point belongs. The list may be empty (may contain 0 elements). Attribute keys MUST be unique (it is not allowed to have more than one attribute with the same key).
- startTimeUnixNano
StartTimeUnixNano is optional but strongly encouraged, see the the detailed comments above Metric. Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
- timeUnixNano
TimeUnixNano is required, see the detailed comments above Metric. Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
- count
count is the number of values in the population. Must be non-negative. This value must be equal to the sum of the "bucket_counts" values in the positive and negative Buckets plus the "zero_count" field.
- sum
sum of the values in the population. If count is zero then this field must be zero. Note: Sum should only be filled out when measuring non-negative discrete events, and is assumed to be monotonic over the values of these events. Negative events *can* be recorded, but sum should not be filled out when doing so. This is specifically to enforce compatibility w/ OpenMetrics, see: https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#histogram
- scale
scale describes the resolution of the histogram. Boundaries are located at powers of the base, where: base = (2(2-scale)) The histogram bucket identified by
index
, a signed integer, contains values that are greater than or equal to (baseindex) and less than (base(index+1)). The positive and negative ranges of the histogram are expressed separately. Negative values are mapped by their absolute value into the negative range using the same scale as the positive range. scale is not restricted by the protocol, as the permissible values depend on the range of the data.- zeroCount
zero_count is the count of values that are either exactly zero or within the region considered zero by the instrumentation at the tolerated degree of precision. This bucket stores values that cannot be expressed using the standard exponential formula as well as values that have been rounded to zero. Implementations MAY consider the zero bucket to have probability mass equal to (zero_count / count).
- positive
positive carries the positive range of exponential bucket counts.
- negative
negative carries the negative range of exponential bucket counts.
- flags
Flags that apply to this specific data point. See DataPointFlags for the available flags and their meaning.
- exemplars
(Optional) List of exemplars collected from measurements that were used to form the data point
- min
min is the minimum value over (start_time, end_time].
- max
max is the maximum value over (start_time, end_time].
- Annotations
- @SerialVersionUID()
- Alphabetic
- By Inheritance
- ExponentialHistogramDataPoint
- Updatable
- GeneratedMessage
- Serializable
- Serializable
- Product
- Equals
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
ExponentialHistogramDataPoint(attributes: Seq[KeyValue] = _root_.scala.Seq.empty, startTimeUnixNano: Long = 0L, timeUnixNano: Long = 0L, count: Long = 0L, sum: Option[Double] = _root_.scala.None, scale: Int = 0, zeroCount: Long = 0L, positive: Option[Buckets] = _root_.scala.None, negative: Option[Buckets] = _root_.scala.None, flags: Int = 0, exemplars: Seq[Exemplar] = _root_.scala.Seq.empty, min: Option[Double] = _root_.scala.None, max: Option[Double] = _root_.scala.None, unknownFields: UnknownFieldSet = ...)
- attributes
The set of key/value pairs that uniquely identify the timeseries from where this point belongs. The list may be empty (may contain 0 elements). Attribute keys MUST be unique (it is not allowed to have more than one attribute with the same key).
- startTimeUnixNano
StartTimeUnixNano is optional but strongly encouraged, see the the detailed comments above Metric. Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
- timeUnixNano
TimeUnixNano is required, see the detailed comments above Metric. Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
- count
count is the number of values in the population. Must be non-negative. This value must be equal to the sum of the "bucket_counts" values in the positive and negative Buckets plus the "zero_count" field.
- sum
sum of the values in the population. If count is zero then this field must be zero. Note: Sum should only be filled out when measuring non-negative discrete events, and is assumed to be monotonic over the values of these events. Negative events *can* be recorded, but sum should not be filled out when doing so. This is specifically to enforce compatibility w/ OpenMetrics, see: https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#histogram
- scale
scale describes the resolution of the histogram. Boundaries are located at powers of the base, where: base = (2(2-scale)) The histogram bucket identified by
index
, a signed integer, contains values that are greater than or equal to (baseindex) and less than (base(index+1)). The positive and negative ranges of the histogram are expressed separately. Negative values are mapped by their absolute value into the negative range using the same scale as the positive range. scale is not restricted by the protocol, as the permissible values depend on the range of the data.- zeroCount
zero_count is the count of values that are either exactly zero or within the region considered zero by the instrumentation at the tolerated degree of precision. This bucket stores values that cannot be expressed using the standard exponential formula as well as values that have been rounded to zero. Implementations MAY consider the zero bucket to have probability mass equal to (zero_count / count).
- positive
positive carries the positive range of exponential bucket counts.
- negative
negative carries the negative range of exponential bucket counts.
- flags
Flags that apply to this specific data point. See DataPointFlags for the available flags and their meaning.
- exemplars
(Optional) List of exemplars collected from measurements that were used to form the data point
- min
min is the minimum value over (start_time, end_time].
- max
max is the maximum value over (start_time, end_time].
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def addAllAttributes(__vs: Iterable[KeyValue]): ExponentialHistogramDataPoint
- def addAllExemplars(__vs: Iterable[Exemplar]): ExponentialHistogramDataPoint
- def addAttributes(__vs: KeyValue*): ExponentialHistogramDataPoint
- def addExemplars(__vs: Exemplar*): ExponentialHistogramDataPoint
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- val attributes: Seq[KeyValue]
- def clearAttributes: ExponentialHistogramDataPoint
- def clearExemplars: ExponentialHistogramDataPoint
- def clearMax: ExponentialHistogramDataPoint
- def clearMin: ExponentialHistogramDataPoint
- def clearNegative: ExponentialHistogramDataPoint
- def clearPositive: ExponentialHistogramDataPoint
- def clearSum: ExponentialHistogramDataPoint
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
companion: ExponentialHistogramDataPoint.type
- Definition Classes
- ExponentialHistogramDataPoint → GeneratedMessage
- val count: Long
- def discardUnknownFields: ExponentialHistogramDataPoint
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val exemplars: Seq[Exemplar]
- val flags: Int
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
getField(__field: FieldDescriptor): PValue
- Definition Classes
- ExponentialHistogramDataPoint → GeneratedMessage
-
def
getFieldByNumber(__fieldNumber: Int): Any
- Definition Classes
- ExponentialHistogramDataPoint → GeneratedMessage
- def getMax: Double
- def getMin: Double
- def getNegative: Buckets
- def getPositive: Buckets
- def getSum: Double
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val max: Option[Double]
- val min: Option[Double]
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val negative: Option[Buckets]
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- val positive: Option[Buckets]
- val scale: Int
-
def
serializedSize: Int
- Definition Classes
- ExponentialHistogramDataPoint → GeneratedMessage
- val startTimeUnixNano: Long
- val sum: Option[Double]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- val timeUnixNano: Long
-
final
def
toByteArray: Array[Byte]
- Definition Classes
- GeneratedMessage
-
final
def
toByteString: ByteString
- Definition Classes
- GeneratedMessage
-
final
def
toPMessage: PMessage
- Definition Classes
- GeneratedMessage
-
def
toProtoString: String
- Definition Classes
- ExponentialHistogramDataPoint → GeneratedMessage
- val unknownFields: UnknownFieldSet
-
def
update(ms: (Lens[ExponentialHistogramDataPoint, ExponentialHistogramDataPoint]) ⇒ Mutation[ExponentialHistogramDataPoint]*): ExponentialHistogramDataPoint
- Definition Classes
- Updatable
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- def withAttributes(__v: Seq[KeyValue]): ExponentialHistogramDataPoint
- def withCount(__v: Long): ExponentialHistogramDataPoint
- def withExemplars(__v: Seq[Exemplar]): ExponentialHistogramDataPoint
- def withFlags(__v: Int): ExponentialHistogramDataPoint
- def withMax(__v: Double): ExponentialHistogramDataPoint
- def withMin(__v: Double): ExponentialHistogramDataPoint
- def withNegative(__v: Buckets): ExponentialHistogramDataPoint
- def withPositive(__v: Buckets): ExponentialHistogramDataPoint
- def withScale(__v: Int): ExponentialHistogramDataPoint
- def withStartTimeUnixNano(__v: Long): ExponentialHistogramDataPoint
- def withSum(__v: Double): ExponentialHistogramDataPoint
- def withTimeUnixNano(__v: Long): ExponentialHistogramDataPoint
- def withUnknownFields(__v: UnknownFieldSet): ExponentialHistogramDataPoint
- def withZeroCount(__v: Long): ExponentialHistogramDataPoint
-
final
def
writeDelimitedTo(output: OutputStream): Unit
- Definition Classes
- GeneratedMessage
-
def
writeTo(_output__: CodedOutputStream): Unit
- Definition Classes
- ExponentialHistogramDataPoint → GeneratedMessage
-
final
def
writeTo(output: OutputStream): Unit
- Definition Classes
- GeneratedMessage
- val zeroCount: Long
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated