final case class HistogramDataPoint(attributes: Seq[KeyValue] = _root_.scala.Seq.empty, startTimeUnixNano: Long = 0L, timeUnixNano: Long = 0L, count: Long = 0L, sum: Option[Double] = _root_.scala.None, bucketCounts: Seq[Long] = _root_.scala.Seq.empty, explicitBounds: Seq[Double] = _root_.scala.Seq.empty, exemplars: Seq[Exemplar] = _root_.scala.Seq.empty, flags: Int = 0, min: Option[Double] = _root_.scala.None, max: Option[Double] = _root_.scala.None, unknownFields: UnknownFieldSet = ...) extends GeneratedMessage with Updatable[HistogramDataPoint] with Product with Serializable
HistogramDataPoint is a single data point in a timeseries that describes the time-varying values of a Histogram. A Histogram contains summary statistics for a population of values, it may optionally contain the distribution of those values across a set of buckets.
If the histogram contains the distribution of values, then both "explicit_bounds" and "bucket counts" fields must be defined. If the histogram does not contain the distribution of values, then both "explicit_bounds" and "bucket_counts" must be omitted and only "count" and "sum" are known.
- attributes
The set of key/value pairs that uniquely identify the timeseries from where this point belongs. The list may be empty (may contain 0 elements). Attribute keys MUST be unique (it is not allowed to have more than one attribute with the same key).
- startTimeUnixNano
StartTimeUnixNano is optional but strongly encouraged, see the the detailed comments above Metric. Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
- timeUnixNano
TimeUnixNano is required, see the detailed comments above Metric. Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
- count
count is the number of values in the population. Must be non-negative. This value must be equal to the sum of the "count" fields in buckets if a histogram is provided.
- sum
sum of the values in the population. If count is zero then this field must be zero. Note: Sum should only be filled out when measuring non-negative discrete events, and is assumed to be monotonic over the values of these events. Negative events *can* be recorded, but sum should not be filled out when doing so. This is specifically to enforce compatibility w/ OpenMetrics, see: https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#histogram
- bucketCounts
bucket_counts is an optional field contains the count values of histogram for each bucket. The sum of the bucket_counts must equal the value in the count field. The number of elements in bucket_counts array must be by one greater than the number of elements in explicit_bounds array.
- explicitBounds
explicit_bounds specifies buckets with explicitly defined bounds for values. The boundaries for bucket at index i are: (-infinity, explicit_bounds[i]] for i == 0 (explicit_bounds[i-1], explicit_bounds[i]] for 0 < i < size(explicit_bounds) (explicit_bounds[i-1], +infinity) for i == size(explicit_bounds) The values in the explicit_bounds array must be strictly increasing. Histogram buckets are inclusive of their upper boundary, except the last bucket where the boundary is at infinity. This format is intentionally compatible with the OpenMetrics histogram definition.
- exemplars
(Optional) List of exemplars collected from measurements that were used to form the data point
- flags
Flags that apply to this specific data point. See DataPointFlags for the available flags and their meaning.
- min
min is the minimum value over (start_time, end_time].
- max
max is the maximum value over (start_time, end_time].
- Annotations
- @SerialVersionUID()
- Alphabetic
- By Inheritance
- HistogramDataPoint
- Updatable
- GeneratedMessage
- Serializable
- Serializable
- Product
- Equals
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
-
new
HistogramDataPoint(attributes: Seq[KeyValue] = _root_.scala.Seq.empty, startTimeUnixNano: Long = 0L, timeUnixNano: Long = 0L, count: Long = 0L, sum: Option[Double] = _root_.scala.None, bucketCounts: Seq[Long] = _root_.scala.Seq.empty, explicitBounds: Seq[Double] = _root_.scala.Seq.empty, exemplars: Seq[Exemplar] = _root_.scala.Seq.empty, flags: Int = 0, min: Option[Double] = _root_.scala.None, max: Option[Double] = _root_.scala.None, unknownFields: UnknownFieldSet = ...)
- attributes
The set of key/value pairs that uniquely identify the timeseries from where this point belongs. The list may be empty (may contain 0 elements). Attribute keys MUST be unique (it is not allowed to have more than one attribute with the same key).
- startTimeUnixNano
StartTimeUnixNano is optional but strongly encouraged, see the the detailed comments above Metric. Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
- timeUnixNano
TimeUnixNano is required, see the detailed comments above Metric. Value is UNIX Epoch time in nanoseconds since 00:00:00 UTC on 1 January 1970.
- count
count is the number of values in the population. Must be non-negative. This value must be equal to the sum of the "count" fields in buckets if a histogram is provided.
- sum
sum of the values in the population. If count is zero then this field must be zero. Note: Sum should only be filled out when measuring non-negative discrete events, and is assumed to be monotonic over the values of these events. Negative events *can* be recorded, but sum should not be filled out when doing so. This is specifically to enforce compatibility w/ OpenMetrics, see: https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#histogram
- bucketCounts
bucket_counts is an optional field contains the count values of histogram for each bucket. The sum of the bucket_counts must equal the value in the count field. The number of elements in bucket_counts array must be by one greater than the number of elements in explicit_bounds array.
- explicitBounds
explicit_bounds specifies buckets with explicitly defined bounds for values. The boundaries for bucket at index i are: (-infinity, explicit_bounds[i]] for i == 0 (explicit_bounds[i-1], explicit_bounds[i]] for 0 < i < size(explicit_bounds) (explicit_bounds[i-1], +infinity) for i == size(explicit_bounds) The values in the explicit_bounds array must be strictly increasing. Histogram buckets are inclusive of their upper boundary, except the last bucket where the boundary is at infinity. This format is intentionally compatible with the OpenMetrics histogram definition.
- exemplars
(Optional) List of exemplars collected from measurements that were used to form the data point
- flags
Flags that apply to this specific data point. See DataPointFlags for the available flags and their meaning.
- min
min is the minimum value over (start_time, end_time].
- max
max is the maximum value over (start_time, end_time].
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def addAllAttributes(__vs: Iterable[KeyValue]): HistogramDataPoint
- def addAllBucketCounts(__vs: Iterable[Long]): HistogramDataPoint
- def addAllExemplars(__vs: Iterable[Exemplar]): HistogramDataPoint
- def addAllExplicitBounds(__vs: Iterable[Double]): HistogramDataPoint
- def addAttributes(__vs: KeyValue*): HistogramDataPoint
- def addBucketCounts(__vs: Long*): HistogramDataPoint
- def addExemplars(__vs: Exemplar*): HistogramDataPoint
- def addExplicitBounds(__vs: Double*): HistogramDataPoint
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
- val attributes: Seq[KeyValue]
- val bucketCounts: Seq[Long]
- def clearAttributes: HistogramDataPoint
- def clearBucketCounts: HistogramDataPoint
- def clearExemplars: HistogramDataPoint
- def clearExplicitBounds: HistogramDataPoint
- def clearMax: HistogramDataPoint
- def clearMin: HistogramDataPoint
- def clearSum: HistogramDataPoint
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @HotSpotIntrinsicCandidate()
-
def
companion: HistogramDataPoint.type
- Definition Classes
- HistogramDataPoint → GeneratedMessage
- val count: Long
- def discardUnknownFields: HistogramDataPoint
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- val exemplars: Seq[Exemplar]
- val explicitBounds: Seq[Double]
- val flags: Int
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
getField(__field: FieldDescriptor): PValue
- Definition Classes
- HistogramDataPoint → GeneratedMessage
-
def
getFieldByNumber(__fieldNumber: Int): Any
- Definition Classes
- HistogramDataPoint → GeneratedMessage
- def getMax: Double
- def getMin: Double
- def getSum: Double
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- val max: Option[Double]
- val min: Option[Double]
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
-
def
serializedSize: Int
- Definition Classes
- HistogramDataPoint → GeneratedMessage
- val startTimeUnixNano: Long
- val sum: Option[Double]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
- val timeUnixNano: Long
-
final
def
toByteArray: Array[Byte]
- Definition Classes
- GeneratedMessage
-
final
def
toByteString: ByteString
- Definition Classes
- GeneratedMessage
-
final
def
toPMessage: PMessage
- Definition Classes
- GeneratedMessage
-
def
toProtoString: String
- Definition Classes
- HistogramDataPoint → GeneratedMessage
- val unknownFields: UnknownFieldSet
-
def
update(ms: (Lens[HistogramDataPoint, HistogramDataPoint]) ⇒ Mutation[HistogramDataPoint]*): HistogramDataPoint
- Definition Classes
- Updatable
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
- def withAttributes(__v: Seq[KeyValue]): HistogramDataPoint
- def withBucketCounts(__v: Seq[Long]): HistogramDataPoint
- def withCount(__v: Long): HistogramDataPoint
- def withExemplars(__v: Seq[Exemplar]): HistogramDataPoint
- def withExplicitBounds(__v: Seq[Double]): HistogramDataPoint
- def withFlags(__v: Int): HistogramDataPoint
- def withMax(__v: Double): HistogramDataPoint
- def withMin(__v: Double): HistogramDataPoint
- def withStartTimeUnixNano(__v: Long): HistogramDataPoint
- def withSum(__v: Double): HistogramDataPoint
- def withTimeUnixNano(__v: Long): HistogramDataPoint
- def withUnknownFields(__v: UnknownFieldSet): HistogramDataPoint
-
final
def
writeDelimitedTo(output: OutputStream): Unit
- Definition Classes
- GeneratedMessage
-
def
writeTo(_output__: CodedOutputStream): Unit
- Definition Classes
- HistogramDataPoint → GeneratedMessage
-
final
def
writeTo(output: OutputStream): Unit
- Definition Classes
- GeneratedMessage
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated