org.apache.commons.math.optimization
Interface DifferentiableMultivariateVectorialOptimizer

All Known Implementing Classes:
AbstractLeastSquaresOptimizer, GaussNewtonOptimizer, LevenbergMarquardtOptimizer, MultiStartDifferentiableMultivariateVectorialOptimizer

public interface DifferentiableMultivariateVectorialOptimizer

This interface represents an optimization algorithm for vectorial differentiable objective functions.

Optimization algorithms find the input point set that either maximize or minimize an objective function.

Since:
2.0
Version:
$Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $
See Also:
MultivariateRealOptimizer, DifferentiableMultivariateRealOptimizer

Method Summary
 VectorialConvergenceChecker getConvergenceChecker()
          Get the convergence checker.
 int getEvaluations()
          Get the number of evaluations of the objective function.
 int getIterations()
          Get the number of iterations realized by the algorithm.
 int getJacobianEvaluations()
          Get the number of evaluations of the objective function jacobian .
 int getMaxEvaluations()
          Get the maximal number of functions evaluations.
 int getMaxIterations()
          Get the maximal number of iterations of the algorithm.
 VectorialPointValuePair optimize(DifferentiableMultivariateVectorialFunction f, double[] target, double[] weights, double[] startPoint)
          Optimizes an objective function.
 void setConvergenceChecker(VectorialConvergenceChecker checker)
          Set the convergence checker.
 void setMaxEvaluations(int maxEvaluations)
          Set the maximal number of functions evaluations.
 void setMaxIterations(int maxIterations)
          Set the maximal number of iterations of the algorithm.
 

Method Detail

setMaxIterations

void setMaxIterations(int maxIterations)
Set the maximal number of iterations of the algorithm.

Parameters:
maxIterations - maximal number of function calls .

getMaxIterations

int getMaxIterations()
Get the maximal number of iterations of the algorithm.

Returns:
maximal number of iterations

getIterations

int getIterations()
Get the number of iterations realized by the algorithm.

Returns:
number of iterations

setMaxEvaluations

void setMaxEvaluations(int maxEvaluations)
Set the maximal number of functions evaluations.

Parameters:
maxEvaluations - maximal number of function evaluations

getMaxEvaluations

int getMaxEvaluations()
Get the maximal number of functions evaluations.

Returns:
maximal number of functions evaluations

getEvaluations

int getEvaluations()
Get the number of evaluations of the objective function.

The number of evaluation correspond to the last call to the optimize method. It is 0 if the method has not been called yet.

Returns:
number of evaluations of the objective function

getJacobianEvaluations

int getJacobianEvaluations()
Get the number of evaluations of the objective function jacobian .

The number of evaluation correspond to the last call to the optimize method. It is 0 if the method has not been called yet.

Returns:
number of evaluations of the objective function jacobian

setConvergenceChecker

void setConvergenceChecker(VectorialConvergenceChecker checker)
Set the convergence checker.

Parameters:
checker - object to use to check for convergence

getConvergenceChecker

VectorialConvergenceChecker getConvergenceChecker()
Get the convergence checker.

Returns:
object used to check for convergence

optimize

VectorialPointValuePair optimize(DifferentiableMultivariateVectorialFunction f,
                                 double[] target,
                                 double[] weights,
                                 double[] startPoint)
                                 throws FunctionEvaluationException,
                                        OptimizationException,
                                        IllegalArgumentException
Optimizes an objective function.

Optimization is considered to be a weighted least-squares minimization. The cost function to be minimized is ∑weighti(objectivei-targeti)2

Parameters:
f - objective function
target - target value for the objective functions at optimum
weights - weight for the least squares cost computation
startPoint - the start point for optimization
Returns:
the point/value pair giving the optimal value for objective function
Throws:
FunctionEvaluationException - if the objective function throws one during the search
OptimizationException - if the algorithm failed to converge
IllegalArgumentException - if the start point dimension is wrong


Copyright © 2003-2011 The Apache Software Foundation. All Rights Reserved.