org.apache.commons.math.optimization
Class MultiStartDifferentiableMultivariateVectorialOptimizer

java.lang.Object
  extended by org.apache.commons.math.optimization.MultiStartDifferentiableMultivariateVectorialOptimizer
All Implemented Interfaces:
DifferentiableMultivariateVectorialOptimizer

public class MultiStartDifferentiableMultivariateVectorialOptimizer
extends Object
implements DifferentiableMultivariateVectorialOptimizer

Special implementation of the DifferentiableMultivariateVectorialOptimizer interface adding multi-start features to an existing optimizer.

This class wraps a classical optimizer to use it several times in turn with different starting points in order to avoid being trapped into a local extremum when looking for a global one.

Since:
2.0
Version:
$Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $

Constructor Summary
MultiStartDifferentiableMultivariateVectorialOptimizer(DifferentiableMultivariateVectorialOptimizer optimizer, int starts, RandomVectorGenerator generator)
          Create a multi-start optimizer from a single-start optimizer
 
Method Summary
 VectorialConvergenceChecker getConvergenceChecker()
          Get the convergence checker.
 int getEvaluations()
          Get the number of evaluations of the objective function.
 int getIterations()
          Get the number of iterations realized by the algorithm.
 int getJacobianEvaluations()
          Get the number of evaluations of the objective function jacobian .
 int getMaxEvaluations()
          Get the maximal number of functions evaluations.
 int getMaxIterations()
          Get the maximal number of iterations of the algorithm.
 VectorialPointValuePair[] getOptima()
          Get all the optima found during the last call to optimize.
 VectorialPointValuePair optimize(DifferentiableMultivariateVectorialFunction f, double[] target, double[] weights, double[] startPoint)
          Optimizes an objective function.
 void setConvergenceChecker(VectorialConvergenceChecker checker)
          Set the convergence checker.
 void setMaxEvaluations(int maxEvaluations)
          Set the maximal number of functions evaluations.
 void setMaxIterations(int maxIterations)
          Set the maximal number of iterations of the algorithm.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

MultiStartDifferentiableMultivariateVectorialOptimizer

public MultiStartDifferentiableMultivariateVectorialOptimizer(DifferentiableMultivariateVectorialOptimizer optimizer,
                                                              int starts,
                                                              RandomVectorGenerator generator)
Create a multi-start optimizer from a single-start optimizer

Parameters:
optimizer - single-start optimizer to wrap
starts - number of starts to perform (including the first one), multi-start is disabled if value is less than or equal to 1
generator - random vector generator to use for restarts
Method Detail

getOptima

public VectorialPointValuePair[] getOptima()
                                    throws IllegalStateException
Get all the optima found during the last call to optimize.

The optimizer stores all the optima found during a set of restarts. The optimize method returns the best point only. This method returns all the points found at the end of each starts, including the best one already returned by the optimize method.

The returned array as one element for each start as specified in the constructor. It is ordered with the results from the runs that did converge first, sorted from best to worst objective value (i.e in ascending order if minimizing and in descending order if maximizing), followed by and null elements corresponding to the runs that did not converge. This means all elements will be null if the optimize method did throw a ConvergenceException). This also means that if the first element is non null, it is the best point found across all starts.

Returns:
array containing the optima
Throws:
IllegalStateException - if optimize has not been called

setMaxIterations

public void setMaxIterations(int maxIterations)
Set the maximal number of iterations of the algorithm.

Specified by:
setMaxIterations in interface DifferentiableMultivariateVectorialOptimizer
Parameters:
maxIterations - maximal number of function calls .

getMaxIterations

public int getMaxIterations()
Get the maximal number of iterations of the algorithm.

Specified by:
getMaxIterations in interface DifferentiableMultivariateVectorialOptimizer
Returns:
maximal number of iterations

getIterations

public int getIterations()
Get the number of iterations realized by the algorithm.

Specified by:
getIterations in interface DifferentiableMultivariateVectorialOptimizer
Returns:
number of iterations

setMaxEvaluations

public void setMaxEvaluations(int maxEvaluations)
Set the maximal number of functions evaluations.

Specified by:
setMaxEvaluations in interface DifferentiableMultivariateVectorialOptimizer
Parameters:
maxEvaluations - maximal number of function evaluations

getMaxEvaluations

public int getMaxEvaluations()
Get the maximal number of functions evaluations.

Specified by:
getMaxEvaluations in interface DifferentiableMultivariateVectorialOptimizer
Returns:
maximal number of functions evaluations

getEvaluations

public int getEvaluations()
Get the number of evaluations of the objective function.

The number of evaluation correspond to the last call to the optimize method. It is 0 if the method has not been called yet.

Specified by:
getEvaluations in interface DifferentiableMultivariateVectorialOptimizer
Returns:
number of evaluations of the objective function

getJacobianEvaluations

public int getJacobianEvaluations()
Get the number of evaluations of the objective function jacobian .

The number of evaluation correspond to the last call to the optimize method. It is 0 if the method has not been called yet.

Specified by:
getJacobianEvaluations in interface DifferentiableMultivariateVectorialOptimizer
Returns:
number of evaluations of the objective function jacobian

setConvergenceChecker

public void setConvergenceChecker(VectorialConvergenceChecker checker)
Set the convergence checker.

Specified by:
setConvergenceChecker in interface DifferentiableMultivariateVectorialOptimizer
Parameters:
checker - object to use to check for convergence

getConvergenceChecker

public VectorialConvergenceChecker getConvergenceChecker()
Get the convergence checker.

Specified by:
getConvergenceChecker in interface DifferentiableMultivariateVectorialOptimizer
Returns:
object used to check for convergence

optimize

public VectorialPointValuePair optimize(DifferentiableMultivariateVectorialFunction f,
                                        double[] target,
                                        double[] weights,
                                        double[] startPoint)
                                 throws FunctionEvaluationException,
                                        OptimizationException,
                                        IllegalArgumentException
Optimizes an objective function.

Optimization is considered to be a weighted least-squares minimization. The cost function to be minimized is ∑weighti(objectivei-targeti)2

Specified by:
optimize in interface DifferentiableMultivariateVectorialOptimizer
Parameters:
f - objective function
target - target value for the objective functions at optimum
weights - weight for the least squares cost computation
startPoint - the start point for optimization
Returns:
the point/value pair giving the optimal value for objective function
Throws:
FunctionEvaluationException - if the objective function throws one during the search
OptimizationException - if the algorithm failed to converge
IllegalArgumentException - if the start point dimension is wrong


Copyright © 2003-2011 The Apache Software Foundation. All Rights Reserved.