org.apache.commons.math.optimization
Class MultiStartDifferentiableMultivariateRealOptimizer

java.lang.Object
  extended by org.apache.commons.math.optimization.MultiStartDifferentiableMultivariateRealOptimizer
All Implemented Interfaces:
DifferentiableMultivariateRealOptimizer

public class MultiStartDifferentiableMultivariateRealOptimizer
extends Object
implements DifferentiableMultivariateRealOptimizer

Special implementation of the DifferentiableMultivariateRealOptimizer interface adding multi-start features to an existing optimizer.

This class wraps a classical optimizer to use it several times in turn with different starting points in order to avoid being trapped into a local extremum when looking for a global one.

Since:
2.0
Version:
$Revision: 1073158 $ $Date: 2011-02-21 22:46:52 +0100 (lun. 21 févr. 2011) $

Constructor Summary
MultiStartDifferentiableMultivariateRealOptimizer(DifferentiableMultivariateRealOptimizer optimizer, int starts, RandomVectorGenerator generator)
          Create a multi-start optimizer from a single-start optimizer
 
Method Summary
 RealConvergenceChecker getConvergenceChecker()
          Get the convergence checker.
 int getEvaluations()
          Get the number of evaluations of the objective function.
 int getGradientEvaluations()
          Get the number of evaluations of the objective function gradient.
 int getIterations()
          Get the number of iterations realized by the algorithm.
 int getMaxEvaluations()
          Get the maximal number of functions evaluations.
 int getMaxIterations()
          Get the maximal number of iterations of the algorithm.
 RealPointValuePair[] getOptima()
          Get all the optima found during the last call to optimize.
 RealPointValuePair optimize(DifferentiableMultivariateRealFunction f, GoalType goalType, double[] startPoint)
          Optimizes an objective function.
 void setConvergenceChecker(RealConvergenceChecker checker)
          Set the convergence checker.
 void setMaxEvaluations(int maxEvaluations)
          Set the maximal number of functions evaluations.
 void setMaxIterations(int maxIterations)
          Set the maximal number of iterations of the algorithm.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

MultiStartDifferentiableMultivariateRealOptimizer

public MultiStartDifferentiableMultivariateRealOptimizer(DifferentiableMultivariateRealOptimizer optimizer,
                                                         int starts,
                                                         RandomVectorGenerator generator)
Create a multi-start optimizer from a single-start optimizer

Parameters:
optimizer - single-start optimizer to wrap
starts - number of starts to perform (including the first one), multi-start is disabled if value is less than or equal to 1
generator - random vector generator to use for restarts
Method Detail

getOptima

public RealPointValuePair[] getOptima()
                               throws IllegalStateException
Get all the optima found during the last call to optimize.

The optimizer stores all the optima found during a set of restarts. The optimize method returns the best point only. This method returns all the points found at the end of each starts, including the best one already returned by the optimize method.

The returned array as one element for each start as specified in the constructor. It is ordered with the results from the runs that did converge first, sorted from best to worst objective value (i.e in ascending order if minimizing and in descending order if maximizing), followed by and null elements corresponding to the runs that did not converge. This means all elements will be null if the optimize method did throw a ConvergenceException). This also means that if the first element is non null, it is the best point found across all starts.

Returns:
array containing the optima
Throws:
IllegalStateException - if optimize has not been called

setMaxIterations

public void setMaxIterations(int maxIterations)
Set the maximal number of iterations of the algorithm.

Specified by:
setMaxIterations in interface DifferentiableMultivariateRealOptimizer
Parameters:
maxIterations - maximal number of function calls

getMaxIterations

public int getMaxIterations()
Get the maximal number of iterations of the algorithm.

Specified by:
getMaxIterations in interface DifferentiableMultivariateRealOptimizer
Returns:
maximal number of iterations

getIterations

public int getIterations()
Get the number of iterations realized by the algorithm.

The number of evaluations corresponds to the last call to the optimize method. It is 0 if the method has not been called yet.

Specified by:
getIterations in interface DifferentiableMultivariateRealOptimizer
Returns:
number of iterations

setMaxEvaluations

public void setMaxEvaluations(int maxEvaluations)
Set the maximal number of functions evaluations.

Specified by:
setMaxEvaluations in interface DifferentiableMultivariateRealOptimizer
Parameters:
maxEvaluations - maximal number of function evaluations

getMaxEvaluations

public int getMaxEvaluations()
Get the maximal number of functions evaluations.

Specified by:
getMaxEvaluations in interface DifferentiableMultivariateRealOptimizer
Returns:
maximal number of functions evaluations

getEvaluations

public int getEvaluations()
Get the number of evaluations of the objective function.

The number of evaluations corresponds to the last call to the optimize method. It is 0 if the method has not been called yet.

Specified by:
getEvaluations in interface DifferentiableMultivariateRealOptimizer
Returns:
number of evaluations of the objective function

getGradientEvaluations

public int getGradientEvaluations()
Get the number of evaluations of the objective function gradient.

The number of evaluations corresponds to the last call to the optimize method. It is 0 if the method has not been called yet.

Specified by:
getGradientEvaluations in interface DifferentiableMultivariateRealOptimizer
Returns:
number of evaluations of the objective function gradient

setConvergenceChecker

public void setConvergenceChecker(RealConvergenceChecker checker)
Set the convergence checker.

Specified by:
setConvergenceChecker in interface DifferentiableMultivariateRealOptimizer
Parameters:
checker - object to use to check for convergence

getConvergenceChecker

public RealConvergenceChecker getConvergenceChecker()
Get the convergence checker.

Specified by:
getConvergenceChecker in interface DifferentiableMultivariateRealOptimizer
Returns:
object used to check for convergence

optimize

public RealPointValuePair optimize(DifferentiableMultivariateRealFunction f,
                                   GoalType goalType,
                                   double[] startPoint)
                            throws FunctionEvaluationException,
                                   OptimizationException,
                                   FunctionEvaluationException
Optimizes an objective function.

Specified by:
optimize in interface DifferentiableMultivariateRealOptimizer
Parameters:
f - objective function
goalType - type of optimization goal: either GoalType.MAXIMIZE or GoalType.MINIMIZE
startPoint - the start point for optimization
Returns:
the point/value pair giving the optimal value for objective function
Throws:
FunctionEvaluationException - if the objective function throws one during the search
OptimizationException - if the algorithm failed to converge


Copyright © 2003-2011 The Apache Software Foundation. All Rights Reserved.