A B C D E F G H I J K L M N O P R S T U V W X Y Z 

A

able(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Wraps an iterator as an iterable
accept(T) - Method in interface org.deeplearning4j.berkeley.Filter
 
activate() - Method in class org.deeplearning4j.nn.HiddenLayer
Trigger an activation with the last specified input
activate(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
Initialize the layer with the given input and return the activation for this layer given this input
activation - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
ActivationFunction - Interface in org.deeplearning4j.nn.activation
An activation function for a hidden layer for neural networks
add(E, double) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
add(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Increments the entry specified by actual and predicted by one.
add(T, T, int) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Increments the entry specified by actual and predicted by count.
add(ConfusionMatrix<T>) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Adds the entries from another confusion matrix to this one.
Add - Class in org.deeplearning4j.transformation
 
Add() - Constructor for class org.deeplearning4j.transformation.Add
 
add(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
addRow(DataSet, int) - Method in class org.deeplearning4j.datasets.DataSet
 
AddScalar - Class in org.deeplearning4j.transformation
 
AddScalar(double) - Constructor for class org.deeplearning4j.transformation.AddScalar
 
addToConfusion(int, int) - Method in class org.deeplearning4j.eval.Evaluation
Adds to the confusion matrix
adjustedrSquared(double, int, int) - Static method in class org.deeplearning4j.util.MathUtils
This calculates the adjusted r^2 including degrees of freedom.
appendTo(String, File) - Static method in class org.deeplearning4j.util.FileOperations
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.distancefunction.CosineSimilarity
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.distancefunction.EuclideanDistance
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.distancefunction.ManhattanDistance
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.HardTanh
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.Sigmoid
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.Tanh
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.Add
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.AddScalar
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.Divide
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.ExpTransform
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.LogTransform
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.Multiply
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.MultiplyScalar
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.PowScale
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.ScalarMatrixTransform
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.SqrtScalar
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.Subtract
 
apply(DoubleMatrix) - Method in class org.deeplearning4j.transformation.SubtractScalar
 
applyDerivative(DoubleMatrix) - Method in interface org.deeplearning4j.nn.activation.ActivationFunction
Applies the derivative of this function
applyDerivative(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.HardTanh
 
applyDerivative(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.Sigmoid
 
applyDerivative(DoubleMatrix) - Method in class org.deeplearning4j.nn.activation.Tanh
 
applyTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
approxEquals(Counter<E>, double) - Method in class org.deeplearning4j.berkeley.Counter
 
argMax() - Method in class org.deeplearning4j.berkeley.Counter
Finds the key with maximum count.
argMax() - Method in class org.deeplearning4j.berkeley.CounterMap
Finds the key with maximum count.
ArrayUtil - Class in org.deeplearning4j.util
 
ArrayUtil() - Constructor for class org.deeplearning4j.util.ArrayUtil
 
asCounter() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a counter whose keys are the elements in this priority queue, and whose counts are the priorities in this queue.
asDecoder(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Set as decoder for another neural net designed for encoding (primary output is encoding input)
asList() - Method in class org.deeplearning4j.datasets.DataSet
 
asMatrix(File) - Method in class org.deeplearning4j.util.ImageLoader
 
asMinPriorityQueue() - Method in class org.deeplearning4j.berkeley.Counter
Warning: all priorities are the negative of their counts in the counter here
asPriorityQueue() - Method in class org.deeplearning4j.berkeley.Counter
Builds a priority queue whose elements are the counter's elements, and whose priorities are those elements' counts in the counter.
asRowVector(File) - Method in class org.deeplearning4j.util.ImageLoader
 
assertIntMatrix(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
asType(Class<E>) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
avg(DoubleMatrix...) - Static method in class org.deeplearning4j.util.MatrixUtil
 

B

backProp(double, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Backpropagation of errors for weights
backProp - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
backPropStep(Double, BaseMultiLayerNetwork, double, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Do a back prop iteration.
base - Variable in class org.deeplearning4j.distancefunction.BaseDistanceFunction
 
BaseDataFetcher - Class in org.deeplearning4j.datasets.fetchers
 
BaseDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
BaseDatasetIterator - Class in org.deeplearning4j.datasets.iterator
Baseline implementation includes control over the data fetcher and some basic getters for metadata
BaseDatasetIterator(int, int, DataSetFetcher) - Constructor for class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
BaseDistanceFunction - Class in org.deeplearning4j.distancefunction
Takes in another matrix
BaseDistanceFunction(DoubleMatrix) - Constructor for class org.deeplearning4j.distancefunction.BaseDistanceFunction
 
BaseMultiLayerNetwork - Class in org.deeplearning4j.nn
A base class for a multi layer neural network with a logistic output layer and multiple hidden layers.
BaseMultiLayerNetwork() - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
BaseMultiLayerNetwork(int, int[], int, int, RandomGenerator) - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
BaseMultiLayerNetwork(int, int[], int, int, RandomGenerator, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
BaseMultiLayerNetwork.Builder<E extends BaseMultiLayerNetwork> - Class in org.deeplearning4j.nn
 
BaseMultiLayerNetwork.Builder() - Constructor for class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
BaseNeuralNetwork - Class in org.deeplearning4j.nn
Baseline class for any Neural Network used as a layer in a deep network such as an DBN
BaseNeuralNetwork() - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork
 
BaseNeuralNetwork(int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double) - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork
 
BaseNeuralNetwork(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork
 
BaseNeuralNetwork.Builder<E extends BaseNeuralNetwork> - Class in org.deeplearning4j.nn
 
BaseNeuralNetwork.Builder() - Constructor for class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
batch - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
batch() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
batch() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
batchBy(int) - Method in class org.deeplearning4j.datasets.DataSet
 
batchByNumLabels() - Method in class org.deeplearning4j.datasets.DataSet
 
bernoullis(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the bernoulli trial for the given event.
binomial(RandomGenerator, int, double) - Static method in class org.deeplearning4j.util.MathUtils
Generates a binomial distributed number using the given rng
binomial(DoubleMatrix, int, RandomGenerator) - Static method in class org.deeplearning4j.util.MatrixUtil
Generate a binomial distribution based on the given rng, a matrix of p values, and a max number.
build() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
build() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
build() - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
build() - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
buildCounter(MapFactory<V, Double>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
buildEmpty() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
buildEmpty() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.HashMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.IdentityHashMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.TreeMapFactory
 
buildMap() - Method in class org.deeplearning4j.berkeley.MapFactory.WeakHashMapFactory
 
ByteUtil - Class in org.deeplearning4j.util
 
ByteUtil() - Constructor for class org.deeplearning4j.util.ByteUtil
 

C

call(I) - Method in interface org.deeplearning4j.berkeley.MyMethod
 
CDBN - Class in org.deeplearning4j.dbn
Continuous Deep Belief Network.
CDBN() - Constructor for class org.deeplearning4j.dbn.CDBN
 
CDBN(int, int[], int, int, RandomGenerator, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.dbn.CDBN
 
CDBN(int, int[], int, int, RandomGenerator) - Constructor for class org.deeplearning4j.dbn.CDBN
 
CDBN.Builder - Class in org.deeplearning4j.dbn
 
CDBN.Builder() - Constructor for class org.deeplearning4j.dbn.CDBN.Builder
 
choleskyFromMatrix(RealMatrix) - Method in class org.deeplearning4j.util.MathUtils
This will return the cholesky decomposition of the given matrix
clamp(int, int, int) - Static method in class org.deeplearning4j.util.MathUtils
Clamps the value to a discrete value
classCount(int) - Method in class org.deeplearning4j.eval.Evaluation
Returns the number of times the given label has actually occurred
classify(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
clazz - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
clazz - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
clear() - Method in class org.deeplearning4j.berkeley.Counter
 
clone() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a clone of this priority queue.
clone() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
clone() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
clone() - Method in class org.deeplearning4j.nn.HiddenLayer
 
clone() - Method in class org.deeplearning4j.nn.LogisticRegression
 
clone() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
close() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
columnNormalizeBySum(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
columnStd(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Calculates the column wise standard deviations of the matrix
columnStdDeviation(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
columnWiseMean(DoubleMatrix, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
combination(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the combination of n choose r
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.FirstComparator
 
compare(Pair<F, S>, Pair<F, S>) - Method in class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
 
compare(Pair<S, T>, Pair<S, T>) - Method in class org.deeplearning4j.berkeley.Pair.SecondComparator
 
complainAboutMissMatchedMatrices(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
computeDxs() - Method in class org.deeplearning4j.clustering.KMeansClustering
For each features in KMeans#initFeatures, compute D(x), the distance between x and the nearest center that has already been chosen.
concat(Iterable<Iterator<? extends T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterator<? extends T>...) - Static method in class org.deeplearning4j.berkeley.Iterators
 
concat(Iterable<T>, Iterable<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
ConfusionMatrix<T extends Comparable<? super T>> - Class in org.deeplearning4j.eval
This data structure provides an easy way to build and output a confusion matrix.
ConfusionMatrix() - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates an empty confusion Matrix
ConfusionMatrix(ConfusionMatrix<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
Creates a new ConfusionMatrix initialized with the contents of another ConfusionMatrix.
containsKey(E) - Method in class org.deeplearning4j.berkeley.Counter
Returns whether the counter contains the given key.
containsKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
contrastiveDivergence(double, int, DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Contrastive divergence revolves around the idea of approximating the log likelihood around x1(input) with repeated sampling.
convertListPairs(List<Pair<DoubleMatrix, DoubleMatrix>>) - Method in class org.deeplearning4j.base.LFWLoader
 
coordSplit(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
coordSplit(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This returns the coordinate split in a list of coordinates such that the values for ret[0] are the x values and ret[1] are the y values
copy() - Method in class org.deeplearning4j.datasets.DataSet
 
correlation(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns the correlation coefficient of two double vectors.
cosine(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
cosineSim(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
CosineSimilarity - Class in org.deeplearning4j.distancefunction
 
CosineSimilarity(DoubleMatrix) - Constructor for class org.deeplearning4j.distancefunction.CosineSimilarity
 
Counter<E> - Class in org.deeplearning4j.berkeley
A map from objects to doubles.
Counter() - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(boolean) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(MapFactory<E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Map<? extends E, Double>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Counter<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
Counter(Collection<? extends E>) - Constructor for class org.deeplearning4j.berkeley.Counter
 
CounterMap<K,V> - Class in org.deeplearning4j.berkeley
Maintains counts of (key, value) pairs.
CounterMap(CounterMap<K, V>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap() - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(MapFactory<K, Counter<V>>, MapFactory<V, Double>) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CounterMap(boolean) - Constructor for class org.deeplearning4j.berkeley.CounterMap
 
CRBM - Class in org.deeplearning4j.rbm
Continuous Restricted Boltzmann Machine
CRBM() - Constructor for class org.deeplearning4j.rbm.CRBM
 
CRBM(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.rbm.CRBM
 
CRBM(int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.rbm.CRBM
 
CRBM.Builder - Class in org.deeplearning4j.rbm
 
CRBM.Builder() - Constructor for class org.deeplearning4j.rbm.CRBM.Builder
 
createAppendingOutputStream(File) - Static method in class org.deeplearning4j.util.FileOperations
 
createInputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
createLayer(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, int) - Method in class org.deeplearning4j.dbn.CDBN
 
createLayer(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, int) - Method in class org.deeplearning4j.dbn.DBN
 
createLayer(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Creates a layer depending on the index.
createLayer(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, int) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
createNetworkLayers(int) - Method in class org.deeplearning4j.dbn.CDBN
 
createNetworkLayers(int) - Method in class org.deeplearning4j.dbn.DBN
 
createNetworkLayers(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
createNetworkLayers(int) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
createOutputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
createOutputVector(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
curr - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
cursor() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 

D

DataSet - Class in org.deeplearning4j.datasets
A data set (example/outcome pairs) The outcomes are specifically for neural network encoding such that any labels that are considered true are 1s.
DataSet(Pair<DoubleMatrix, DoubleMatrix>) - Constructor for class org.deeplearning4j.datasets.DataSet
 
DataSet(DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.datasets.DataSet
 
dataSetBatches(int) - Method in class org.deeplearning4j.datasets.DataSet
 
DataSetFetcher - Interface in org.deeplearning4j.datasets.iterator
 
DataSetIterator - Interface in org.deeplearning4j.datasets.iterator
 
DataSetTester - Class in org.deeplearning4j.eval
DataSet runner main class.
DataSetTester(String, String, Integer) - Constructor for class org.deeplearning4j.eval.DataSetTester
 
DataSetTester(String, String) - Constructor for class org.deeplearning4j.eval.DataSetTester
 
DBN - Class in org.deeplearning4j.dbn
Deep Belief Network.
DBN() - Constructor for class org.deeplearning4j.dbn.DBN
 
DBN(int, int[], int, int, RandomGenerator, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.dbn.DBN
 
DBN(int, int[], int, int, RandomGenerator) - Constructor for class org.deeplearning4j.dbn.DBN
 
DBN.Builder - Class in org.deeplearning4j.dbn
 
DBN.Builder() - Constructor for class org.deeplearning4j.dbn.DBN.Builder
 
decode(DoubleMatrix) - Method in class org.deeplearning4j.autoencoder.DeepAutoEncoder
 
decodeNetwork(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Whether the network is a decoder for an auto encoder
DeepAutoEncoder - Class in org.deeplearning4j.autoencoder
 
DeepAutoEncoder(BaseMultiLayerNetwork, Object[]) - Constructor for class org.deeplearning4j.autoencoder.DeepAutoEncoder
 
DeepLearningException - Exception in org.deeplearning4j.exception
 
DeepLearningException() - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(String) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningException(Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
 
DeepLearningIOUtil - Class in org.deeplearning4j.util
 
DeepLearningIOUtil() - Constructor for class org.deeplearning4j.util.DeepLearningIOUtil
 
DeepLearningTest - Class in org.deeplearning4j.base
 
DeepLearningTest() - Constructor for class org.deeplearning4j.base.DeepLearningTest
 
DenoisingAutoEncoder - Class in org.deeplearning4j.da
Denoising Autoencoder.
DenoisingAutoEncoder() - Constructor for class org.deeplearning4j.da.DenoisingAutoEncoder
 
DenoisingAutoEncoder(int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double) - Constructor for class org.deeplearning4j.da.DenoisingAutoEncoder
 
DenoisingAutoEncoder(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.da.DenoisingAutoEncoder
 
DenoisingAutoEncoder.Builder - Class in org.deeplearning4j.da
 
DenoisingAutoEncoder.Builder() - Constructor for class org.deeplearning4j.da.DenoisingAutoEncoder.Builder
 
DenoisingAutoEncoderOptimizer - Class in org.deeplearning4j.sda
 
DenoisingAutoEncoderOptimizer(BaseNeuralNetwork, double, Object[]) - Constructor for class org.deeplearning4j.sda.DenoisingAutoEncoderOptimizer
 
determinationCoefficient(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
This returns the determination coefficient of two vectors given a length
difference(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
difference(Collection<? extends T>, Collection<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
Return is s1 \ s2
disableBackProp() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Disables back propagation
discretize(double, double, double, int) - Static method in class org.deeplearning4j.util.MathUtils
Discretize the given value
discretizeColumns(DoubleMatrix, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
dist - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
dist - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
distanceFinderZValue(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will translate a vector in to an equivalent integer
DistanceFunction - Interface in org.deeplearning4j.distancefunction
 
distribution(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
divColumnsByStDeviation(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Divides the given matrix's columns by each column's respective standard deviations
Divide - Class in org.deeplearning4j.transformation
 
Divide() - Constructor for class org.deeplearning4j.transformation.Divide
 
dot(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
dotProduct(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
downloadAndUntar() - Method in class org.deeplearning4j.base.MnistFetcher
 
draw() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
DrawMnist - Class in org.deeplearning4j.datasets.mnist.draw
 
DrawMnist() - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawMnist
 
drawMnist(DataSet, DoubleMatrix) - Static method in class org.deeplearning4j.datasets.mnist.draw.DrawMnist
 
DrawMnistGreyScale - Class in org.deeplearning4j.datasets.mnist.draw
 
DrawMnistGreyScale(DoubleMatrix, int, int) - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
DrawMnistGreyScale(DoubleMatrix) - Constructor for class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 

E

empty() - Static method in class org.deeplearning4j.datasets.DataSet
 
emptyIterator() - Static method in class org.deeplearning4j.berkeley.Iterators
 
encode(DoubleMatrix) - Method in class org.deeplearning4j.autoencoder.DeepAutoEncoder
 
encode(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Transposes this network to turn it in to ad encoder for the given auto encoder networkk
ensureCounter(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
ensureValidOutcomeMatrix(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
entropy(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the entropy (information gain, or uncertainty of a random variable).
entrySet() - Method in class org.deeplearning4j.berkeley.Counter
 
epochDone(int) - Method in interface org.deeplearning4j.optimize.NeuralNetEpochListener
 
epochDone(int) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
equals(Object) - Method in class org.deeplearning4j.berkeley.Pair
 
equals(Object) - Method in class org.deeplearning4j.berkeley.Triple
 
equals(Object) - Method in class org.deeplearning4j.nn.LogisticRegressionGradient
 
equals(Object) - Method in class org.deeplearning4j.nn.NeuralNetworkGradient
 
errorFor(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
errors - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
errorTolerance - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
EuclideanDistance - Class in org.deeplearning4j.distancefunction
 
EuclideanDistance(DoubleMatrix) - Constructor for class org.deeplearning4j.distancefunction.EuclideanDistance
 
euclideanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the euclidean distance of two vectors sum(i=1,n) (q_i - p_i)^2
euclideanDistance(float[], float[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the euclidean distance of two vectors sum(i=1,n) (q_i - p_i)^2
eval(DoubleMatrix, DoubleMatrix) - Method in class org.deeplearning4j.eval.Evaluation
Collects statistics on the real outcomes vs the guesses.
Evaluation - Class in org.deeplearning4j.eval
Evaluation metrics: precision, recall, f1
Evaluation() - Constructor for class org.deeplearning4j.eval.Evaluation
 
exampleMaxs() - Method in class org.deeplearning4j.datasets.DataSet
 
exampleMeans() - Method in class org.deeplearning4j.datasets.DataSet
 
exampleSums() - Method in class org.deeplearning4j.datasets.DataSet
 
ExpTransform - Class in org.deeplearning4j.transformation
 
ExpTransform() - Constructor for class org.deeplearning4j.transformation.ExpTransform
 
extraParams - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 

F

f1() - Method in class org.deeplearning4j.eval.Evaluation
 
f1(int) - Method in class org.deeplearning4j.eval.Evaluation
Calculate f1 score for a given class
factorial(double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the factorial of the given number n.
Factory<T> - Interface in org.deeplearning4j.berkeley
 
Factory.DefaultFactory<T> - Class in org.deeplearning4j.berkeley
 
Factory.DefaultFactory(Class) - Constructor for class org.deeplearning4j.berkeley.Factory.DefaultFactory
 
fanIn - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
fanIn() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Returns the -fanIn to fanIn coefficient used for initializing the weights.
fanIn(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
fanIn - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
fanIn() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
fanIn() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
feedForward(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Compute activations from input to output of the output layer
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
fetch(int) - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
fetch(int) - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
fetcher - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
FileOperations - Class in org.deeplearning4j.util
 
fillList(Iterator<? extends T>, List<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
fillList(Iterator<? extends T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
Filter<T> - Interface in org.deeplearning4j.berkeley
Filters are boolean functions which accept or reject items.
filter(Iterator<T>, Filter<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
finetune(double, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
finetune(DoubleMatrix, double, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Run SGD based on the given labels
flatten(int[][]) - Static method in class org.deeplearning4j.util.ArrayUtil
 
flatten(double[][]) - Static method in class org.deeplearning4j.util.ArrayUtil
 
flattenedImageFromFile(File) - Method in class org.deeplearning4j.util.ImageLoader
 
forceEpochs() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Forces use of number of epochs for training SGD style rather than conjugate gradient
forceNumEpochs - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
frame - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
fromFile(File) - Method in class org.deeplearning4j.util.ImageLoader
 
fromImageFile(int, File) - Method in class org.deeplearning4j.base.LFWLoader
 
fromString(String, String) - Static method in class org.deeplearning4j.util.MathUtils
This will take a given string and separator and convert it to an equivalent double array.

G

generateUniform(int) - Static method in class org.deeplearning4j.util.MathUtils
This will generate a series of uniformally distributed numbers between l times
get(int) - Method in class org.deeplearning4j.datasets.DataSet
 
getActivation() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getActivation() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getActivationFunction() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getActualTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Computes the total number of times the class actually appeared in the data.
getAllImagesAsMatrix() - Method in class org.deeplearning4j.base.LFWLoader
 
getAllImagesAsMatrix(int) - Method in class org.deeplearning4j.base.LFWLoader
 
getB() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getB() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getbGradient() - Method in class org.deeplearning4j.nn.LogisticRegressionGradient
 
getCentroids() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
getClasses() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Gives the set of all classes in the confusion matrix.
getCols() - Method in class org.deeplearning4j.datasets.MnistImageFile
Number of columns per image.
getColumnMeans() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getColumnStds() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getColumnSums() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getConnections() - Method in class org.deeplearning4j.datasets.NN
 
getCorruptedInput(DoubleMatrix, double) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
Corrupts the given input by doing a binomial sampling given the corruption level
getCount(E) - Method in class org.deeplearning4j.berkeley.Counter
Get the count of the element, or zero if the element is not in the counter.
getCount(K, V) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the count of the given (key, value) entry, or zero if that entry is not present.
getCount(K) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the total count of the given key, or zero if that key is not present.
getCount() - Method in class org.deeplearning4j.datasets.MnistDbFile
 
getCount(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Gives the count of the number of times the "predicted" class was predicted for the "actual" class.
getCounter(K) - Method in class org.deeplearning4j.berkeley.CounterMap
Gets the sub-counter for the given key.
getCounters() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getCurrentIndex() - Method in class org.deeplearning4j.datasets.MnistDbFile
The current entry index.
getCurrentState() - Method in class org.deeplearning4j.datasets.NN
 
getDataFor(int) - Method in class org.deeplearning4j.base.LFWLoader
 
getDeflt() - Method in class org.deeplearning4j.berkeley.Counter
 
getDist() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getDist() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getDist() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getDist() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getEntryLength() - Method in class org.deeplearning4j.datasets.MnistDbFile
Number of bytes for each entry.
getEntryLength() - Method in class org.deeplearning4j.datasets.MnistImageFile
 
getEntrySet() - Method in class org.deeplearning4j.berkeley.Counter
 
getEntrySet() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getErrors() - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getErrorTolerance() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getFaces(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
LFW Dataset: pick first num faces
getFaces() - Method in class org.deeplearning4j.base.DeepLearningTest
LFW Dataset: pick all faces
getFacesMatrix() - Static method in class org.deeplearning4j.base.DeepLearningTest
LFW Dataset: pick all faces
getFanIn() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getFanIn() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getFirst(int) - Method in class org.deeplearning4j.base.LFWLoader
Get the first num found images
getFirst() - Method in class org.deeplearning4j.berkeley.Pair
 
getFirst() - Method in class org.deeplearning4j.berkeley.Triple
 
getFirstFaces(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
LFW Dataset: pick first num faces
getGradient(Object[]) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
getGradient(double) - Method in class org.deeplearning4j.nn.LogisticRegression
Gets the gradient from one training iteration
getGradient(Object[]) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getGradient(Object[]) - Method in class org.deeplearning4j.rbm.RBM
 
gethBias() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
gethBias() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
gethBiasGradient() - Method in class org.deeplearning4j.nn.NeuralNetworkGradient
 
getHeaderSize() - Method in class org.deeplearning4j.datasets.MnistDbFile
 
getHeaderSize() - Method in class org.deeplearning4j.datasets.MnistImageFile
 
getHiddenLayerSizes() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getHiddenLayerSizes() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getHiddenValues(DoubleMatrix) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
getIfNotExists() - Method in class org.deeplearning4j.base.LFWLoader
 
getImage() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
getImages(int, File) - Method in class org.deeplearning4j.base.LFWLoader
 
getImages() - Method in class org.deeplearning4j.datasets.MnistManager
Get the underlying images file as MnistImageFile.
getImagesAsList() - Method in class org.deeplearning4j.base.LFWLoader
 
getInitialStepSize() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
getInput() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getInput() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getInput() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getInput() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getInput() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getIris() - Static method in class org.deeplearning4j.base.DeepLearningTest
 
getIris(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
 
getL2() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getL2() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getL2() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getL2() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getL2() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getLabels() - Method in class org.deeplearning4j.datasets.MnistManager
Get the underlying labels file as MnistLabelFile.
getLabels() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLabels() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getLayers() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLearningRateUpdate() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getLogLayer() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getLogLayer() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getMagicNumber() - Method in class org.deeplearning4j.datasets.MnistDbFile
MNIST DB files start with unique integer number.
getMagicNumber() - Method in class org.deeplearning4j.datasets.MnistImageFile
 
getMagicNumber() - Method in class org.deeplearning4j.datasets.MnistLabelFile
 
getMaxIterations() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
getMnistExample(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
Gets an mnist example as an input, label pair.
getMnistExampleBatch(int) - Static method in class org.deeplearning4j.base.DeepLearningTest
Gets an mnist example as an input, label pair.
getMnistExampleBatches(int, int) - Method in class org.deeplearning4j.base.DeepLearningTest
Gets an mnist example as an input, label pair.
getMomentum() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getMomentum() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getMomentum() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getMomentum() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getNextState() - Method in class org.deeplearning4j.datasets.NN
 
getnHidden() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getnHidden() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getnIn() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getnIn() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getnIns() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getnIns() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getnLayers() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getnLayers() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getnOut() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getnOut() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getnOuts() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getnOuts() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getNumNames() - Method in class org.deeplearning4j.base.LFWLoader
 
getNumParameters() - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getNumParameters() - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getNumParameters() - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getNumPixelColumns() - Method in class org.deeplearning4j.base.LFWLoader
 
getnVisible() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getnVisible() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getOptimizable() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
getOptimizer() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getOptimizer() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getPairIterator() - Method in class org.deeplearning4j.berkeley.CounterMap
 
getParameter(int) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getParameter(int) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getParameter(int) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getParameters(double[]) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getParameters(double[]) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getParameters(double[]) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getPredictedTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
Computes the total number of times the class was predicted by the classifier.
getPriority() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
getPriority() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Gets the priority of the highest-priority element of the queue.
getProbability(E) - Method in class org.deeplearning4j.berkeley.Counter
I know, I know, this should be wrapped in a Distribution class, but it's such a common use...why not.
getReconstructedInput(DoubleMatrix) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
getReConstructionCrossEntropy() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Reconstruction entropy.
getReConstructionCrossEntropy() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getRenderEpochs() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getRenderEpochs() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getRenderWeightsEveryNEpochs() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getRenderWeightsEveryNEpochs() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getRng() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getRng() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getRng() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getRng() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getRng() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getRows() - Method in class org.deeplearning4j.datasets.MnistImageFile
Number of rows per image.
getSecond() - Method in class org.deeplearning4j.berkeley.Pair
 
getSecond() - Method in class org.deeplearning4j.berkeley.Triple
 
getSigmoidLayers() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getSortedKeys() - Method in class org.deeplearning4j.berkeley.Counter
 
getSparsity() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getSparsity() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getSparsity() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getState() - Method in class org.deeplearning4j.datasets.NN
 
getStepSize() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
getThird() - Method in class org.deeplearning4j.berkeley.Triple
 
getValue() - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getValue() - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getValue() - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.rbm.RBMOptimizer
 
getValueGradient(double[]) - Method in class org.deeplearning4j.sda.DenoisingAutoEncoderOptimizer
 
getvBias() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getvBias() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getvBiasGradient() - Method in class org.deeplearning4j.nn.NeuralNetworkGradient
 
getW() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
getW() - Method in class org.deeplearning4j.nn.HiddenLayer
 
getW() - Method in class org.deeplearning4j.nn.LogisticRegression
 
getW() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
getWeights() - Method in class org.deeplearning4j.datasets.NN
 
getWeightTransforms() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
getWeightTransforms() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
getwGradient() - Method in class org.deeplearning4j.nn.LogisticRegressionGradient
 
getwGradient() - Method in class org.deeplearning4j.nn.NeuralNetworkGradient
 
gibbhVh(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Gibbs sampling step: hidden ---> visible ---> hidden
gr(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Tests if a is greater than b.
grow(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
gunzipFile(File, File) - Static method in class org.deeplearning4j.base.LFWLoader
 
gunzipFile(File, File) - Static method in class org.deeplearning4j.base.MnistFetcher
 

H

HardTanh - Class in org.deeplearning4j.nn.activation
 
HardTanh() - Constructor for class org.deeplearning4j.nn.activation.HardTanh
 
hashCode() - Method in class org.deeplearning4j.berkeley.Pair
 
hashCode() - Method in class org.deeplearning4j.berkeley.Triple
 
hashCode() - Method in class org.deeplearning4j.nn.LogisticRegressionGradient
 
hashCode() - Method in class org.deeplearning4j.nn.NeuralNetworkGradient
 
hasMore() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
hasMore() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
hasNext() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
hasNext() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
hasNext() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns true if the priority queue is non-empty
hasNext() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
hasNext() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
hBias - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
heapifyDown(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
heapifyUp(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
HiddenLayer - Class in org.deeplearning4j.nn
Vectorized Hidden Layer
HiddenLayer(int, int, DoubleMatrix, DoubleMatrix, RandomGenerator, DoubleMatrix, ActivationFunction) - Constructor for class org.deeplearning4j.nn.HiddenLayer
 
HiddenLayer(int, int, DoubleMatrix, DoubleMatrix, RandomGenerator, DoubleMatrix) - Constructor for class org.deeplearning4j.nn.HiddenLayer
 
HiddenLayer.Builder - Class in org.deeplearning4j.nn
 
HiddenLayer.Builder() - Constructor for class org.deeplearning4j.nn.HiddenLayer.Builder
 
hiddenLayerSizes - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
hiddenLayerSizes(int[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
hypotenuse(double, double) - Static method in class org.deeplearning4j.util.MathUtils
sqrt(a^2 + b^2) without under/overflow.

I

idf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Inverse document frequency: the total docs divided by the number of times the word appeared in a document
ImageLoader - Class in org.deeplearning4j.util
 
ImageLoader() - Constructor for class org.deeplearning4j.util.ImageLoader
 
incrementAll(Collection<? extends E>, double) - Method in class org.deeplearning4j.berkeley.Counter
Increment each element in a given collection by a given amount.
incrementAll(Counter<T>) - Method in class org.deeplearning4j.berkeley.Counter
 
incrementAll(Map<K, V>, double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
incrementAll(CounterMap<K, V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
incrementCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Increment a key's count by the given amount.
incrementCount(K, V, double) - Method in class org.deeplearning4j.berkeley.CounterMap
Increments the count for a particular (key, value) pair.
incrementFalseNegatives() - Method in class org.deeplearning4j.eval.Evaluation
 
incrementFalsePositives(int) - Method in class org.deeplearning4j.eval.Evaluation
 
incrementTruePositives() - Method in class org.deeplearning4j.eval.Evaluation
 
information(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the entropy for a given vector of probabilities.
init() - Method in class org.deeplearning4j.datasets.NN
 
initCentroids() - Method in class org.deeplearning4j.clustering.KMeansClustering
Init clusters using the k-means++ algorithm.
initializeCurrFromList(List<Pair<DoubleMatrix, DoubleMatrix>>) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
initializeLayers(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Base class for initializing the layers based on the input.
initializeNetwork(NeuralNetwork) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
initIfPossible(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
initWeights() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Initialize weights.
input - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
inputColumns - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
inputColumns() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
inputColumns() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
inputColumns() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
inputColumns() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
InputSplit - Class in org.deeplearning4j.util
 
InputSplit() - Constructor for class org.deeplearning4j.util.InputSplit
 
inputStreamFromPath(String) - Static method in class org.deeplearning4j.util.DeepLearningIOUtil
 
intersection(Collection<T>, Collection<T>) - Static method in class org.deeplearning4j.util.SetUtils
 
intersectionP(Set<? extends T>, Set<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
 
invert() - Method in class org.deeplearning4j.berkeley.CounterMap
Constructs reverse CounterMap where the count of a pair (k,v) is the count of (v,k) in the current CounterMap
IrisDataFetcher - Class in org.deeplearning4j.datasets.fetchers
 
IrisDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
IrisDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
IrisDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator
 
IrisUtils - Class in org.deeplearning4j.base
 
IrisUtils() - Constructor for class org.deeplearning4j.base.IrisUtils
 
isConverged() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
isEmpty() - Method in class org.deeplearning4j.berkeley.Counter
True if there are no entries in the counter (false does not mean totalCount > 0)
isEmpty() - Method in class org.deeplearning4j.berkeley.CounterMap
True if there are no entries in the CounterMap (false does not mean totalCount > 0)
isEmpty() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
isEmpty() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
True if the queue is empty (size == 0).
isEqualTo(Counter<E>) - Method in class org.deeplearning4j.berkeley.Counter
 
isEqualTo(CounterMap<K, V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
isForceNumEpochs() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isForceNumEpochs() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isInfinite(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
isNaN(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
isReady() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
isShouldBackProp() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isShouldBackProp() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isShouldInit() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isShouldInit() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isToDecode() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isToDecode() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isUseRegularization() - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
isUseRegularization() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
isUseRegularization() - Method in class org.deeplearning4j.nn.LogisticRegression
 
isValidOutcome(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
iterator(int) - Method in class org.deeplearning4j.datasets.DataSet
 
iterator() - Method in class org.deeplearning4j.datasets.DataSet
 
Iterators - Class in org.deeplearning4j.berkeley
 
Iterators.FilteredIterator<T> - Class in org.deeplearning4j.berkeley
Creates an iterator that only returns items of a base iterator that pass a filter.
Iterators.FilteredIterator(Filter<T>, Iterator<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
Iterators.FilteredIterator(Filter<T>, Iterable<T>) - Constructor for class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
Iterators.IteratorIterator<T> - Class in org.deeplearning4j.berkeley
Wraps a two-level iteration scenario in an iterator.
Iterators.IteratorIterator(Iterator, Factory<Iterator<T>>) - Constructor for class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
Iterators.Transform<S,T> - Class in org.deeplearning4j.berkeley
Wraps a base iterator with a transformation function.
Iterators.Transform(Iterator<S>) - Constructor for class org.deeplearning4j.berkeley.Iterators.Transform
 
Iterators.TransformingIterator<I,O> - Class in org.deeplearning4j.berkeley
 
Iterators.TransformingIterator(Iterator<I>, MyMethod<I, O>) - Constructor for class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 

J

jostleWeighMatrix() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 

K

k - Variable in class org.deeplearning4j.rbm.RBMOptimizer
 
keepBottomNKeys(int) - Method in class org.deeplearning4j.berkeley.Counter
 
keepTopNKeys(int) - Method in class org.deeplearning4j.berkeley.Counter
 
keySet() - Method in class org.deeplearning4j.berkeley.Counter
The elements in the counter.
keySet() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the keys that have been inserted into this CounterMap.
KMeansClustering - Class in org.deeplearning4j.clustering
Shamelessly based on: https://github.com/pmerienne/trident-ml/blob/master/src/main/java/com/github/pmerienne/trident/ml/clustering/KMeans.java adapted to jblas double matrices
KMeansClustering(Integer, Class<? extends DistanceFunction>) - Constructor for class org.deeplearning4j.clustering.KMeansClustering
 
KMeansClustering(Integer) - Constructor for class org.deeplearning4j.clustering.KMeansClustering
 
kroneckerDelta(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the kronecker delta of two doubles.

L

l2 - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
l2 - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
l2RegularizedCoefficient() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
l2RegularizedCoefficient() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
layers - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
learningRateUpdate - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
leftChild(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
LFW - Static variable in class org.deeplearning4j.base.LFWLoader
 
LFW_URL - Static variable in class org.deeplearning4j.base.LFWLoader
 
LFWDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Data fetcher for the LFW faces dataset
LFWDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
LFWDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
LFWDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.LFWDataSetIterator
 
LFWLoader - Class in org.deeplearning4j.base
 
LFWLoader() - Constructor for class org.deeplearning4j.base.LFWLoader
 
ListDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
Wraps a data set collection
ListDataSetIterator(Collection<DataSet>, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
ListDataSetIterator(Collection<DataSet>) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
Initializes with a batch of 5
load(File) - Static method in class org.deeplearning4j.datasets.DataSet
 
load(InputStream) - Method in class org.deeplearning4j.datasets.DataSet
 
load(InputStream) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Load (using ObjectInputStream
load(InputStream) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Load (using ObjectInputStream
load(InputStream) - Method in interface org.deeplearning4j.nn.Persistable
 
LoadAndDraw - Class in org.deeplearning4j.datasets.mnist.draw
 
LoadAndDraw() - Constructor for class org.deeplearning4j.datasets.mnist.draw.LoadAndDraw
 
loadFromFile(InputStream) - Static method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Load (using ObjectInputStream
loadIris(int, int) - Static method in class org.deeplearning4j.base.IrisUtils
 
loadIris() - Static method in class org.deeplearning4j.base.IrisUtils
 
loadIris(int) - Static method in class org.deeplearning4j.base.IrisUtils
 
log - Static variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
log - Static variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
log(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
log2 - Static variable in class org.deeplearning4j.util.MathUtils
The natural logarithm of 2.
log2(double) - Static method in class org.deeplearning4j.util.MathUtils
Returns the logarithm of a for base 2.
LogisticRegression - Class in org.deeplearning4j.nn
Logistic regression implementation with jblas.
LogisticRegression(DoubleMatrix, DoubleMatrix, int, int) - Constructor for class org.deeplearning4j.nn.LogisticRegression
 
LogisticRegression(DoubleMatrix, int, int) - Constructor for class org.deeplearning4j.nn.LogisticRegression
 
LogisticRegression(int, int) - Constructor for class org.deeplearning4j.nn.LogisticRegression
 
LogisticRegression.Builder - Class in org.deeplearning4j.nn
 
LogisticRegression.Builder() - Constructor for class org.deeplearning4j.nn.LogisticRegression.Builder
 
LogisticRegressionGradient - Class in org.deeplearning4j.nn
 
LogisticRegressionGradient(DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.nn.LogisticRegressionGradient
 
LogisticRegressionOptimizer - Class in org.deeplearning4j.optimize
 
LogisticRegressionOptimizer(LogisticRegression, double) - Constructor for class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
logLayer - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
logs2probs(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Converts an array containing the natural logarithms of probabilities stored in a vector back into probabilities.
LogTransform - Class in org.deeplearning4j.transformation
 
LogTransform() - Constructor for class org.deeplearning4j.transformation.LogTransform
 
lossFunction(Object[]) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
lossFunction(Object[]) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
The loss function (cross entropy, reconstruction error,...)
lossFunction() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
lossFunction(Object[]) - Method in class org.deeplearning4j.rbm.RBM
 
lr - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 

M

magnitude(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.Counter
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.CounterMap
 
main(String[]) - Static method in class org.deeplearning4j.berkeley.PriorityQueue
 
main(String[]) - Static method in class org.deeplearning4j.datasets.DataSet
 
main(String[]) - Static method in class org.deeplearning4j.datasets.mnist.draw.LoadAndDraw
 
main(String[]) - Static method in class org.deeplearning4j.datasets.MNISTViewer
 
main(String[]) - Static method in class org.deeplearning4j.datasets.NN
 
main(String[]) - Static method in class org.deeplearning4j.eval.ConfusionMatrix
 
main(String[]) - Static method in class org.deeplearning4j.eval.DataSetTester
 
main(String[]) - Static method in class org.deeplearning4j.eval.ModelTester
 
main(String[]) - Static method in class org.deeplearning4j.util.MathUtils
 
makePair(S, T) - Static method in class org.deeplearning4j.berkeley.Pair
 
makeTriple(S, T, U) - Static method in class org.deeplearning4j.berkeley.Triple
 
ManhattanDistance - Class in org.deeplearning4j.distancefunction
 
ManhattanDistance(DoubleMatrix) - Constructor for class org.deeplearning4j.distancefunction.ManhattanDistance
 
manhattanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will calculate the Manhattan distance between two sets of points.
MapFactory<K,V> - Class in org.deeplearning4j.berkeley
The MapFactory is a mechanism for specifying what kind of map is to be used by some object.
MapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory
 
MapFactory.HashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.HashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.HashMapFactory
 
MapFactory.IdentityHashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.IdentityHashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.IdentityHashMapFactory
 
MapFactory.TreeMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.TreeMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.TreeMapFactory
 
MapFactory.WeakHashMapFactory<K,V> - Class in org.deeplearning4j.berkeley
 
MapFactory.WeakHashMapFactory() - Constructor for class org.deeplearning4j.berkeley.MapFactory.WeakHashMapFactory
 
MathUtils - Class in org.deeplearning4j.util
This is a math utils class.
MathUtils() - Constructor for class org.deeplearning4j.util.MathUtils
 
MatrixTransform - Interface in org.deeplearning4j.transformation
 
MatrixUtil - Class in org.deeplearning4j.util
 
MatrixUtil() - Constructor for class org.deeplearning4j.util.MatrixUtil
 
max() - Method in class org.deeplearning4j.berkeley.Counter
 
max(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
maxIndex(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns index of maximum element in a given array of doubles.
maxIndex(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
maxLengthIterator(Iterator<T>, int) - Static method in class org.deeplearning4j.berkeley.Iterators
Provides a max number of elements for an underlying base iterator.
mean(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Computes the mean for an array of doubles.
mean(DoubleMatrix, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
meanSquaredError(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Returns the mean squared error of the 2 matrices.
merge(List<DataSet>) - Static method in class org.deeplearning4j.datasets.DataSet
 
merge(BaseMultiLayerNetwork, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Merges this network with the other one.
merge(NeuralNetwork, int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
merge(LogisticRegression, int) - Method in class org.deeplearning4j.nn.LogisticRegression
Averages the given logistic regression from a mini batch in to this one
merge(NeuralNetwork, int) - Method in interface org.deeplearning4j.nn.NeuralNetwork
Performs a network merge in the form of a += b - a / n where a is a matrix here b is a matrix on the incoming network and n is the batch size
mergeCoords(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This will merge the coordinates of the given coordinate system.
mergeCoords(List<Double>, List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This will merge the coordinates of the given coordinate system.
min() - Method in class org.deeplearning4j.berkeley.Counter
 
min(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
minLearningRate - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
MnistDataFetcher - Class in org.deeplearning4j.datasets.fetchers
Data fetcher for the MNIST dataset
MnistDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
MnistDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
 
MnistDataSetIterator(int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator
 
MnistDbFile - Class in org.deeplearning4j.datasets
MNIST database file containing entries that can represent image or label data.
MnistDbFile(String, String) - Constructor for class org.deeplearning4j.datasets.MnistDbFile
Creates new instance and reads the header information.
MnistFetcher - Class in org.deeplearning4j.base
 
MnistFetcher() - Constructor for class org.deeplearning4j.base.MnistFetcher
 
MnistImageFile - Class in org.deeplearning4j.datasets
MNIST database image file.
MnistImageFile(String, String) - Constructor for class org.deeplearning4j.datasets.MnistImageFile
Creates new MNIST database image file ready for reading.
MnistLabelFile - Class in org.deeplearning4j.datasets
MNIST database label file.
MnistLabelFile(String, String) - Constructor for class org.deeplearning4j.datasets.MnistLabelFile
Creates new MNIST database label file ready for reading.
MnistManager - Class in org.deeplearning4j.datasets
Utility class for working with the MNIST database.
MnistManager(String, String) - Constructor for class org.deeplearning4j.datasets.MnistManager
Constructs an instance managing the two given data files.
MNISTViewer - Class in org.deeplearning4j.datasets
 
MNISTViewer() - Constructor for class org.deeplearning4j.datasets.MNISTViewer
 
ModelTester - Class in org.deeplearning4j.eval
 
ModelTester() - Constructor for class org.deeplearning4j.eval.ModelTester
 
momentum - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
momentum - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
MultiLayerNetworkOptimizer - Class in org.deeplearning4j.optimize
Optimizes the logistic layer for finetuning a multi layer network.
MultiLayerNetworkOptimizer(BaseMultiLayerNetwork, double) - Constructor for class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
Multiply - Class in org.deeplearning4j.transformation
 
Multiply() - Constructor for class org.deeplearning4j.transformation.Multiply
 
MultiplyScalar - Class in org.deeplearning4j.transformation
 
MultiplyScalar(double) - Constructor for class org.deeplearning4j.transformation.MultiplyScalar
 
MyMethod<I,O> - Interface in org.deeplearning4j.berkeley
A function wrapping interface.

N

nearestCentroid(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
negativeLoglikelihood(double) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
Negative log likelihood of the current input given the corruption level
negativeLogLikelihood() - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Negative log likelihood of the model
negativeLogLikelihood() - Method in class org.deeplearning4j.nn.LogisticRegression
Objective function: minimize negative log likelihood
network - Variable in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
network - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
NeuralNetConfiguration - Class in org.deeplearning4j.conf
 
NeuralNetConfiguration() - Constructor for class org.deeplearning4j.conf.NeuralNetConfiguration
 
NeuralNetEpochListener - Interface in org.deeplearning4j.optimize
 
NeuralNetPlotter - Class in org.deeplearning4j.plot
Credit to : http://yosinski.com/media/papers/Yosinski2012VisuallyDebuggingRestrictedBoltzmannMachine.pdf for visualizations
NeuralNetPlotter() - Constructor for class org.deeplearning4j.plot.NeuralNetPlotter
 
NeuralNetwork - Interface in org.deeplearning4j.nn
 
NeuralNetworkGradient - Class in org.deeplearning4j.nn
 
NeuralNetworkGradient(DoubleMatrix, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.nn.NeuralNetworkGradient
 
NeuralNetworkOptimizer - Class in org.deeplearning4j.optimize
Performs basic beam search based on the network's loss function
NeuralNetworkOptimizer(BaseNeuralNetwork, double, Object[]) - Constructor for class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
newInstance(Object...) - Method in class org.deeplearning4j.berkeley.Factory.DefaultFactory
 
newInstance(Object...) - Method in interface org.deeplearning4j.berkeley.Factory
 
newIterable(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Wraps an iterator as an iterable
newPair(S, T) - Static method in class org.deeplearning4j.berkeley.Pair
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
next() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
next() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
next() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns the element in the queue with highest priority, and pops it from the queue.
next() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
next() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
next() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
next() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
next() - Method in class org.deeplearning4j.datasets.MnistDbFile
Move to the next entry.
nextBoolean() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextBytes(byte[]) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextDouble() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextFloat() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextGaussian() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextImage() - Method in class org.deeplearning4j.datasets.MnistImageFile
Move the cursor to the next image.
nextInt() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextInt(int) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nextList(List<Iterator<T>>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
nextLong() - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
nHidden - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
Number of hidden units One tip with this is usually having more hidden units than inputs (read: input rows here) will typically cause terrible overfitting.
nIn(int) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
nIns - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
nLayers - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
NN - Class in org.deeplearning4j.datasets
 
NN(int, int) - Constructor for class org.deeplearning4j.datasets.NN
 
NonZeroStoppingConjugateGradient - Class in org.deeplearning4j.util
Modified based on cc.mallet.optimize.ConjugateGradient

no termination when zero tolerance

NonZeroStoppingConjugateGradient(Optimizable.ByGradientValue, double) - Constructor for class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
NonZeroStoppingConjugateGradient(Optimizable.ByGradientValue, NeuralNetEpochListener) - Constructor for class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
NonZeroStoppingConjugateGradient(Optimizable.ByGradientValue, double, NeuralNetEpochListener) - Constructor for class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
NonZeroStoppingConjugateGradient(Optimizable.ByGradientValue) - Constructor for class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
normalize() - Method in class org.deeplearning4j.berkeley.Counter
Destructively normalize this Counter in place.
normalize() - Method in class org.deeplearning4j.berkeley.CounterMap
 
normalize(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
Normalize a value (val - min) / (max - min)
normalize(double[], double) - Static method in class org.deeplearning4j.util.MathUtils
Normalizes the doubles in the array using the given value.
normalize(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
normalizeByColumnMeans(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Subtracts by column mean.
normalizeByColumnSums(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
normalizeByRowSums(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
normalizeMatrix(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
normalizeToOne(double[]) - Static method in class org.deeplearning4j.util.MathUtils
 
normalizeWithDiscount(double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
nOut(int) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
nOuts - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
NUM_EXAMPLES - Static variable in class org.deeplearning4j.datasets.fetchers.IrisDataFetcher
 
NUM_EXAMPLES - Static variable in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
NUM_IMAGES - Static variable in class org.deeplearning4j.datasets.fetchers.LFWDataFetcher
 
numberOfInputs(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
numberOfInputs(int) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
numberOfOutPuts(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
numberOfOutputs(int) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
numberOfVisible(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
numExamples() - Method in class org.deeplearning4j.datasets.DataSet
 
numExamples - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
numExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
numExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
numHidden(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
numInputs() - Method in class org.deeplearning4j.datasets.DataSet
 
numOutcomes() - Method in class org.deeplearning4j.datasets.DataSet
 
numOutcomes - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
numTimesIterated - Variable in class org.deeplearning4j.rbm.RBMOptimizer
 
numtimesPredicted(int) - Method in class org.deeplearning4j.eval.Evaluation
Returns the number of times a given label was predicted
numTimesPredicted(int, int) - Method in class org.deeplearning4j.eval.Evaluation
Gets the number of times the given class was predicted for the given predicted label
nVisible - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 

O

objectIterator(ObjectInputStream) - Static method in class org.deeplearning4j.berkeley.Iterators
 
oneDiv(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
oneItemIterator(U) - Static method in class org.deeplearning4j.berkeley.Iterators
 
oneMinus(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
opt - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
optimize(DoubleMatrix, double, int) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
optimize() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
optimize(int) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
optimizer - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
optimizer - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
optimizer - Variable in class org.deeplearning4j.rbm.RBM
 
org.deeplearning4j.autoencoder - package org.deeplearning4j.autoencoder
 
org.deeplearning4j.base - package org.deeplearning4j.base
 
org.deeplearning4j.berkeley - package org.deeplearning4j.berkeley
 
org.deeplearning4j.clustering - package org.deeplearning4j.clustering
 
org.deeplearning4j.conf - package org.deeplearning4j.conf
 
org.deeplearning4j.da - package org.deeplearning4j.da
 
org.deeplearning4j.datasets - package org.deeplearning4j.datasets
 
org.deeplearning4j.datasets.fetchers - package org.deeplearning4j.datasets.fetchers
 
org.deeplearning4j.datasets.iterator - package org.deeplearning4j.datasets.iterator
 
org.deeplearning4j.datasets.iterator.impl - package org.deeplearning4j.datasets.iterator.impl
 
org.deeplearning4j.datasets.mnist.draw - package org.deeplearning4j.datasets.mnist.draw
 
org.deeplearning4j.dbn - package org.deeplearning4j.dbn
 
org.deeplearning4j.distancefunction - package org.deeplearning4j.distancefunction
 
org.deeplearning4j.eval - package org.deeplearning4j.eval
 
org.deeplearning4j.exception - package org.deeplearning4j.exception
 
org.deeplearning4j.nn - package org.deeplearning4j.nn
 
org.deeplearning4j.nn.activation - package org.deeplearning4j.nn.activation
 
org.deeplearning4j.optimize - package org.deeplearning4j.optimize
 
org.deeplearning4j.plot - package org.deeplearning4j.plot
 
org.deeplearning4j.rbm - package org.deeplearning4j.rbm
 
org.deeplearning4j.rng - package org.deeplearning4j.rng
 
org.deeplearning4j.sda - package org.deeplearning4j.sda
 
org.deeplearning4j.transformation - package org.deeplearning4j.transformation
 
org.deeplearning4j.util - package org.deeplearning4j.util
 
out(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
outcome() - Method in class org.deeplearning4j.datasets.DataSet
 
outcomes(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 

P

Pair<F,S> - Class in org.deeplearning4j.berkeley
A generic-typed pair of objects.
Pair(F, S) - Constructor for class org.deeplearning4j.berkeley.Pair
 
Pair.DefaultLexicographicPairComparator<F extends Comparable<F>,S extends Comparable<S>> - Class in org.deeplearning4j.berkeley
 
Pair.DefaultLexicographicPairComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.DefaultLexicographicPairComparator
 
Pair.FirstComparator<S extends Comparable<? super S>,T> - Class in org.deeplearning4j.berkeley
 
Pair.FirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.FirstComparator
 
Pair.LexicographicPairComparator<F,S> - Class in org.deeplearning4j.berkeley
 
Pair.LexicographicPairComparator(Comparator<F>, Comparator<S>) - Constructor for class org.deeplearning4j.berkeley.Pair.LexicographicPairComparator
 
Pair.ReverseFirstComparator<S extends Comparable<? super S>,T> - Class in org.deeplearning4j.berkeley
 
Pair.ReverseFirstComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.ReverseFirstComparator
 
Pair.ReverseSecondComparator<S,T extends Comparable<? super T>> - Class in org.deeplearning4j.berkeley
 
Pair.ReverseSecondComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.ReverseSecondComparator
 
Pair.SecondComparator<S,T extends Comparable<? super T>> - Class in org.deeplearning4j.berkeley
 
Pair.SecondComparator() - Constructor for class org.deeplearning4j.berkeley.Pair.SecondComparator
 
parent(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
partitionVariable(List<Double>, int) - Static method in class org.deeplearning4j.util.MathUtils
This will partition the given whole variable data set in to the specified chunk number.
peek() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
peek() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Returns the highest-priority element in the queue, but does not pop it.
permutation(double, double) - Static method in class org.deeplearning4j.util.MathUtils
This returns the permutation of n choose r.
Persistable - Interface in org.deeplearning4j.nn
 
plotActivations(NeuralNetwork) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotMatrices(String[], DoubleMatrix[]) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotNetworkGradient(NeuralNetwork, NeuralNetworkGradient) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
plotWeights(NeuralNetwork) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
PowScale - Class in org.deeplearning4j.transformation
 
PowScale(double) - Constructor for class org.deeplearning4j.transformation.PowScale
 
precision() - Method in class org.deeplearning4j.eval.Evaluation
 
precision(int) - Method in class org.deeplearning4j.eval.Evaluation
Returns the precision for a given label
predict(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Label the probabilities of the input
predict(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
Classify input
pretrain(DoubleMatrix, int, double, int) - Method in class org.deeplearning4j.dbn.DBN
This unsupervised learning method runs contrastive divergence on each RBM layer in the network.
pretrain(int, double, int) - Method in class org.deeplearning4j.dbn.DBN
 
pretrain(double, double, int) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
pretrain(DoubleMatrix, double, double, int) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
Unsupervised pretraining based on reconstructing the input from a corrupted version
prev() - Method in class org.deeplearning4j.datasets.MnistDbFile
Move to the previous entry.
prevImage() - Method in class org.deeplearning4j.datasets.MnistImageFile
Move the cursor to the previous image.
PriorityQueue<E> - Class in org.deeplearning4j.berkeley
A priority queue based on a binary heap.
PriorityQueue() - Constructor for class org.deeplearning4j.berkeley.PriorityQueue
 
PriorityQueue(int) - Constructor for class org.deeplearning4j.berkeley.PriorityQueue
 
PriorityQueueInterface<E> - Interface in org.deeplearning4j.berkeley
 
probRound(double, Random) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the next nearest integer value in a probabilistic fashion (e.g.
probToLogOdds(double) - Static method in class org.deeplearning4j.util.MathUtils
Returns the log-odds for a given probability.
propDown(DoubleMatrix) - Method in class org.deeplearning4j.rbm.CRBM
 
propDown(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Propagates hidden down to visible
propUp(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
 
pruneKeysBelowThreshold(double) - Method in class org.deeplearning4j.berkeley.Counter
 
put(E, double, boolean) - Method in class org.deeplearning4j.berkeley.Counter
Set the count for the given key if it is larger than the previous one;
put(E, double) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
put(E, double) - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Adds a key to the queue with the given priority.

R

randomDoubleBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
randomNumberBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
 
RBM - Class in org.deeplearning4j.rbm
Restricted Boltzmann Machine.
RBM() - Constructor for class org.deeplearning4j.rbm.RBM
 
RBM(int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.rbm.RBM
 
RBM(DoubleMatrix, int, int, DoubleMatrix, DoubleMatrix, DoubleMatrix, RandomGenerator, double, RealDistribution) - Constructor for class org.deeplearning4j.rbm.RBM
 
RBM.Builder - Class in org.deeplearning4j.rbm
 
RBM.Builder() - Constructor for class org.deeplearning4j.rbm.RBM.Builder
 
RBMOptimizer - Class in org.deeplearning4j.rbm
 
RBMOptimizer(BaseNeuralNetwork, double, Object[]) - Constructor for class org.deeplearning4j.rbm.RBMOptimizer
 
readImage() - Method in class org.deeplearning4j.datasets.MnistImageFile
Reads the image at the current position.
readImage() - Method in class org.deeplearning4j.datasets.MnistManager
Reads the current image.
readInput() - Method in class org.deeplearning4j.datasets.NN
 
readLabel() - Method in class org.deeplearning4j.datasets.MnistLabelFile
Reads the integer at the current position.
readLabel() - Method in class org.deeplearning4j.datasets.MnistManager
Reads the current label.
readObject(File) - Static method in class org.deeplearning4j.util.SerializationUtils
 
readOutput() - Method in class org.deeplearning4j.datasets.NN
 
readString(DataInputStream, int) - Static method in class org.deeplearning4j.util.ByteUtil
 
recall() - Method in class org.deeplearning4j.eval.Evaluation
Returns the recall for the outcomes
reconstruct(DoubleMatrix) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
reconstruct(DoubleMatrix, int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Reconstructs the input.
reconstruct(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
reconstruct(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
All neural networks are based on this idea of minimizing reconstruction error.
reconstruct(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Reconstructs the visible input.
remove() - Method in class org.deeplearning4j.berkeley.Iterators.FilteredIterator
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.IteratorIterator
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
remove() - Method in class org.deeplearning4j.berkeley.Iterators.TransformingIterator
 
remove() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
remove() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Not supported -- next() already removes the head of the queue.
remove() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
remove() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
removeFirst() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
removeKey(E) - Method in class org.deeplearning4j.berkeley.Counter
 
removeKey(K) - Method in class org.deeplearning4j.berkeley.CounterMap
 
removeKeyFromEntries(E) - Method in class org.deeplearning4j.berkeley.Counter
 
renderFilter(DoubleMatrix, int, int, long) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 
renderWeights(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Whether to plot weights or not
renderWeights(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
renderWeightsEveryNEpochs - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
renderWeightsEveryNumEpochs - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
reset() - Method in class org.deeplearning4j.clustering.KMeansClustering
 
reset() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
reset() - Method in class org.deeplearning4j.datasets.fetchers.MnistDataFetcher
 
reset() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
reset() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
reset() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
reset() - Method in class org.deeplearning4j.datasets.NN
 
reset() - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
reverse() - Method in class org.deeplearning4j.berkeley.Pair
 
rightChild(int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
rng - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
rng - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
rootMeansSquaredError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the root mean squared error of two data sets
round(double) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the next nearest integer value.
roundDouble(double, int) - Static method in class org.deeplearning4j.util.MathUtils
Rounds a double to the given number of decimal places.
roundToTheNearest(int) - Method in class org.deeplearning4j.datasets.DataSet
 
roundToTheNearest(DoubleMatrix, double) - Static method in class org.deeplearning4j.util.MatrixUtil
 
run() - Method in class org.deeplearning4j.eval.DataSetTester
 

S

sample(Random) - Method in class org.deeplearning4j.berkeley.Counter
Will return a sample from the counter, will throw exception if any of the counts are < 0.0 or if the totalCount() <= 0.0
sample() - Method in class org.deeplearning4j.berkeley.Counter
Will return a sample from the counter, will throw exception if any of the counts are < 0.0 or if the totalCount() <= 0.0
sample(int) - Method in class org.deeplearning4j.datasets.DataSet
Sample without replacement and a random rng
sample(int, RandomGenerator) - Method in class org.deeplearning4j.datasets.DataSet
Sample without replacement
sample(int, boolean) - Method in class org.deeplearning4j.datasets.DataSet
Sample a dataset numSamples times
sample(int, RandomGenerator, boolean) - Method in class org.deeplearning4j.datasets.DataSet
Sample a dataset
sample_h_given_v() - Method in class org.deeplearning4j.nn.HiddenLayer
Sample this hidden layer given the last input.
sampleDoublesInInterval(double[][], int) - Static method in class org.deeplearning4j.util.MathUtils
 
sampleHGivenV(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
Sample this hidden layer given the input and initialize this layer with the given input
sampleHiddenGivenVisible(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Binomial sampling of the hidden values given visible
sampleVGivenH(DoubleMatrix) - Method in class org.deeplearning4j.rbm.CRBM
 
sampleVGivenH(DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Guess the visible values given the hidden
saveObject(Object, File) - Static method in class org.deeplearning4j.util.SerializationUtils
 
saveTo(File, boolean) - Method in class org.deeplearning4j.datasets.DataSet
 
ScalarMatrixTransform - Class in org.deeplearning4j.transformation
 
ScalarMatrixTransform(double) - Constructor for class org.deeplearning4j.transformation.ScalarMatrixTransform
 
scale(double) - Method in class org.deeplearning4j.berkeley.Counter
 
scale(double) - Method in class org.deeplearning4j.berkeley.CounterMap
Scale all entries in CounterMap by scaleFactor
scaleBy - Variable in class org.deeplearning4j.transformation.ScalarMatrixTransform
 
scaledClone(double) - Method in class org.deeplearning4j.berkeley.Counter
 
SerializationUtils - Class in org.deeplearning4j.util
 
SerializationUtils() - Constructor for class org.deeplearning4j.util.SerializationUtils
 
setActivation(ActivationFunction) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setActivation(ActivationFunction) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setActivationFunction(ActivationFunction) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setAllCounts(double) - Method in class org.deeplearning4j.berkeley.Counter
Sets all counts to the given value, but does not remove any keys
setB(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setB(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setbGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegressionGradient
 
setColumnMeans(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setColumnStds(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setColumnSums(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set the count for the given key, clobbering any previous count.
setCount(K, V, double) - Method in class org.deeplearning4j.berkeley.CounterMap
Sets the count for a particular (key, value) pair.
setCounter(K, Counter<V>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
setCurrent(int) - Method in class org.deeplearning4j.datasets.MnistManager
Set the position to be read.
setCurrentIndex(long) - Method in class org.deeplearning4j.datasets.MnistDbFile
Set the required current entry index.
setDefault(double) - Method in class org.deeplearning4j.berkeley.CounterMap
 
setDeflt(double) - Method in class org.deeplearning4j.berkeley.Counter
 
setDirty(boolean) - Method in class org.deeplearning4j.berkeley.Counter
 
setDist(RealDistribution) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setDist(RealDistribution) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setDist(RealDistribution) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setDist(RealDistribution) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setErrorTolerance(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setEvaluator(OptimizerEvaluator.ByGradient) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setFanIn(double) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setFanIn(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setFanIn(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setFanIn(double) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setFirst(F) - Method in class org.deeplearning4j.berkeley.Pair
 
setFirst(S) - Method in class org.deeplearning4j.berkeley.Triple
 
setForceNumEpochs(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setForceNumEpochs(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
sethBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
sethBias(DoubleMatrix) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
sethBiasGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.NeuralNetworkGradient
 
setHiddenLayerSizes(int[]) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setHiddenLayerSizes(int[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setInitialStepSize(double) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setInput(int[], float[]) - Method in class org.deeplearning4j.datasets.NN
Input values into the system via the input nodes
setInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setInput(DoubleMatrix) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setL2(double) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setL2(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setL2(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setL2(double) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setL2(double) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setLabels(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLabels(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setLayers(NeuralNetwork[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLearningRateUpdate(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setLineMaximizer(LineOptimizer.ByGradient) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setLogLayer(LogisticRegression) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setLogLayer(LogisticRegression) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setMaxCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set's the key's count to the maximum of the current count and val.
setMaxIterations(int) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setMinCount(E, double) - Method in class org.deeplearning4j.berkeley.Counter
Set's the key's count to the minimum of the current count and val.
setMomentum(double) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setMomentum(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setMomentum(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setMomentum(double) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setnHidden(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setnHidden(int) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setnIn(int) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setnIn(int) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setnIns(int) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setnIns(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setnLayers(int) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setnLayers(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setnOut(int) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setnOut(int) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setnOuts(int) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setnOuts(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setnVisible(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setnVisible(int) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setOptimizer(MultiLayerNetworkOptimizer) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setOptimizer(MultiLayerNetworkOptimizer) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setOutput(int[], float[]) - Method in class org.deeplearning4j.datasets.NN
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
setParameter(int, double) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
setParameters(double[]) - Method in class org.deeplearning4j.optimize.LogisticRegressionOptimizer
 
setParameters(double[]) - Method in class org.deeplearning4j.optimize.MultiLayerNetworkOptimizer
 
setParameters(double[]) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
setRenderEpochs(int) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setRenderEpochs(int) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setRenderWeightsEveryNEpochs(int) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setRenderWeightsEveryNEpochs(int) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setRng(RandomGenerator) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setRng(RandomGenerator) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setRng(RandomGenerator) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setRng(RandomGenerator) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setRng(RandomGenerator) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setSecond(S) - Method in class org.deeplearning4j.berkeley.Pair
 
setSecond(T) - Method in class org.deeplearning4j.berkeley.Triple
 
setSeed(int) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
setSeed(int[]) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
setSeed(long) - Method in class org.deeplearning4j.rng.SynchronizedRandomGenerator
setShouldBackProp(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setShouldBackProp(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setShouldInit(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setShouldInit(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setSigmoidLayers(HiddenLayer[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setSparsity(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setSparsity(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setSparsity(double) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setThird(U) - Method in class org.deeplearning4j.berkeley.Triple
 
setToDecode(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setToDecode(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setTolerance(double) - Method in class org.deeplearning4j.util.NonZeroStoppingConjugateGradient
 
setUseRegularization(boolean) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setUseRegularization(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setUseRegularization(boolean) - Method in class org.deeplearning4j.nn.LogisticRegression
 
SetUtils - Class in org.deeplearning4j.util
 
setvBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setvBias(DoubleMatrix) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setvBiasGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.NeuralNetworkGradient
 
setW(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
setW(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer
 
setW(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression
 
setW(DoubleMatrix) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
setWeightTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.conf.NeuralNetConfiguration
 
setWeightTransforms(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
 
setwGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegressionGradient
 
setwGradient(DoubleMatrix) - Method in class org.deeplearning4j.nn.NeuralNetworkGradient
 
shouldBackProp - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
shouldForceEpochs - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
shouldInit - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
Sigmoid - Class in org.deeplearning4j.nn.activation
 
Sigmoid() - Constructor for class org.deeplearning4j.nn.activation.Sigmoid
 
sigmoid(double) - Static method in class org.deeplearning4j.util.MathUtils
1 / 1 + exp(-x)
sigmoid(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
size() - Method in class org.deeplearning4j.berkeley.Counter
The number of entries in the counter (not the total count -- use totalCount() instead).
size() - Method in class org.deeplearning4j.berkeley.CounterMap
The number of keys in this CounterMap (not the number of key-value entries -- use totalSize() for that)
size() - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
size() - Method in interface org.deeplearning4j.berkeley.PriorityQueueInterface
Number of elements in the queue.
slope(double, double, double, double) - Method in class org.deeplearning4j.util.MathUtils
This returns the slope of the given points.
sm(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Tests if a is smaller than b.
SMALL - Static variable in class org.deeplearning4j.util.MathUtils
The small deviation allowed in double comparisons.
softmax(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
sortAndBatchByNumLabels() - Method in class org.deeplearning4j.datasets.DataSet
Sorts the dataset by label: Splits the data set such that examples are sorted by their labels.
sortByLabel() - Method in class org.deeplearning4j.datasets.DataSet
Organizes the dataset to minimize sampling error while still allowing efficient batching.
sparsity - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
splitInputs(DoubleMatrix, DoubleMatrix, List<Pair<DoubleMatrix, DoubleMatrix>>, List<Pair<DoubleMatrix, DoubleMatrix>>, double) - Static method in class org.deeplearning4j.util.InputSplit
 
splitInputs(List<Pair<DoubleMatrix, DoubleMatrix>>, List<Pair<DoubleMatrix, DoubleMatrix>>, List<Pair<DoubleMatrix, DoubleMatrix>>, double) - Static method in class org.deeplearning4j.util.InputSplit
 
splitTestAndTrain(int) - Method in class org.deeplearning4j.datasets.DataSet
 
SqrtScalar - Class in org.deeplearning4j.transformation
 
SqrtScalar() - Constructor for class org.deeplearning4j.transformation.SqrtScalar
 
squaredLoss() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
squaredLoss() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
squaredLoss(double[], double[], double, double) - Static method in class org.deeplearning4j.util.MathUtils
This will return the squared loss of the given points
ssError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
How much of the variance is NOT explained by the regression
ssReg(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
How much of the variance is explained by the regression
ssTotal(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Total variance in target attribute
StackedDenoisingAutoEncoder - Class in org.deeplearning4j.sda
A JBlas implementation of stacked denoising auto encoders.
StackedDenoisingAutoEncoder() - Constructor for class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
StackedDenoisingAutoEncoder(int, int[], int, int, RandomGenerator, DoubleMatrix, DoubleMatrix) - Constructor for class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
StackedDenoisingAutoEncoder(int, int[], int, int, RandomGenerator) - Constructor for class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
StackedDenoisingAutoEncoder.Builder - Class in org.deeplearning4j.sda
 
StackedDenoisingAutoEncoder.Builder() - Constructor for class org.deeplearning4j.sda.StackedDenoisingAutoEncoder.Builder
 
start() - Method in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
stats() - Method in class org.deeplearning4j.eval.Evaluation
 
stringSimilarity(String...) - Static method in class org.deeplearning4j.util.MathUtils
Calculate string similarity with tfidf weights relative to each character frequency and how many times a character appears in a given string
Subtract - Class in org.deeplearning4j.transformation
 
Subtract() - Constructor for class org.deeplearning4j.transformation.Subtract
 
SubtractScalar - Class in org.deeplearning4j.transformation
 
SubtractScalar(double) - Constructor for class org.deeplearning4j.transformation.SubtractScalar
 
sum(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of the given array.
sum(DoubleMatrix, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
sumOfMeanDifferences(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
Used for calculating top part of simple regression for beta 1
sumOfMeanDifferencesOnePoint(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Used for calculating top part of simple regression for beta 1
sumOfProducts(double[]...) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of products for the given numbers.
sumOfSquares(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the sum of squares for the given vector.
sumSquaredError(DoubleMatrix, DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
Returns the sum squared error of the 2 matrices.
swap(int, int) - Method in class org.deeplearning4j.berkeley.PriorityQueue
 
SynchronizedRandomGenerator - Class in org.deeplearning4j.rng
Any RandomGenerator implementation can be thread-safe if it is used through an instance of this class.
SynchronizedRandomGenerator(RandomGenerator) - Constructor for class org.deeplearning4j.rng.SynchronizedRandomGenerator
Creates a synchronized wrapper for the given RandomGenerator instance.

T

Tanh - Class in org.deeplearning4j.nn.activation
 
Tanh() - Constructor for class org.deeplearning4j.nn.activation.Tanh
 
tf(int) - Static method in class org.deeplearning4j.util.MathUtils
Term frequency: 1+ log10(count)
tfidf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
Return td * idf
thread(Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
Executes calls to next() in a different thread
times(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the product of all numbers in the given array.
title - Variable in class org.deeplearning4j.datasets.mnist.draw.DrawMnistGreyScale
 
toCSV() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Outputs the ConfusionMatrix as comma-separated values for easy import into spreadsheets
toDecimal(String) - Static method in class org.deeplearning4j.util.MathUtils
This will convert the given binary string to a decimal based integer
toDecode - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
toDouble(int[][]) - Static method in class org.deeplearning4j.util.ArrayUtil
 
toHTML() - Method in class org.deeplearning4j.eval.ConfusionMatrix
Outputs Confusion Matrix in an HTML table.
tolerance - Variable in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
toLogSpace() - Method in class org.deeplearning4j.berkeley.Counter
 
toMatrix(int[][]) - Static method in class org.deeplearning4j.util.MatrixUtil
 
toMatrix(int[]) - Static method in class org.deeplearning4j.util.MatrixUtil
 
toOutcomeArray(int, int) - Static method in class org.deeplearning4j.util.ArrayUtil
 
toOutcomeVector(int, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
toString() - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation with the keys ordered by decreasing counts.
toString(int) - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation which includes no more than the maxKeysToPrint elements with largest counts.
toString(int, boolean) - Method in class org.deeplearning4j.berkeley.Counter
Returns a string representation which includes no more than the maxKeysToPrint elements with largest counts and optionally prints one element per line.
toString(int) - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString() - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString(Collection<String>) - Method in class org.deeplearning4j.berkeley.CounterMap
 
toString() - Method in class org.deeplearning4j.berkeley.Pair
 
toString() - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a representation of the queue in decreasing priority order.
toString(int, boolean) - Method in class org.deeplearning4j.berkeley.PriorityQueue
Returns a representation of the queue in decreasing priority order, displaying at most maxKeysToPrint elements and optionally printing one element per line.
toString() - Method in class org.deeplearning4j.berkeley.Triple
 
toString() - Method in class org.deeplearning4j.datasets.DataSet
 
toString() - Method in class org.deeplearning4j.datasets.NN
 
toString() - Method in class org.deeplearning4j.eval.ConfusionMatrix
 
toStringSortedByKeys() - Method in class org.deeplearning4j.berkeley.Counter
 
toStringTabSeparated() - Method in class org.deeplearning4j.berkeley.Counter
 
totalCount() - Method in class org.deeplearning4j.berkeley.Counter
Finds the total of all counts in the counter.
totalCount() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the total of all counts in sub-counters.
totalExamples - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalExamples() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
totalExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
totalExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
totalExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
 
totalOutcomes() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
 
totalOutcomes() - Method in interface org.deeplearning4j.datasets.iterator.DataSetIterator
 
totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
 
totalSize() - Method in class org.deeplearning4j.berkeley.CounterMap
Returns the total number of (key, value) entries in the CounterMap (not their total counts).
train(DoubleMatrix, DoubleMatrix, double) - Method in class org.deeplearning4j.autoencoder.DeepAutoEncoder
 
train(DoubleMatrix, double, double) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
Perform one iteration of training
train(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
train(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Train one iteration of the network
train(double) - Method in class org.deeplearning4j.nn.LogisticRegression
Train with current input and labels with the given learning rate
train(DoubleMatrix, double) - Method in class org.deeplearning4j.nn.LogisticRegression
Train with the given input and the currently set labels
train(DoubleMatrix, DoubleMatrix, double) - Method in class org.deeplearning4j.nn.LogisticRegression
Train on the given inputs and labels.
train(DoubleMatrix, double, Object[]) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
train(DoubleMatrix) - Method in class org.deeplearning4j.optimize.NeuralNetworkOptimizer
 
train(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.rbm.RBM
 
trainingFileLabelsFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
trainingFilesFilename_unzipped - Static variable in class org.deeplearning4j.base.MnistFetcher
 
trainNetwork(DoubleMatrix, DoubleMatrix, Object[]) - Method in class org.deeplearning4j.dbn.DBN
 
trainNetwork(DoubleMatrix, DoubleMatrix, Object[]) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Train the network running some unsupervised pretraining followed by SGD/finetune
trainNetwork(DoubleMatrix, DoubleMatrix, Object[]) - Method in class org.deeplearning4j.sda.StackedDenoisingAutoEncoder
 
trainTillConvergence(DoubleMatrix, double, double) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
Run a network optimizer
trainTillConvergence(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.da.DenoisingAutoEncoder
 
trainTillConvergence(DoubleMatrix, DoubleMatrix, double, int) - Method in class org.deeplearning4j.nn.LogisticRegression
Run conjugate gradient with the given x and y
trainTillConvergence(double, int) - Method in class org.deeplearning4j.nn.LogisticRegression
Run conjugate gradient
trainTillConvergence(DoubleMatrix, double, Object[]) - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
trainTillConvergence(double, int, DoubleMatrix) - Method in class org.deeplearning4j.rbm.RBM
Trains till global minimum is found.
trainTillConvergence(DoubleMatrix, double, Object[]) - Method in class org.deeplearning4j.rbm.RBM
Note: k is the first input in params.
transform(S) - Method in class org.deeplearning4j.berkeley.Iterators.Transform
 
transformWeightsAt(int, MatrixTransform) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Transform the weights at the given layer
transformWeightsAt(Map<Integer, MatrixTransform>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
A map of transformations for transforming the given layers
transpose() - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
 
transpose() - Method in class org.deeplearning4j.nn.HiddenLayer
 
transpose() - Method in interface org.deeplearning4j.nn.NeuralNetwork
 
Triple<S,T,U> - Class in org.deeplearning4j.berkeley
 
Triple(S, T, U) - Constructor for class org.deeplearning4j.berkeley.Triple
 

U

uniform(Random, double, double) - Static method in class org.deeplearning4j.util.MathUtils
Generate a uniform random number from the given rng
uniform(RandomGenerator, int, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
union(Set<? extends T>, Set<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
 
unitVec(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
unroll(DoubleMatrix) - Static method in class org.deeplearning4j.util.MatrixUtil
 
untarFile(File, File) - Method in class org.deeplearning4j.base.LFWLoader
 
untarFile(File, File) - Method in class org.deeplearning4j.base.MnistFetcher
 
update(DoubleMatrix) - Method in class org.deeplearning4j.clustering.KMeansClustering
 
update() - Method in class org.deeplearning4j.datasets.NN
 
update(BaseMultiLayerNetwork) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Assigns the parameters of this model to the ones specified by this network.
update(BaseNeuralNetwork) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Copies params from the passed in network to this one
useRegularization - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
useRegularization(boolean) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Use l2 reg
useRegularization(boolean) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
useRegularization - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 

V

validate() - Method in class org.deeplearning4j.datasets.DataSet
 
vBias - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
vectorLength(double[]) - Static method in class org.deeplearning4j.util.MathUtils
Returns the vector length (sqrt(sum(x_i))

W

W - Variable in class org.deeplearning4j.nn.BaseNeuralNetwork
 
w_0(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
 
w_1(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
 
weightsFor(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
This returns the minimized loss values for a given vector.
weightsFor(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the minimized loss values for a given vector.
weightTransforms - Variable in class org.deeplearning4j.conf.NeuralNetConfiguration
 
weightTransforms - Variable in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withActivation(ActivationFunction) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Pick an activation function, default is sigmoid
withActivation(ActivationFunction) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
withClazz(Class<? extends BaseMultiLayerNetwork>) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withClazz(Class<? extends BaseNeuralNetwork>) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withDist(RealDistribution) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Probability distribution for generating weights
withDistribution(RealDistribution) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withFanIn(Double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withHBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withInput(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withL2(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
L2 coefficient
withL2(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withLabels(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withMomentum(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
Specify momentum
withMomentum(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withRandom(RandomGenerator) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withRng(RandomGenerator) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withRng(RandomGenerator) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withSparsity(double) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork.Builder
 
withSparsity(double) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withVisibleBias(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withWeights(DoubleMatrix) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork.Builder
 
withWeights(DoubleMatrix) - Method in class org.deeplearning4j.nn.HiddenLayer.Builder
 
withWeights(DoubleMatrix) - Method in class org.deeplearning4j.nn.LogisticRegression.Builder
 
write(OutputStream) - Method in class org.deeplearning4j.datasets.DataSet
 
write(OutputStream) - Method in class org.deeplearning4j.nn.BaseMultiLayerNetwork
Serializes this to the output stream.
write(OutputStream) - Method in class org.deeplearning4j.nn.BaseNeuralNetwork
Write this to an object output stream
write(OutputStream) - Method in interface org.deeplearning4j.nn.Persistable
 
writeImageToPpm(int[][], String) - Static method in class org.deeplearning4j.datasets.MnistManager
Writes the given image in the given file using the PPM data format.
writeMatrix(DoubleMatrix) - Method in class org.deeplearning4j.plot.NeuralNetPlotter
 

X

xorData(int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
xorData(int, int) - Static method in class org.deeplearning4j.util.MatrixUtil
 
xVals(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the x values of the given vector.

Y

yVals(double[]) - Static method in class org.deeplearning4j.util.MathUtils
This returns the odd indexed values for the given vector

Z

zip(Iterator<S>, Iterator<T>) - Static method in class org.deeplearning4j.berkeley.Iterators
 
A B C D E F G H I J K L M N O P R S T U V W X Y Z 

Copyright © 2014. All Rights Reserved.