public class CDBN extends DBN
Modifier and Type | Class and Description |
---|---|
static class |
CDBN.Builder |
errorTolerance, layers, learningRateUpdate
Constructor and Description |
---|
CDBN() |
CDBN(int n_ins,
int[] hidden_layer_sizes,
int n_outs,
int n_layers,
org.apache.commons.math3.random.RandomGenerator rng) |
CDBN(int n_ins,
int[] hidden_layer_sizes,
int n_outs,
int n_layers,
org.apache.commons.math3.random.RandomGenerator rng,
org.jblas.DoubleMatrix input,
org.jblas.DoubleMatrix labels) |
Modifier and Type | Method and Description |
---|---|
NeuralNetwork |
createLayer(org.jblas.DoubleMatrix input,
int nVisible,
int nHidden,
org.jblas.DoubleMatrix W,
org.jblas.DoubleMatrix hBias,
org.jblas.DoubleMatrix vBias,
org.apache.commons.math3.random.RandomGenerator rng,
int index)
Creates a layer depending on the index.
|
NeuralNetwork[] |
createNetworkLayers(int numLayers) |
pretrain, pretrain, trainNetwork
applyTransforms, asDecoder, backProp, backPropStep, clone, encode, fanIn, feedForward, finetune, finetune, getActivation, getColumnMeans, getColumnStds, getColumnSums, getDist, getErrorTolerance, getFanIn, getHiddenLayerSizes, getInput, getL2, getLabels, getLayers, getLearningRateUpdate, getLogLayer, getMomentum, getnIns, getnLayers, getnOuts, getOptimizer, getRenderWeightsEveryNEpochs, getRng, getSigmoidLayers, getSparsity, getWeightTransforms, initializeLayers, initializeNetwork, isForceNumEpochs, isShouldBackProp, isShouldInit, isToDecode, isUseRegularization, load, loadFromFile, merge, negativeLogLikelihood, predict, reconstruct, reconstruct, setActivation, setColumnMeans, setColumnStds, setColumnSums, setDist, setErrorTolerance, setFanIn, setForceNumEpochs, setHiddenLayerSizes, setInput, setL2, setLabels, setLayers, setLearningRateUpdate, setLogLayer, setMomentum, setnIns, setnLayers, setnOuts, setOptimizer, setRenderWeightsEveryNEpochs, setRng, setShouldBackProp, setShouldInit, setSigmoidLayers, setSparsity, setToDecode, setUseRegularization, setWeightTransforms, update, write
public CDBN()
public CDBN(int n_ins, int[] hidden_layer_sizes, int n_outs, int n_layers, org.apache.commons.math3.random.RandomGenerator rng, org.jblas.DoubleMatrix input, org.jblas.DoubleMatrix labels)
public CDBN(int n_ins, int[] hidden_layer_sizes, int n_outs, int n_layers, org.apache.commons.math3.random.RandomGenerator rng)
public NeuralNetwork createLayer(org.jblas.DoubleMatrix input, int nVisible, int nHidden, org.jblas.DoubleMatrix W, org.jblas.DoubleMatrix hBias, org.jblas.DoubleMatrix vBias, org.apache.commons.math3.random.RandomGenerator rng, int index)
BaseMultiLayerNetwork
CDBN
where the first layer needs to be an CRBM
for continuous inputs.
Please be sure to call super.initializeNetwork
to handle the passing of baseline parameters such as fanin
and rendering.createLayer
in class DBN
input
- the input to the layernVisible
- the number of visible inputsnHidden
- the number of hidden unitsW
- the weight vectorhBias
- the hidden biasvBias
- the visible biasrng
- the rng to use (THiS IS IMPORTANT; YOU DO NOT WANT TO HAVE A MIS REFERENCED RNG OTHERWISE NUMBERS WILL BE MEANINGLESS)index
- the index of the layerRBM
public NeuralNetwork[] createNetworkLayers(int numLayers)
createNetworkLayers
in class DBN
Copyright © 2014. All Rights Reserved.