public class RegressionEvaluation extends BaseEvaluation<RegressionEvaluation>
Evaluation
Modifier and Type | Field and Description |
---|---|
static int |
DEFAULT_PRECISION |
Constructor and Description |
---|
RegressionEvaluation() |
RegressionEvaluation(int nColumns)
Create a regression evaluation object with the specified number of columns, and default precision
for the stats() method.
|
RegressionEvaluation(int nColumns,
int precision)
Create a regression evaluation object with the specified number of columns, and specified precision
for the stats() method.
|
RegressionEvaluation(List<String> columnNames)
Create a regression evaluation object with default precision for the stats() method
|
RegressionEvaluation(List<String> columnNames,
int precision)
Create a regression evaluation object with specified precision for the stats() method
|
RegressionEvaluation(String... columnNames)
Create a regression evaluation object with default precision for the stats() method
|
Modifier and Type | Method and Description |
---|---|
double |
averagecorrelationR2()
Average R2 across all columns
|
double |
averageMeanAbsoluteError()
Average MAE across all columns
|
double |
averageMeanSquaredError()
Average MSE across all columns
|
double |
averagerelativeSquaredError()
Average RSE across all columns
|
double |
averagerootMeanSquaredError()
Average RMSE across all columns
|
double |
correlationR2(int column) |
void |
eval(org.nd4j.linalg.api.ndarray.INDArray labels,
org.nd4j.linalg.api.ndarray.INDArray predictions) |
void |
eval(org.nd4j.linalg.api.ndarray.INDArray labels,
org.nd4j.linalg.api.ndarray.INDArray predictions,
org.nd4j.linalg.api.ndarray.INDArray maskArray) |
double |
meanAbsoluteError(int column) |
double |
meanSquaredError(int column) |
void |
merge(RegressionEvaluation other) |
int |
numColumns() |
double |
relativeSquaredError(int column) |
void |
reset() |
double |
rootMeanSquaredError(int column) |
String |
stats() |
equals, eval, evalTimeSeries, evalTimeSeries, fromJson, fromYaml, toJson, toString, toYaml
public static final int DEFAULT_PRECISION
public RegressionEvaluation()
public RegressionEvaluation(int nColumns)
nColumns
- Number of columnspublic RegressionEvaluation(int nColumns, int precision)
nColumns
- Number of columnspublic RegressionEvaluation(String... columnNames)
columnNames
- Names of the columnspublic RegressionEvaluation(List<String> columnNames)
columnNames
- Names of the columnspublic void reset()
public void eval(org.nd4j.linalg.api.ndarray.INDArray labels, org.nd4j.linalg.api.ndarray.INDArray predictions)
public void eval(org.nd4j.linalg.api.ndarray.INDArray labels, org.nd4j.linalg.api.ndarray.INDArray predictions, org.nd4j.linalg.api.ndarray.INDArray maskArray)
eval
in interface IEvaluation<RegressionEvaluation>
eval
in class BaseEvaluation<RegressionEvaluation>
public void merge(RegressionEvaluation other)
public String stats()
public int numColumns()
public double meanSquaredError(int column)
public double meanAbsoluteError(int column)
public double rootMeanSquaredError(int column)
public double correlationR2(int column)
public double relativeSquaredError(int column)
public double averageMeanSquaredError()
public double averageMeanAbsoluteError()
public double averagerootMeanSquaredError()
public double averagerelativeSquaredError()
public double averagecorrelationR2()
Copyright © 2017. All rights reserved.