- AbstractDataSetIterator<T> - Class in org.deeplearning4j.datasets.iterator
-
This is simple DataSetIterator implementation, that builds DataSetIterator out of INDArray/float[]/double[] pairs.
- AbstractDataSetIterator(Iterable<Pair<T, T>>, int) - Constructor for class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
- AbstractLayer<LayerConfT extends Layer> - Class in org.deeplearning4j.nn.layers
-
A layer with input and output, no parameters or gradients
- AbstractLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.AbstractLayer
-
- AbstractLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.AbstractLayer
-
- AbstractLSTM - Class in org.deeplearning4j.nn.conf.layers
-
LSTM recurrent net, based on Graves: Supervised Sequence Labelling with Recurrent Neural Networks
http://www.cs.toronto.edu/~graves/phd.pdf
- AbstractLSTM(AbstractLSTM.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- AbstractLSTM.Builder<T extends AbstractLSTM.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- acceptResult(String) - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- acceptsInput(String) - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- accumulateScore(double) - Method in interface org.deeplearning4j.nn.api.Model
-
Sets a rolling tally for the score.
- accumulateScore(double) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- accumulateScore(double) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- accumulateScore(double) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- accumulateScore(double) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- accumulateScore(double) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- accumulateScore(double) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- accumulateScore(double) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- accumulator - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- accumulator - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- accumulator - Variable in class org.deeplearning4j.optimize.solvers.accumulation.LocalHandler
-
- accumulator - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- accuracy() - Method in class org.deeplearning4j.eval.Evaluation
-
Accuracy:
(TP + TN) / (P + N)
- accuracy(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the accuracy for the specified output
- activate(Layer.TrainingMode) - Method in interface org.deeplearning4j.nn.api.Layer
-
Trigger an activation with the last specified input
- activate(INDArray, Layer.TrainingMode) - Method in interface org.deeplearning4j.nn.api.Layer
-
Initialize the layer with the given input
and return the activation for this layer
given this input
- activate(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
-
Trigger an activation with the last specified input
- activate(INDArray, boolean) - Method in interface org.deeplearning4j.nn.api.Layer
-
Initialize the layer with the given input
and return the activation for this layer
given this input
- activate() - Method in interface org.deeplearning4j.nn.api.Layer
-
Trigger an activation with the last specified input
- activate(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
Initialize the layer with the given input
and return the activation for this layer
given this input
- activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- activate(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- activate() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- activate(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- activate() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- activate(INDArray, IActivation) - Method in interface org.deeplearning4j.nn.layers.convolution.ConvolutionHelper
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer
-
- activate(INDArray, boolean, int[], int[], int[], PoolingType, ConvolutionMode) - Method in interface org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingHelper
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- activate(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- activate() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
Reconstructs the visible INPUT.
- activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- activate() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- activate(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- activate(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- activate() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- activate(INDArray, boolean, double, double, double, double) - Method in interface org.deeplearning4j.nn.layers.normalization.LocalResponseNormalizationHelper
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- activate(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- activate() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- activate(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- activate() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- activate(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- activate() - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- activate(Layer, NeuralNetConfiguration, IActivation, INDArray, INDArray, INDArray, INDArray, boolean, INDArray, INDArray, boolean, boolean, String, INDArray, boolean) - Method in interface org.deeplearning4j.nn.layers.recurrent.LSTMHelper
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- activate(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- activate() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- activate(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- activate() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Triggers the activation of the last hidden layer ie: not logistic regression
- activate(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Triggers the activation for a given layer
- activate(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- activate(int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Triggers the activation of the given layer
- activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- activate(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- activate(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- activateHelper(BaseLayer, NeuralNetConfiguration, IActivation, INDArray, INDArray, INDArray, INDArray, boolean, INDArray, INDArray, boolean, boolean, String, INDArray, boolean, LSTMHelper, CacheMode) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
Returns FwdPassReturn object with activations/INDArrays.
- activateSelectedLayers(int, int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate activation for few layers at once.
- activation(String) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- activation(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- activation(String) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- activation(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- activation(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- activation(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- activation(IActivation) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Activation function / neuron non-linearity
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Activation function / neuron non-linearity
- activation(Activation) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- activationFn - Variable in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- activationFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- activationFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- activationFn - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- activationFn - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- activationFromPrevLayer(int, INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate activation from previous layer including pre processing where necessary
- ActivationLayer - Class in org.deeplearning4j.nn.conf.layers
-
- ActivationLayer(ActivationLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- ActivationLayer - Class in org.deeplearning4j.nn.layers
-
Activation Layer
Used to apply activation on input and corresponding derivative on epsilon.
- ActivationLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.ActivationLayer
-
- ActivationLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.ActivationLayer
-
- ActivationLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- activationMean() - Method in interface org.deeplearning4j.nn.api.Layer
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- activationMean() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- activationMean() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- activations(INDArray) - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- adamMeanDecay - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Deprecated.
- adamMeanDecay - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Deprecated.
- adamMeanDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- adamMeanDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Mean decay rate for Adam updater.
- adamMeanDecay - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Deprecated.
- adamMeanDecay(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- adamMeanDecay - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
Deprecated.
- adamVarDecay - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Deprecated.
- adamVarDecay - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Deprecated.
- adamVarDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- adamVarDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Variance decay rate for Adam updater.
- adamVarDecay - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Deprecated.
- adamVarDecay(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- adamVarDecay - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
Deprecated.
- add(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
Increments the entry specified by actual and predicted by one.
- add(T, T, int) - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
Increments the entry specified by actual and predicted by count.
- add(ConfusionMatrix<T>) - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
Adds the entries from another confusion matrix to this one.
- add(E) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- add(E) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- add(Object, int) - Method in class org.deeplearning4j.util.Index
-
- add(Object) - Method in class org.deeplearning4j.util.Index
-
- add(Pair<K, V>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Adds the specified element to this applyTransformToDestination if it is not already present
(optional operation).
- add(K, V) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
- addAll(Collection<? extends E>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- addAll(Collection<? extends E>) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- addAll(Collection<? extends Pair<K, V>>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Adds all of the elements in the specified collection to this applyTransformToDestination if
they're not already present (optional operation).
- addColumn(List<String>) - Method in class org.deeplearning4j.util.StringGrid
-
- addDistribution(int, ReconstructionDistribution) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution.Builder
-
Add another distribution to the composite distribution.
- addInputs(String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Specify the inputs to the network, and their associated labels.
- addInputs(Collection<String>) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Specify the inputs to the network, and their associated labels.
- addInputs(String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- addLayer(String, Layer, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Add a layer, with no
InputPreProcessor
, with the specified name and specified inputs.
- addLayer(String, Layer, InputPreProcessor, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- addLayer(Layer) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Add layers to the net
Required if layers are removed.
- addLayer(String, Layer, String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Add a layer of the specified configuration to the computation graph
- addLayer(String, Layer, InputPreProcessor, String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Add a layer with a specified preprocessor
- addListeners(IterationListener...) - Method in interface org.deeplearning4j.nn.api.Model
-
This method ADDS additional IterationListener to existing listeners
- addListeners(IterationListener...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method ADDS additional IterationListener to existing listeners
- addListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
This method ADDS additional IterationListener to existing listeners
- addListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
This method ADDS additional IterationListener to existing listeners
- addListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
This method ADDS additional IterationListener to existing listeners
- addListeners(IterationListener...) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method ADDS additional IterationListener to existing listeners
- addNormalizerToModel(File, Normalizer<?>) - Static method in class org.deeplearning4j.util.ModelSerializer
-
This method appends normalizer to a given persisted model.
- addPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.CombinedMultiDataSetPreProcessor.Builder
-
- addPreProcessor(int, MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.CombinedMultiDataSetPreProcessor.Builder
-
Inserts the specified preprocessor at the specified position to the list of preprocessors to be applied
- addPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.CombinedPreProcessor.Builder
-
- addPreProcessor(int, DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.CombinedPreProcessor.Builder
-
- addPreProcessors(InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Add preprocessors automatically, given the specified types of inputs for the network.
- addRow(List<String>) - Method in class org.deeplearning4j.util.StringGrid
-
- addSourceIterator(DataSetIterator) - Method in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator.Builder
-
- addToConfusion(Integer, Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
Adds to the confusion matrix
- addVariable(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- addVertex(String, GraphVertex, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- addVertex(String, GraphVertex, String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Add a vertex of the given configuration to the computation graph
- adjustedrSquared(double, int, int) - Static method in class org.deeplearning4j.util.MathUtils
-
This calculates the adjusted r^2 including degrees of freedom.
- ALF - Variable in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- allDepleted - Variable in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- allFalse() - Method in class org.deeplearning4j.datasets.iterator.parallel.MultiBoolean
-
This method returns true if ALL states are false.
- allTrue() - Method in class org.deeplearning4j.datasets.iterator.parallel.MultiBoolean
-
This method returns true if ALL states are true.
- alpha - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- alpha - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- alpha(double) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- alpha - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- alpha(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
LRN scaling constant alpha.
- ancestor(int, Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the ancestor of the given tree
- appendTo(String, File) - Static method in class org.deeplearning4j.util.FileOperations
-
- appendToEach(String, int) - Method in class org.deeplearning4j.util.StringGrid
-
- appliedConfiguration - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- appliedNeuralNetConfiguration(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- appliedNeuralNetConfigurationBuilder() - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- applyDropConnect(Layer, String) - Static method in class org.deeplearning4j.util.Dropout
-
Apply drop connect to the given variable
- applyDropout(INDArray, double) - Static method in class org.deeplearning4j.util.Dropout
-
Apply dropout to the given input
and return the drop out mask used
- applyDropOutIfNecessary(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- applyDropOutIfNecessary(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- applyLearningRateScoreDecay() - Method in interface org.deeplearning4j.nn.api.Model
-
Update learningRate using for this model.
- applyLearningRateScoreDecay() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- applyLearningRateScoreDecay() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- applyLearningRateScoreDecay() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- applyLearningRateScoreDecay() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- applyLearningRateScoreDecay() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- applyLearningRateScoreDecay() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- applyLrDecayPolicy(LearningRatePolicy, int) - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
Apply learning rate decay, based on the configuration
- applyMask(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- applyMask(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- applyToComputationGraphConfiguration(ComputationGraphConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- applyToMultiLayerConfiguration(MultiLayerConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- applyToNeuralNetConfiguration(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- applyUpdate(StepFunction, INDArray, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray, double) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- ArchiveUtils - Class in org.deeplearning4j.util
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
-
- arrayToString(String[]) - Static method in class org.deeplearning4j.util.StringUtils
-
Given an array of strings, return a comma-separated list of its elements.
- asciify(String) - Method in class org.deeplearning4j.util.FingerPrintKeyer
-
- assertNInNOutSet(String, String, int, int, int) - Static method in class org.deeplearning4j.util.LayerValidation
-
Asserts that the layer nIn and nOut values are set for the layer
- AsyncDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
Async prefetching iterator wrapper for MultiDataSetIterator implementations
- AsyncDataSetIterator() - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator(DataSetIterator, int, BlockingQueue<DataSet>) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator(DataSetIterator, int) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator(DataSetIterator, int, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator(DataSetIterator, int, boolean, Integer) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator(DataSetIterator, int, boolean, DataSetCallback) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator(DataSetIterator, int, BlockingQueue<DataSet>, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator(DataSetIterator, int, BlockingQueue<DataSet>, boolean, DataSetCallback) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator(DataSetIterator, int, BlockingQueue<DataSet>, boolean, DataSetCallback, Integer) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- AsyncDataSetIterator.AsyncPrefetchThread - Class in org.deeplearning4j.datasets.iterator
-
- asyncIterators - Variable in class org.deeplearning4j.datasets.iterator.parallel.FileSplitParallelDataSetIterator
-
- asyncIterators - Variable in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator
-
- AsyncMultiDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
Async prefetching iterator wrapper for MultiDataSetIterator implementations
- AsyncMultiDataSetIterator() - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- AsyncMultiDataSetIterator(MultiDataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- AsyncMultiDataSetIterator(MultiDataSetIterator, int, BlockingQueue<MultiDataSet>) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- AsyncMultiDataSetIterator(MultiDataSetIterator, int) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- AsyncMultiDataSetIterator(MultiDataSetIterator, int, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- AsyncMultiDataSetIterator(MultiDataSetIterator, int, boolean, Integer) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- AsyncMultiDataSetIterator(MultiDataSetIterator, int, BlockingQueue<MultiDataSet>, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- AsyncMultiDataSetIterator(MultiDataSetIterator, int, BlockingQueue<MultiDataSet>, boolean, DataSetCallback) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- AsyncMultiDataSetIterator(MultiDataSetIterator, int, BlockingQueue<MultiDataSet>, boolean, DataSetCallback, Integer) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- AsyncMultiDataSetIterator.AsyncPrefetchThread - Class in org.deeplearning4j.datasets.iterator
-
- AsyncPrefetchThread(BlockingQueue<DataSet>, DataSetIterator, DataSet, MemoryWorkspace) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator.AsyncPrefetchThread
-
- AsyncPrefetchThread(BlockingQueue<MultiDataSet>, MultiDataSetIterator, MultiDataSet) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator.AsyncPrefetchThread
-
- AsyncShieldDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
This wrapper takes your existing DataSetIterator implementation and prevents asynchronous prefetch
- AsyncShieldDataSetIterator(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
- AsyncShieldMultiDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
This wrapper takes your existing MultiDataSetIterator implementation and prevents asynchronous prefetch
- AsyncShieldMultiDataSetIterator(MultiDataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.AsyncShieldMultiDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Does this DataSetIterator support asynchronous prefetching of multiple DataSet objects?
Most DataSetIterators do, but in some cases it may not make sense to wrap this iterator in an
iterator that does asynchronous prefetching.
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
Does this DataSetIterator support asynchronous prefetching of multiple DataSet objects?
Most DataSetIterators do, but in some cases it may not make sense to wrap this iterator in an
iterator that does asynchronous prefetching.
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Does this DataSetIterator support asynchronous prefetching of multiple DataSet objects?
PLEASE NOTE: This iterator ALWAYS returns FALSE
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldMultiDataSetIterator
-
/**
Does this DataSetIterator support asynchronous prefetching of multiple DataSet objects?
PLEASE NOTE: This iterator ALWAYS returns FALSE
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationMultiDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- atomicBoundary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- attachThread(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- AutoEncoder - Class in org.deeplearning4j.nn.conf.layers
-
Autoencoder.
- AutoEncoder - Class in org.deeplearning4j.nn.layers.feedforward.autoencoder
-
Autoencoder.
- AutoEncoder(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- AutoEncoder(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- AutoEncoder.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- averageAccuracy() - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- averagecorrelationR2() - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
Average R2 across all columns
- averageF1() - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- averageF1NumClassesExcluded() - Method in class org.deeplearning4j.eval.Evaluation
-
When calculating the (macro) average F1, how many classes are excluded from the average due to
no predictions – i.e., F1 would be calculated from a precision or recall of 0/0
- averageFBetaNumClassesExcluded() - Method in class org.deeplearning4j.eval.Evaluation
-
When calculating the (macro) average FBeta, how many classes are excluded from the average due to
no predictions – i.e., FBeta would be calculated from a precision or recall of 0/0
- averageMeanAbsoluteError() - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
Average MAE across all columns
- averageMeanSquaredError() - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
Average MSE across all columns
- averagePrecision() - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- averagePrecisionNumClassesExcluded() - Method in class org.deeplearning4j.eval.Evaluation
-
When calculating the (macro) average precision, how many classes are excluded from the average due to
no predictions – i.e., precision would be the edge case of 0/0
- averageRecall() - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- averageRecallNumClassesExcluded() - Method in class org.deeplearning4j.eval.Evaluation
-
When calculating the (macro) average Recall, how many classes are excluded from the average due to
no predictions – i.e., recall would be the edge case of 0/0
- averagerelativeSquaredError() - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
Average RSE across all columns
- averagerootMeanSquaredError() - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
Average RMSE across all columns
- backedIterator - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- backedIterator - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- backingQueue - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- backprop - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- backprop - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- backprop(boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Whether to do back prop (standard supervised learning) or not
- backprop(INDArray, int) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
Reverse the preProcess during backprop.
- backprop - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- backprop - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- backprop(boolean) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
Whether to do back prop or not
- backprop(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.BinomialSamplingPreProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanAndUnitVariancePreProcessor
-
- backprop(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanPrePreProcessor
-
- backprop() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate and set gradients for MultiLayerNetwork, based on OutputLayer and labels
- backprop - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- backpropGradient(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
Calculate the gradient relative to the error in the next layer
- backpropGradient(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the gradient of the network with respect to some external errors.
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- backpropGradient(INDArray, INDArray, INDArray, int[], int[], int[], INDArray, INDArray, IActivation, ConvolutionLayer.AlgoMode, ConvolutionLayer.BwdFilterAlgo, ConvolutionLayer.BwdDataAlgo, ConvolutionMode) - Method in interface org.deeplearning4j.nn.layers.convolution.ConvolutionHelper
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer
-
- backpropGradient(INDArray, INDArray, int[], int[], int[], PoolingType, ConvolutionMode) - Method in interface org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingHelper
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- backpropGradient(INDArray, INDArray, int[], INDArray, INDArray, INDArray, double) - Method in interface org.deeplearning4j.nn.layers.normalization.BatchNormalizationHelper
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- backpropGradient(INDArray, INDArray, double, double, double, double) - Method in interface org.deeplearning4j.nn.layers.normalization.LocalResponseNormalizationHelper
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- backpropGradient(NeuralNetConfiguration, IActivation, INDArray, INDArray, INDArray, INDArray, boolean, int, FwdPassReturn, boolean, String, String, String, Map<String, INDArray>, INDArray, boolean) - Method in interface org.deeplearning4j.nn.layers.recurrent.LSTMHelper
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- backpropGradient(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- backpropGradientHelper(NeuralNetConfiguration, IActivation, INDArray, INDArray, INDArray, INDArray, boolean, int, FwdPassReturn, boolean, String, String, String, Map<String, INDArray>, INDArray, boolean, LSTMHelper) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
- BackpropType - Enum in org.deeplearning4j.nn.conf
-
Defines the type of backpropagation.
- backpropType - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- backpropType - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- backpropType(BackpropType) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
The type of backprop.
- backpropType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- backpropType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- backpropType(BackpropType) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
The type of backprop.
- backpropType - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- BackTrackLineSearch - Class in org.deeplearning4j.optimize.solvers
-
- BackTrackLineSearch(Model, StepFunction, ConvexOptimizer) - Constructor for class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- BackTrackLineSearch(Model, ConvexOptimizer) - Constructor for class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- barrier - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- barrier - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- barrier - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- BaseConvBuilder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder() - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseCurve - Class in org.deeplearning4j.eval.curves
-
Abstract class for ROC and Precision recall curves
- BaseCurve() - Constructor for class org.deeplearning4j.eval.curves.BaseCurve
-
- BaseDataFetcher - Class in org.deeplearning4j.datasets.fetchers
-
A base class for assisting with creation of matrices
with the data applyTransformToDestination fetcher
- BaseDataFetcher() - Constructor for class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- BaseDatasetIterator - Class in org.deeplearning4j.datasets.iterator
-
Baseline implementation includes
control over the data fetcher and some basic
getters for metadata
- BaseDatasetIterator(int, int, BaseDataFetcher) - Constructor for class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- BaseEarlyStoppingTrainer<T extends Model> - Class in org.deeplearning4j.earlystopping.trainer
-
Base/abstract class for conducting early stopping training locally (single machine).
Can be used to train a
MultiLayerNetwork
or a
ComputationGraph
via early stopping
- BaseEarlyStoppingTrainer(EarlyStoppingConfiguration<T>, T, DataSetIterator, MultiDataSetIterator, EarlyStoppingListener<T>) - Constructor for class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- BaseEvaluation<T extends BaseEvaluation> - Class in org.deeplearning4j.eval
-
- BaseEvaluation() - Constructor for class org.deeplearning4j.eval.BaseEvaluation
-
- BaseGraphVertex - Class in org.deeplearning4j.nn.graph.vertex
-
BaseGraphVertex defines a set of common functionality for GraphVertex instances.
- BaseGraphVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- BaseHistogram - Class in org.deeplearning4j.eval.curves
-
Created by Alex on 06/07/2017.
- BaseHistogram() - Constructor for class org.deeplearning4j.eval.curves.BaseHistogram
-
- BaseInputPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
- BaseInputPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
-
- BaseLayer - Class in org.deeplearning4j.nn.conf.layers
-
A neural network layer.
- BaseLayer(BaseLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- BaseLayer<LayerConfT extends BaseLayer> - Class in org.deeplearning4j.nn.layers
-
A layer with parameters
- BaseLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.BaseLayer
-
- BaseLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.BaseLayer
-
- BaseLayer.Builder<T extends BaseLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- BaseMultiLayerUpdater<T extends Model> - Class in org.deeplearning4j.nn.updater
-
BaseMultiLayerUpdater - core functionality for applying updaters to MultiLayerNetwork and ComputationGraph.
- BaseMultiLayerUpdater(T) - Constructor for class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- BaseMultiLayerUpdater(T, INDArray) - Constructor for class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- BaseNetConfigDeserializer<T> - Class in org.deeplearning4j.nn.conf.serde
-
A custom (abstract) deserializer that handles backward compatibility (currently only for updater refactoring that
happened after 0.8.0).
- BaseNetConfigDeserializer(JsonDeserializer<?>, Class<T>) - Constructor for class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- BaseOptimizer - Class in org.deeplearning4j.optimize.solvers
-
Base optimizer
- BaseOptimizer(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- BaseOptimizer(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- BaseOutputLayer - Class in org.deeplearning4j.nn.conf.layers
-
- BaseOutputLayer(BaseOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
-
- BaseOutputLayer<LayerConfT extends BaseOutputLayer> - Class in org.deeplearning4j.nn.layers
-
Output layer with different objective
in co-occurrences for different objectives.
- BaseOutputLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- BaseOutputLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- BaseOutputLayer.Builder<T extends BaseOutputLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- BaseParallelDataSetIterator - Class in org.deeplearning4j.datasets.iterator.parallel
-
- BaseParallelDataSetIterator(int) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- BasePretrainNetwork - Class in org.deeplearning4j.nn.conf.layers
-
- BasePretrainNetwork(BasePretrainNetwork.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- BasePretrainNetwork<LayerConfT extends BasePretrainNetwork> - Class in org.deeplearning4j.nn.layers
-
Baseline class for any Neural Network used
as a layer in a deep network *
- BasePretrainNetwork(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- BasePretrainNetwork(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- BasePretrainNetwork.Builder<T extends BasePretrainNetwork.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- BaseRecurrentLayer - Class in org.deeplearning4j.nn.conf.layers
-
- BaseRecurrentLayer(BaseRecurrentLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
-
- BaseRecurrentLayer<LayerConfT extends BaseLayer> - Class in org.deeplearning4j.nn.layers.recurrent
-
- BaseRecurrentLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
- BaseRecurrentLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
- BaseRecurrentLayer.Builder<T extends BaseRecurrentLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- BaseSubsamplingBuilder(SubsamplingLayer.PoolingType, int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(SubsamplingLayer.PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(SubsamplingLayer.PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(SubsamplingLayer.PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BasicGradientsAccumulator - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This class provides accumulation for gradients for both input (i.e.
- BasicGradientsAccumulator(int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
Creates new GradientsAccumulator with starting threshold of 1e-3
- BasicGradientsAccumulator(int, MessageHandler) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
Creates new GradientsAccumulator with custom starting threshold
- batch() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Batch size
- batch() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Batch size
- batch() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Batch size
- batch - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- batch - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
Batch size
- batch() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
Batch size
- batch() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- batch() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- batchedDS - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- BatchNormalization - Class in org.deeplearning4j.nn.conf.layers
-
Batch normalization configuration
- BatchNormalization - Class in org.deeplearning4j.nn.layers.normalization
-
Batch normalization layer.
- BatchNormalization(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- BatchNormalization.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- BatchNormalizationHelper - Interface in org.deeplearning4j.nn.layers.normalization
-
Helper for the batch normalization layer.
- BatchNormalizationParamInitializer - Class in org.deeplearning4j.nn.params
-
Batch normalization variable init
- BatchNormalizationParamInitializer() - Constructor for class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- batchSize() - Method in interface org.deeplearning4j.nn.api.Model
-
The current inputs batch size
- batchSize() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- batchSize() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- batchSize() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- batchSize() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- batchSize() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- batchSize() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
The batch size for the optimizer
- batchSize() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- BenchmarkDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
-
Dataset iterator for simulated inputs, or input derived from a DataSet example.
- BenchmarkDataSetIterator(int[], int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- BenchmarkDataSetIterator(DataSet, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- BenchmarkMultiDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
-
MultiDataset iterator for simulated inputs, or input derived from a MultiDataSet example.
- BenchmarkMultiDataSetIterator(int[][], int[], int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
- BenchmarkMultiDataSetIterator(MultiDataSet, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
- BernoulliReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
-
Bernoulli reconstruction distribution for variational autoencoder.
Outputs are modelled by a Bernoulli distribution - i.e., the Bernoulli distribution should be used for binary data (all
values 0 or 1); the VAE models the probability of the output being 0 or 1.
Consequently, the sigmoid activation function should be used to bound activations to the range of 0 to 1.
- BernoulliReconstructionDistribution() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
Create a BernoulliReconstructionDistribution with the default Sigmoid activation function
- BernoulliReconstructionDistribution(String) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- BernoulliReconstructionDistribution(Activation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- BernoulliReconstructionDistribution(IActivation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- bernoullis(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
This will return the bernoulli trial for the given event.
- BestScoreEpochTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Created by Sadat Anwar on 3/26/16.
- BestScoreEpochTerminationCondition(double) - Constructor for class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
-
- BestScoreEpochTerminationCondition(double, boolean) - Constructor for class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
-
- beta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- beta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- beta(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- beta - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- beta(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
Scaling constant beta.
- BETA - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- BIAS_KEY_BACKWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- BIAS_KEY_FORWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- BIAS_KEY_SUFFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- biasInit - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- biasInit - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- biasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- biasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- biasInit - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- biasInit(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Constant for bias initialization.
- biasInit - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- biasLearningRate - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- biasLearningRate - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- biasLearningRate(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Bias learning rate.
- biasLearningRate(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Bias learning rate.
- biasLearningRate - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- biasLearningRate(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Bias learning rate.
- biasLearningRate - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- BinaryClassificationResult - Class in org.deeplearning4j.nn.simple.binary
-
Created by agibsonccc on 4/28/17.
- BinaryClassificationResult() - Constructor for class org.deeplearning4j.nn.simple.binary.BinaryClassificationResult
-
- binaryDecisionThreshold - Variable in class org.deeplearning4j.eval.Evaluation
-
- binomial(RandomGenerator, int, double) - Static method in class org.deeplearning4j.util.MathUtils
-
Generates a binomial distributed number using
the given rng
- BinomialDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
A binomial distribution.
- BinomialDistribution(int, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
Create a distribution
- BinomialSamplingPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
Binomial sampling pre processor
- BinomialSamplingPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.BinomialSamplingPreProcessor
-
- bitmapMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- boundary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- boundary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- boundary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- broadcastUpdates(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- broadcastUpdates(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.LocalHandler
-
- broadcastUpdates(INDArray) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.MessageHandler
-
This method does broadcast of given update message across network
- buffer - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- buffer - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- buffer - Static variable in class org.deeplearning4j.util.OneTimeLogger
-
- bufferSizePerDevice - Variable in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator
-
- build() - Method in class org.deeplearning4j.datasets.iterator.CombinedMultiDataSetPreProcessor.Builder
-
- build() - Method in class org.deeplearning4j.datasets.iterator.CombinedPreProcessor.Builder
-
- build() - Method in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator.Builder
-
- build() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Create the early stopping configuration
- build() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Create the ComputationGraphConfiguration from the Builder pattern
- build() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.LSTM.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.OutputLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.RBM.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Return a configuration based on this builder
- build() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
Build the multi layer network
based on this neural network and
overr ridden parameters
- build() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Returns a model with the fine tune configuration and specified architecture changes.
- build() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Returns a computation graph build to specifications.
- build() - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method returns configured PerformanceListener instance
- build() - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- build() - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- Builder() - Constructor for class org.deeplearning4j.datasets.iterator.CombinedMultiDataSetPreProcessor.Builder
-
- Builder() - Constructor for class org.deeplearning4j.datasets.iterator.CombinedPreProcessor.Builder
-
- Builder(InequalityHandling) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator.Builder
-
- Builder(List<DataSetIterator>, InequalityHandling) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator.Builder
-
- Builder() - Constructor for class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
- Builder(double) - Constructor for class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
- Builder(double, boolean) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder(double, double) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder(double, double, boolean) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder(boolean) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- Builder(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.DenseLayer.Builder
-
- Builder(double) - Constructor for class org.deeplearning4j.nn.conf.layers.DropoutLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
- Builder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- Builder(double, double, double) - Constructor for class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LSTM.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.OutputLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.OutputLayer.Builder
-
- Builder(RBM.HiddenUnit, RBM.VisibleUnit) - Constructor for class org.deeplearning4j.nn.conf.layers.RBM.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.RBM.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(PoolingType, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(PoolingType, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer.Builder
-
- Builder(int, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer.Builder
-
- Builder(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer.Builder
-
- Builder(String, Class<?>, InputType, InputType) - Constructor for class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- Builder(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- Builder(MultiLayerNetwork) - Constructor for class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Multilayer Network to tweak for transfer learning
- Builder() - Constructor for class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
- Builder() - Constructor for class org.deeplearning4j.optimize.Solver.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
This
- bypassMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- bypassMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- byteDesc(long) - Static method in class org.deeplearning4j.util.StringUtils
-
Return an abbreviated English-language desc of the byte length
- byteToHexString(byte[], int, int) - Static method in class org.deeplearning4j.util.StringUtils
-
Given an array of bytes it will convert the bytes to a hex string
representation of the bytes
- byteToHexString(byte[]) - Static method in class org.deeplearning4j.util.StringUtils
-
Same as byteToHexString(bytes, 0, bytes.length).
- ByteUtil - Class in org.deeplearning4j.util
-
- CACHE_MODE_ALL_ZEROS - Static variable in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
A simple Map containing all zeros for each CacheMode key
- cachedFwdPass - Variable in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- cachedFwdPass - Variable in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- cachedPassBackward - Variable in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- cachedPassForward - Variable in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- cacheMemory(long, long) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
Reports the cached/cacheable memory requirements.
- cacheMemory(Map<CacheMode, Long>, Map<CacheMode, Long>) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
Reports the cached/cacheable memory requirements.
- CacheMode - Enum in org.deeplearning4j.nn.conf
-
- cacheMode - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- cacheMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- cacheMode(CacheMode) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
This method defines how/if preOutput cache is handled:
NONE: cache disabled (default value)
HOST: Host memory will be used
DEVICE: GPU memory will be used (on CPU backends effect will be the same as for HOST)
- cacheMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- cacheMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- cacheMode(CacheMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
This method defines how/if preOutput cache is handled:
NONE: cache disabled (default value)
HOST: Host memory will be used
DEVICE: GPU memory will be used (on CPU backends effect will be the same as for HOST)
- cacheMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- cacheMode - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- cacheMode - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- cacheModeMapFor(long) - Static method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get a map of CacheMode with all keys associated with the specified value
- calcBackpropGradients(boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Do backprop (gradient calculation)
- calcBackpropGradients(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate gradients and errors.
- calcGradient(Gradient, INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- calcGradient(Gradient, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- calcL1(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
-
Calculate the l1 regularization term
0.0 if regularization is not used.
- calcL1() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the L1 regularization term for all layers in the entire network.
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- calcL1(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- calcL2(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
-
Calculate the l2 regularization term
0.0 if regularization is not used.
- calcL2() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the L2 regularization term for all layers in the entire network.
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- calcL2(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- calculateArea() - Method in class org.deeplearning4j.eval.curves.BaseCurve
-
- calculateArea(double[], double[]) - Method in class org.deeplearning4j.eval.curves.BaseCurve
-
- calculateAUC() - Method in class org.deeplearning4j.eval.curves.RocCurve
-
Calculate and return the area under ROC curve
- calculateAUC() - Method in class org.deeplearning4j.eval.ROC
-
Calculate the AUROC - Area Under ROC Curve
Utilizes trapezoidal integration internally
- calculateAUC(int) - Method in class org.deeplearning4j.eval.ROCBinary
-
Calculate the AUC - Area Under (ROC) Curve
Utilizes trapezoidal integration internally
- calculateAUC(int) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Calculate the AUC - Area Under ROC Curve
Utilizes trapezoidal integration internally
- calculateAUCPR() - Method in class org.deeplearning4j.eval.ROC
-
Calculate the area under the precision/recall curve - aka AUCPR
- calculateAUCPR(int) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Calculate the AUPRC - Area Under Curve Precision Recall
Utilizes trapezoidal integration internally
- calculateAUPRC() - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- calculateAverageAuc() - Method in class org.deeplearning4j.eval.ROCBinary
-
Macro-average AUC for all outcomes
- calculateAverageAUC() - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Calculate the macro-average (one-vs-all) AUC for all classes
- calculateScore(MultiLayerNetwork) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
- calculateScore(ComputationGraph) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
-
- calculateScore(T) - Method in interface org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator
-
Calculate the score for the given MultiLayerNetwork
- call(DataSet) - Method in interface org.deeplearning4j.datasets.iterator.callbacks.DataSetCallback
-
- call(MultiDataSet) - Method in interface org.deeplearning4j.datasets.iterator.callbacks.DataSetCallback
-
- call(File) - Method in class org.deeplearning4j.datasets.iterator.callbacks.DataSetDeserializer
-
- call(DataSet) - Method in class org.deeplearning4j.datasets.iterator.callbacks.DefaultCallback
-
- call(MultiDataSet) - Method in class org.deeplearning4j.datasets.iterator.callbacks.DefaultCallback
-
- call(File) - Method in interface org.deeplearning4j.datasets.iterator.callbacks.FileCallback
-
- call(DataSet) - Method in class org.deeplearning4j.datasets.iterator.callbacks.InterleavedDataSetCallback
-
- call(MultiDataSet) - Method in class org.deeplearning4j.datasets.iterator.callbacks.InterleavedDataSetCallback
-
- call(EvaluativeListener, Model, long, IEvaluation[]) - Method in interface org.deeplearning4j.optimize.listeners.callbacks.EvaluationCallback
-
- call(EvaluativeListener, Model, long, IEvaluation[]) - Method in class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
- callback - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- callback - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- callback - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
This callback will be invoked after evaluation finished
- candidates - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- canDoBackward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex can do backward pass.
- canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- canDoForward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- canDoForward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex can do forward pass.
- CENTER_KEY - Static variable in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- CenterLossOutputLayer - Class in org.deeplearning4j.nn.conf.layers
-
Center loss is similar to triplet loss except that it enforces
intraclass consistency and doesn't require feed forward of multiple
examples.
- CenterLossOutputLayer(CenterLossOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- CenterLossOutputLayer - Class in org.deeplearning4j.nn.layers.training
-
Center loss is similar to triplet loss except that it enforces
intraclass consistency and doesn't require feed forward of multiple
examples.
- CenterLossOutputLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- CenterLossOutputLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- CenterLossOutputLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- CenterLossParamInitializer - Class in org.deeplearning4j.nn.params
-
Initialize Center Loss params.
- CenterLossParamInitializer() - Constructor for class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
Check backprop gradients for a MultiLayerNetwork.
- checkGradients(ComputationGraph, double, double, double, boolean, boolean, INDArray[], INDArray[]) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
Check backprop gradients for a ComputationGraph
- checkGradientsPretrainLayer(Layer, double, double, double, boolean, boolean, INDArray, int) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
Check backprop gradients for a pretrain layer
NOTE: gradient checking pretrain layers can be difficult...
- checkSupported() - Method in interface org.deeplearning4j.nn.layers.convolution.ConvolutionHelper
-
- checkSupported() - Method in interface org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingHelper
-
- checkSupported(double) - Method in interface org.deeplearning4j.nn.layers.normalization.BatchNormalizationHelper
-
- checkSupported(double, double, double, double) - Method in interface org.deeplearning4j.nn.layers.normalization.LocalResponseNormalizationHelper
-
- checkSupported(IActivation, IActivation, boolean) - Method in interface org.deeplearning4j.nn.layers.recurrent.LSTMHelper
-
- checkTerminalConditions(INDArray, double, double, int) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Check termination conditions
setup a search state
- checkTerminalConditions(INDArray, double, double, int) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- children() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- choleskyFromMatrix(RealMatrix) - Method in class org.deeplearning4j.util.MathUtils
-
This will return the cholesky decomposition of
the given matrix
- clamp(int, int, int) - Static method in class org.deeplearning4j.util.MathUtils
-
Clamps the value to a discrete value
- classCount(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the number of times the given label
has actually occurred
- Classifier - Interface in org.deeplearning4j.nn.api
-
A classifier (this is for supervised learning)
- clear() - Method in interface org.deeplearning4j.nn.api.Model
-
Clear input
- clear() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- clear() - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Clear residual parameters (useful for returning a gradient and then clearing old objects)
- clear() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clear() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- clear() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Clear the internal state (if any) of the GraphVertex.
- clear() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- clear() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Clear the inputs.
- clear() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- clear() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- clear() - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Removes all of the mappings from this map (optional operation).
- clear() - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Removes all of the elements from this applyTransformToDestination (optional operation).
- clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- clearLayersStates() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method just makes sure there's no state preserved within layers
- clearLayersStates() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method just makes sure there's no state preserved within layers
- clearVariables() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- clearVertex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- clearVertex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
This method clears inpjut for this vertex
- clone() - Method in class org.deeplearning4j.eval.ROC.CountsForThreshold
-
- clone() - Method in interface org.deeplearning4j.nn.api.Layer
-
Clone the layer
- clone() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- clone() - Method in class org.deeplearning4j.nn.conf.distribution.Distribution
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- clone() - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Creates and returns a deep copy of the configuration.
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.stepfunctions.StepFunction
-
- clone() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clone() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- clone() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- clone() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- clone() - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- clone() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Clones the multilayernetwork
- clone() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- clusterColumn(int) - Method in class org.deeplearning4j.util.StringGrid
-
- CnnToFeedForwardPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, CNN -> Denselayer
This does two things:
(b) Reshapes 4d activations out of CNN layer, with shape
[numExamples, numChannels, inputHeight, inputWidth]) into 2d activations (with shape
[numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer
(a) Reshapes epsilons (weights*deltas) out of FeedFoward layer (which is 2D or 3D with shape
[numExamples, inputHeight*inputWidth*numChannels]) into 4d epsilons (with shape
[numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
Note: numChannels is equivalent to depth or featureMaps referenced in different literature
- CnnToFeedForwardPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- CnnToFeedForwardPreProcessor(int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- CnnToFeedForwardPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- CnnToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and RNN layers to be used together.
For example, ConvolutionLayer -> GravesLSTM
Functionally equivalent to combining CnnToFeedForwardPreProcessor + FeedForwardToRnnPreProcessor
Specifically, this does two things:
(a) Reshape 4d activations out of CNN layer, with shape [timeSeriesLength*miniBatchSize, numChannels, inputHeight, inputWidth])
into 3d (time series) activations (with shape [numExamples, inputHeight*inputWidth*numChannels, timeSeriesLength])
for use in RNN layers
(b) Reshapes 3d epsilons (weights.*deltas) out of RNN layer (with shape
[miniBatchSize,inputHeight*inputWidth*numChannels,timeSeriesLength]) into 4d epsilons with shape
[miniBatchSize*timeSeriesLength, numChannels, inputHeight, inputWidth] suitable to feed into CNN layers.
- CnnToRnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- collapseDimensions(boolean) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
Whether to collapse dimensions when pooling or not.
- CollectScoresIterationListener - Class in org.deeplearning4j.optimize.listeners
-
CollectScoresIterationListener simply stores the model scores internally (along with the iteration) every 1 or N
iterations (this is configurable).
- CollectScoresIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Constructor for collecting scores with default saving frequency of 1
- CollectScoresIterationListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Constructor for collecting scores with the specified frequency.
- combination(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the combination of n choose r
- combineColumns(int, Integer[]) - Method in class org.deeplearning4j.util.StringGrid
-
Combine the column based on a template and a number of template variable
columns.
- combineColumns(int, int[]) - Method in class org.deeplearning4j.util.StringGrid
-
Combine the column based on a template and a number of template variable
columns.
- CombinedMultiDataSetPreProcessor - Class in org.deeplearning4j.datasets.iterator
-
Combines various multidataset preprocessors
Applied in the order they are specified to in the builder
- CombinedMultiDataSetPreProcessor.Builder - Class in org.deeplearning4j.datasets.iterator
-
- CombinedPreProcessor - Class in org.deeplearning4j.datasets.iterator
-
This is special preProcessor, that allows to combine multiple prerpocessors, and apply them to data sequentially.
- CombinedPreProcessor.Builder - Class in org.deeplearning4j.datasets.iterator
-
- COMMA - Static variable in class org.deeplearning4j.util.StringUtils
-
- compare(Map<String, Integer>, Map<String, Integer>) - Method in class org.deeplearning4j.util.StringCluster.SizeComparator
-
- ComposableInputPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
Composable input pre processor
- ComposableInputPreProcessor(InputPreProcessor...) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- ComposableIterationListener - Class in org.deeplearning4j.optimize.listeners
-
A group of listeners
- ComposableIterationListener(IterationListener...) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
- ComposableIterationListener(Collection<IterationListener>) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
- CompositeReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
-
CompositeReconstructionDistribution is a reconstruction distribution built from multiple other ReconstructionDistribution
instances.
The typical use is to combine for example continuous and binary data in the same model, or to combine different
distributions for continuous variables.
- CompositeReconstructionDistribution(int[], ReconstructionDistribution[], int) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- CompositeReconstructionDistribution.Builder - Class in org.deeplearning4j.nn.conf.layers.variational
-
- compressor - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- ComputationGraph - Class in org.deeplearning4j.nn.graph
-
A ComputationGraph network is a neural network with arbitrary (directed acyclic graph) connection structure.
- ComputationGraph(ComputationGraphConfiguration) - Constructor for class org.deeplearning4j.nn.graph.ComputationGraph
-
- ComputationGraphConfiguration - Class in org.deeplearning4j.nn.conf
-
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
- ComputationGraphConfiguration() - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- ComputationGraphConfiguration.GraphBuilder - Class in org.deeplearning4j.nn.conf
-
- ComputationGraphConfigurationDeserializer - Class in org.deeplearning4j.nn.conf.serde
-
- ComputationGraphConfigurationDeserializer(JsonDeserializer<?>) - Constructor for class org.deeplearning4j.nn.conf.serde.ComputationGraphConfigurationDeserializer
-
- ComputationGraphUpdater - Class in org.deeplearning4j.nn.updater.graph
-
Gradient updater for ComputationGraph.
- ComputationGraphUpdater(ComputationGraph) - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- ComputationGraphUpdater(ComputationGraph, INDArray) - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- computationGraphUpdater - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- ComputationGraphUtil - Class in org.deeplearning4j.nn.graph.util
-
- computeGradientAndScore() - Method in interface org.deeplearning4j.nn.api.Model
-
Update the score
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- computeLossFunctionScoreArray(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- computeScore(double, double, boolean) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
Compute score after labels and input have been set.
- computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Compute score after labels and input have been set.
- computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Compute score after labels and input have been set.
- computeScore(double, double, boolean) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
Compute score after labels and input have been set.
- computeScoreForExamples(double, double) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, double) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeZ(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
* Compute input linear transformation (z) of the output layer
- computeZ(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- concurrentSkipListSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
-
- conf() - Method in interface org.deeplearning4j.nn.api.Model
-
The configuration for the neural network
- conf() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- conf - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- conf() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- conf() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- conf - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- conf() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- conf() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- conf - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- configuration - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- confs(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- Confusion() - Constructor for class org.deeplearning4j.eval.curves.PrecisionRecallCurve.Confusion
-
- confusion - Variable in class org.deeplearning4j.eval.Evaluation
-
- ConfusionMatrix<T extends Comparable<? super T>> - Class in org.deeplearning4j.eval
-
- ConfusionMatrix(List<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
-
Creates an empty confusion Matrix
- ConfusionMatrix() - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
-
- ConfusionMatrix(ConfusionMatrix<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
-
Creates a new ConfusionMatrix initialized with the contents of another ConfusionMatrix.
- ConfusionMatrixDeserializer - Class in org.deeplearning4j.eval.serde
-
A JSON deserializer for
ConfusionMatrix<Integer>
instances, used in
Evaluation
- ConfusionMatrixDeserializer() - Constructor for class org.deeplearning4j.eval.serde.ConfusionMatrixDeserializer
-
- confusionMatrixMetaData - Variable in class org.deeplearning4j.eval.Evaluation
-
- ConfusionMatrixSerializer - Class in org.deeplearning4j.eval.serde
-
A JSON serializer for
ConfusionMatrix<Integer>
instances, used in
Evaluation
- ConfusionMatrixSerializer() - Constructor for class org.deeplearning4j.eval.serde.ConfusionMatrixSerializer
-
- confusionToString() - Method in class org.deeplearning4j.eval.Evaluation
-
Get a String representation of the confusion matrix
- ConjugateGradient - Class in org.deeplearning4j.optimize.solvers
-
Originally based on cc.mallet.optimize.ConjugateGradient
Rewritten based on Conjugate Gradient algorithm in Bengio et al.,
Deep Learning (in preparation) Ch8.
- ConjugateGradient(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.ConjugateGradient
-
- ConjugateGradient(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.ConjugateGradient
-
- connect(List<Tree>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Connects the given trees
and sets the parents of the children
- consumeOnce(DataSet, boolean) - Method in class org.deeplearning4j.util.TestDataSetConsumer
-
This method consumes single DataSet, and spends delay time simulating execution of this dataset
- consumers - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- consumeWhileHasNext(boolean) - Method in class org.deeplearning4j.util.TestDataSetConsumer
-
This method cycles through iterator, whie iterator.hasNext() returns true.
- contains(Object) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- contains(Object) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- contains(K, T) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
- contains(Object) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Returns true if this applyTransformToDestination contains the specified element.
- contains(K, V) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
- containsAll(Collection<?>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- containsAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- containsAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Returns true if this applyTransformToDestination contains all of the elements of the
specified collection.
- containsKey(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Returns true if this map contains a mapping for the specified
key.
- containsValue(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Returns true if this map maps one or more keys to the
specified value.
- contrastiveDivergence() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- ConvexOptimizer - Interface in org.deeplearning4j.optimize.api
-
Convex optimizer.
- Convolution1DLayer - Class in org.deeplearning4j.nn.conf.layers
-
1D (temporal) convolutional layer.
- Convolution1DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
1D (temporal) convolutional layer.
- Convolution1DLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- Convolution1DLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- Convolution1DLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- convolutional(int, int, int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
Input type for convolutional (CNN) data, that is 4d with shape [miniBatchSize, depth, height, width].
- convolutionalFlat(int, int, int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
Input type for convolutional (CNN) data, where the data is in flattened (row vector) format.
- ConvolutionHelper - Interface in org.deeplearning4j.nn.layers.convolution
-
Helper for the convolution layer.
- ConvolutionLayer - Class in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer(ConvolutionLayer.BaseConvBuilder<?>) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
ConvolutionLayer
nIn in the input layer is the number of channels
nOut is the number of filters to be used in the net or in other words the depth
The builder specifies the filter/kernel size, the stride and padding
The pooling layer takes the kernel size
- ConvolutionLayer - Class in org.deeplearning4j.nn.layers.convolution
-
Convolution layer
- ConvolutionLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- ConvolutionLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- ConvolutionLayer.AlgoMode - Enum in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.BaseConvBuilder<T extends ConvolutionLayer.BaseConvBuilder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.BwdDataAlgo - Enum in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.BwdFilterAlgo - Enum in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.FwdAlgo - Enum in org.deeplearning4j.nn.conf.layers
-
- ConvolutionMode - Enum in org.deeplearning4j.nn.conf
-
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided:
Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension:
outputSize = (inputSize - kernelSize + 2*padding) / stride + 1.
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Set the convolution mode for the Convolution layer.
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- convolutionMode - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- ConvolutionParamInitializer - Class in org.deeplearning4j.nn.params
-
Initialize convolution params.
- ConvolutionParamInitializer() - Constructor for class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- ConvolutionUtils - Class in org.deeplearning4j.util
-
Convolutional shape utilities
- coordSplit(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the coordinate split in a list of coordinates
such that the values for ret[0] are the x values
and ret[1] are the y values
- coordSplit(List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the coordinate split in a list of coordinates
such that the values for ret[0] are the x values
and ret[1] are the y values
- correlation(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
Returns the correlation coefficient of two double vectors.
- correlationR2(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- corruptionLevel(double) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
- corruptionLevel - Variable in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- costArray - Variable in class org.deeplearning4j.eval.Evaluation
-
- counter - Variable in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- CountsForThreshold(double) - Constructor for class org.deeplearning4j.eval.ROC.CountsForThreshold
-
- createAppendingOutputStream(File) - Static method in class org.deeplearning4j.util.FileOperations
-
- createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createBias(int, double, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createCenterLossMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- createDistribution(Distribution) - Static method in class org.deeplearning4j.nn.conf.distribution.Distributions
-
- createGradient(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- createInputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
Creates a feature vector
- createOutputMatrix(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- createOutputVector(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
Creates an output label matrix
- createStepFunction(StepFunction) - Static method in class org.deeplearning4j.optimize.stepfunctions.StepFunctions
-
- createVisibleBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createWeightMatrix(int, int, WeightInit, Distribution, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- cudnnAlgoMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
- cudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
- cudnnAlgoMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
- cudnnBwdDataAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnBwdDataAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- cudnnBwdDataMode(ConvolutionLayer.BwdDataAlgo) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnBwdFilterAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnBwdFilterAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- cudnnBwdFilterMode(ConvolutionLayer.BwdFilterAlgo) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnFwdAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnFwdAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- cudnnFwdMode(ConvolutionLayer.FwdAlgo) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- curr - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- currentConsumers - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- currentConsumers - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- currentStep - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- currentThreshold - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- cursor - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- cursor() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
The current cursor if applicable
- cursor() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
The current cursor if applicable
- cursor() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
The current cursor if applicable
- cursor() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- cursor() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
-
Deprecated.
Direct access to a number represenative of iterating through a dataset
- cursor() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
The current cursor if applicable
- cursor() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
The current cursor if applicable
- cursor() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- cursor() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- CUSTOM_FUNCTIONALITY - Static variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
System property for custom layers, preprocessors, graph vertices etc.
- dampingFactor - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- DataSetCallback - Interface in org.deeplearning4j.datasets.iterator.callbacks
-
- DataSetDeserializer - Class in org.deeplearning4j.datasets.iterator.callbacks
-
This callback does DataSet deserialization of a given file.
- DataSetDeserializer() - Constructor for class org.deeplearning4j.datasets.iterator.callbacks.DataSetDeserializer
-
- DataSetFetcher - Interface in org.deeplearning4j.datasets.iterator
-
- DataSetLossCalculator - Class in org.deeplearning4j.earlystopping.scorecalc
-
Given a DataSetIterator: calculate the total loss for the model on that data set.
- DataSetLossCalculator(DataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
Calculate the score (loss function value) on a given data set (usually a test set)
- DataSetLossCalculatorCG - Class in org.deeplearning4j.earlystopping.scorecalc
-
Given a DataSetIterator: calculate
the total loss for the model on that data set.
- DataSetLossCalculatorCG(DataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
-
Calculate the score (loss function value) on a given data set (usually a test set)
- DataSetLossCalculatorCG(MultiDataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
-
Calculate the score (loss function value) on a given data set (usually a test set)
- decay - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- decay(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
At test time: we can use a global estimate of the mean and variance, calculated using a moving average
of the batch means/variances.
- decay - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- decode(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- decode(INDArray) - Method in class org.deeplearning4j.util.Viterbi
-
Decodes the given labels, assuming its a binary label matrix
- decode(INDArray, boolean) - Method in class org.deeplearning4j.util.Viterbi
-
Decodes a series of labels
- DECODER_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- decoderLayerSizes(int...) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Size of the decoder layers, in units.
- decoderLayerSizes - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- decodeUpdates(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
Deprecated.
- dedupeByCluster(int) - Method in class org.deeplearning4j.util.StringGrid
-
Deduplicate based on the column clustering signature
- dedupeByClusterAll() - Method in class org.deeplearning4j.util.StringGrid
-
- DeepLearningException - Exception in org.deeplearning4j.exception
-
- DeepLearningException() - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DeepLearningException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DeepLearningException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DeepLearningException(String) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DeepLearningException(Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DeepLearningIOUtil - Class in org.deeplearning4j.util
-
- DEFAULT_EDGE_VALUE - Static variable in class org.deeplearning4j.eval.Evaluation
-
- DEFAULT_EDGE_VALUE - Static variable in class org.deeplearning4j.eval.EvaluationBinary
-
- DEFAULT_EPS - Static variable in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- DEFAULT_FLATTENING_ORDER - Static variable in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- DEFAULT_FORMAT_PREC - Static variable in class org.deeplearning4j.eval.curves.BaseCurve
-
- DEFAULT_HISTOGRAM_NUM_BINS - Static variable in class org.deeplearning4j.eval.EvaluationCalibration
-
- DEFAULT_PATTERN - Static variable in class org.deeplearning4j.datasets.iterator.parallel.FileSplitParallelDataSetIterator
-
- DEFAULT_PRECISION - Static variable in class org.deeplearning4j.eval.EvaluationBinary
-
- DEFAULT_PRECISION - Static variable in class org.deeplearning4j.eval.RegressionEvaluation
-
- DEFAULT_RELIABILITY_DIAG_NUM_BINS - Static variable in class org.deeplearning4j.eval.EvaluationCalibration
-
- DEFAULT_STATS_PRECISION - Static variable in class org.deeplearning4j.eval.ROCBinary
-
- DEFAULT_STATS_PRECISION - Static variable in class org.deeplearning4j.eval.ROCMultiClass
-
- DEFAULT_WEIGHT_INIT_ORDER - Static variable in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Default order for the arrays created by WeightInitUtil.
- DefaultCallback - Class in org.deeplearning4j.datasets.iterator.callbacks
-
This callback ensures that memory on device is up-to-date with host memory.
- DefaultCallback() - Constructor for class org.deeplearning4j.datasets.iterator.callbacks.DefaultCallback
-
- defaultConfiguration - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- defaultConfiguration - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- defaultDeserializer - Variable in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- DefaultGradient - Class in org.deeplearning4j.nn.gradient
-
Default gradient implementation.
- DefaultGradient() - Constructor for class org.deeplearning4j.nn.gradient.DefaultGradient
-
- DefaultGradient(INDArray) - Constructor for class org.deeplearning4j.nn.gradient.DefaultGradient
-
- DefaultParamInitializer - Class in org.deeplearning4j.nn.params
-
Static weight initializer with just a weight matrix and a bias
- DefaultParamInitializer() - Constructor for class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- DefaultStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Default step function
- DefaultStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
-
- DefaultStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
-
Default step function
- DefaultStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
-
- DenseLayer - Class in org.deeplearning4j.nn.conf.layers
-
Dense layer: fully connected feed forward layer trainable by backprop.
- DenseLayer - Class in org.deeplearning4j.nn.layers.feedforward.dense
-
- DenseLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- DenseLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- DenseLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- depth() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Finds the depth of the tree.
- depth(Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the distance between this node
and the specified subnode
- derivativeActivation(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
- derivativeActivation(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
Deprecated.
- derivativeActivation(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- derivativeActivation(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- derivativeActivation(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.eval.serde.ConfusionMatrixDeserializer
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.nn.conf.distribution.serde.LegacyDistributionDeserializer
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.nn.conf.serde.ComputationGraphConfigurationDeserializer
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.nn.conf.serde.MultiLayerConfigurationDeserializer
-
- determinationCoefficient(double[], double[], int) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the determination coefficient of two vectors given a length
- deviceId - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- deviceId - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- difference(Collection<? extends T>, Collection<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
-
Return is s1 \ s2
- dimension - Variable in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- discretize(double, double, double, int) - Static method in class org.deeplearning4j.util.MathUtils
-
Discretize the given value
- DiskBasedQueue<E> - Class in org.deeplearning4j.util
-
Naive disk based queue for storing items on disk.
- DiskBasedQueue() - Constructor for class org.deeplearning4j.util.DiskBasedQueue
-
- DiskBasedQueue(String) - Constructor for class org.deeplearning4j.util.DiskBasedQueue
-
- DiskBasedQueue(File) - Constructor for class org.deeplearning4j.util.DiskBasedQueue
-
- dist - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- dist(Distribution) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Distribution to sample initial weights from.
- dist - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- dist(Distribution) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Distribution to sample initial weights from.
- dist - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- dist(Distribution) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Distribution to sample initial weights from.
- dist - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- distanceFinderZValue(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This will translate a vector in to an equivalent integer
- Distribution - Class in org.deeplearning4j.nn.conf.distribution
-
An abstract distribution.
- Distribution() - Constructor for class org.deeplearning4j.nn.conf.distribution.Distribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- distributionInputSize(int) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Get the number of distribution parameters for the given input data size.
- Distributions - Class in org.deeplearning4j.nn.conf.distribution
-
Static method for instantiating an nd4j distribution from a configuration object.
- DL4JException - Exception in org.deeplearning4j.exception
-
Base exception for DL4J
- DL4JException() - Constructor for exception org.deeplearning4j.exception.DL4JException
-
- DL4JException(String) - Constructor for exception org.deeplearning4j.exception.DL4JException
-
- DL4JException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JException
-
- DL4JException(Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JException
-
- DL4JInvalidConfigException - Exception in org.deeplearning4j.exception
-
Exception signifying that the specified configuration is invalid
- DL4JInvalidConfigException() - Constructor for exception org.deeplearning4j.exception.DL4JInvalidConfigException
-
- DL4JInvalidConfigException(String) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidConfigException
-
- DL4JInvalidConfigException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidConfigException
-
- DL4JInvalidConfigException(Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidConfigException
-
- DL4JInvalidInputException - Exception in org.deeplearning4j.exception
-
DL4J Exception thrown when invalid input is provided (wrong rank, wrong size, etc)
- DL4JInvalidInputException() - Constructor for exception org.deeplearning4j.exception.DL4JInvalidInputException
-
- DL4JInvalidInputException(String) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidInputException
-
- DL4JInvalidInputException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidInputException
-
- DL4JInvalidInputException(Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidInputException
-
- Dl4jReflection - Class in org.deeplearning4j.util
-
- DL4JSubTypesScanner - Class in org.deeplearning4j.util.reflections
-
Custom Reflections library scanner for finding DL4J subtypes (custom layers, graph vertices, etc)
- DL4JSubTypesScanner(List<Class<?>>, List<Class<?>>) - Constructor for class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- doBackward(boolean) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Do backward pass
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- doBackward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- doEvaluation(DataSetIterator, T...) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method executes evaluation of the model against given iterator and evaluation implementations
- doEvaluation(MultiDataSetIterator, T...) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method executes evaluation of the model against given iterator and evaluation implementations
- doEvaluation(DataSetIterator, T...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Perform evaluation on the given data (DataSetIterator) with the given
IEvaluation
instance
- doEvaluation(MultiDataSetIterator, T...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Perform evaluation on the given data (MultiDataSetIterator) with the given
IEvaluation
instance
- doEvaluation(DataSetIterator, T...) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform evaluation using an arbitrary IEvaluation instance.
- doEvaluation(MultiDataSetIterator, T[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- doForward(boolean) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Do forward pass using the stored inputs
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- doForward(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- doTruncatedBPTT(INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the network using truncated BPTT
- doTruncatedBPTT(INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- DoublesDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
- DoublesDataSetIterator(Iterable<Pair<double[], double[]>>, int) - Constructor for class org.deeplearning4j.datasets.iterator.DoublesDataSetIterator
-
- drainTo(Collection<? super E>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- drainTo(Collection<? super E>, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- dropOut(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Dropout.
- dropOut - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- dropOut(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
Dropout.
- dropOut - Variable in class org.deeplearning4j.nn.conf.layers.Layer
-
- dropOut - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- dropOut(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Dropout probability.
- dropOut - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- Dropout - Class in org.deeplearning4j.util
-
- dropoutApplied - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- DropoutLayer - Class in org.deeplearning4j.nn.conf.layers
-
- DropoutLayer - Class in org.deeplearning4j.nn.layers
-
Created by davekale on 12/7/16.
- DropoutLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.DropoutLayer
-
- DropoutLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.DropoutLayer
-
- DropoutLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- dropoutMask - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- ds - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- ds - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- dsIterator - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- DummyPreProcessor - Class in org.deeplearning4j.datasets.iterator
-
This is special dummy preProcessor, that does nothing.
- DummyPreProcessor() - Constructor for class org.deeplearning4j.datasets.iterator.DummyPreProcessor
-
- DuplicateToTimeSeriesVertex - Class in org.deeplearning4j.nn.conf.graph.rnn
-
DuplicateToTimeSeriesVertex is a vertex that goes from 2d activations to a 3d time series activations, by means of
duplication.
- DuplicateToTimeSeriesVertex(String) - Constructor for class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- DuplicateToTimeSeriesVertex - Class in org.deeplearning4j.nn.graph.vertex.impl.rnn
-
DuplicateToTimeSeriesVertex is a vertex that goes from 2d activations to a 3d time series activations, by means of
duplication.
- DuplicateToTimeSeriesVertex(ComputationGraph, String, int, String) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- DuplicateToTimeSeriesVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], String) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- EarlyStoppingConfiguration<T extends Model> - Class in org.deeplearning4j.earlystopping
-
Early stopping configuration: Specifies the various configuration options for running training with early stopping.
Users need to specify the following:
(a) EarlyStoppingModelSaver: How models will be saved (to disk, to memory, etc) (Default: in memory)
(b) Termination conditions: at least one termination condition must be specified
(i) Iteration termination conditions: calculated once for each minibatch.
- EarlyStoppingConfiguration.Builder<T extends Model> - Class in org.deeplearning4j.earlystopping
-
- EarlyStoppingGraphTrainer - Class in org.deeplearning4j.earlystopping.trainer
-
Class for conducting early stopping training locally (single machine).
Can be used to train a
ComputationGraph
- EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph>, ComputationGraph, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph>, ComputationGraph, DataSetIterator, EarlyStoppingListener<ComputationGraph>) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
Constructor for training using a DataSetIterator
- EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph>, ComputationGraph, MultiDataSetIterator, EarlyStoppingListener<ComputationGraph>) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
Constructor for training using a MultiDataSetIterator
- EarlyStoppingListener<T extends Model> - Interface in org.deeplearning4j.earlystopping.listener
-
EarlyStoppingListener is a listener interface for conducting early stopping training.
- EarlyStoppingModelSaver<T extends Model> - Interface in org.deeplearning4j.earlystopping
-
Interface for saving MultiLayerNetworks learned during early stopping, and retrieving them again later
- EarlyStoppingResult<T extends Model> - Class in org.deeplearning4j.earlystopping
-
EarlyStoppingResult: contains the results of the early stopping training, such as:
- Why the training was terminated
- Score vs.
- EarlyStoppingResult(EarlyStoppingResult.TerminationReason, String, Map<Integer, Double>, int, double, int, T) - Constructor for class org.deeplearning4j.earlystopping.EarlyStoppingResult
-
- EarlyStoppingResult.TerminationReason - Enum in org.deeplearning4j.earlystopping
-
- EarlyStoppingTrainer - Class in org.deeplearning4j.earlystopping.trainer
-
Class for conducting early stopping training locally (single machine), for training a
MultiLayerNetwork
.
- EarlyStoppingTrainer(EarlyStoppingConfiguration<MultiLayerNetwork>, MultiLayerConfiguration, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- EarlyStoppingTrainer(EarlyStoppingConfiguration<MultiLayerNetwork>, MultiLayerNetwork, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- EarlyStoppingTrainer(EarlyStoppingConfiguration<MultiLayerNetwork>, MultiLayerNetwork, DataSetIterator, EarlyStoppingListener<MultiLayerNetwork>) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- EarlyTerminationDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
Builds an iterator that terminates once the number of minibatches returned with .next() is equal to a specified number
Note that a call to .next(num) is counted as a call to return a minibatch regardless of the value of num
This essentially restricts the data to this specified number of minibatches.
- EarlyTerminationDataSetIterator(DataSetIterator, int) - Constructor for class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
Constructor takes the iterator to wrap and the number of minibatches after which the call to hasNext()
will return false
- EarlyTerminationMultiDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
Builds an iterator that terminates once the number of minibatches returned with .next() is equal to a specified number
Note that a call to .next(num) is counted as a call to return a minibatch regardless of the value of num
This essentially restricts the data to this specified number of minibatches.
- EarlyTerminationMultiDataSetIterator(MultiDataSetIterator, int) - Constructor for class org.deeplearning4j.datasets.iterator.EarlyTerminationMultiDataSetIterator
-
Constructor takes the iterator to wrap and the number of minibatches after which the call to hasNext()
will return false
- element() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- element() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- ElementWiseVertex - Class in org.deeplearning4j.nn.conf.graph
-
An ElementWiseVertex is used to combine the activations of two or more layer in an element-wise manner
For example, the activations may be combined by addition, subtraction or multiplication.
- ElementWiseVertex(ElementWiseVertex.Op) - Constructor for class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- ElementWiseVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
An ElementWiseVertex is used to combine the activations of two or more layer in an element-wise manner
For example, the activations may be combined by addition, subtraction or multiplication.
- ElementWiseVertex(ComputationGraph, String, int, ElementWiseVertex.Op) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- ElementWiseVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], ElementWiseVertex.Op) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- ElementWiseVertex.Op - Enum in org.deeplearning4j.nn.conf.graph
-
- ElementWiseVertex.Op - Enum in org.deeplearning4j.nn.graph.vertex.impl
-
- EmbeddingLayer - Class in org.deeplearning4j.nn.conf.layers
-
Embedding layer: feed-forward layer that expects single integers per example as input (class numbers, in range 0 to numClass-1)
as input.
- EmbeddingLayer - Class in org.deeplearning4j.nn.layers.feedforward.embedding
-
Embedding layer: feed-forward layer that expects single integers per example as input (class numbers, in range 0 to numClass-1)
as input.
- EmbeddingLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- EmbeddingLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- EmptyParamInitializer - Class in org.deeplearning4j.nn.params
-
- EmptyParamInitializer() - Constructor for class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- emptyStringArray - Static variable in class org.deeplearning4j.util.StringUtils
-
- encode(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- EncodedGradientsAccumulator - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This GradientsAccumulator is suited for CUDA backend.
- EncodedGradientsAccumulator(double) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- EncodedGradientsAccumulator(int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- EncodedGradientsAccumulator(int, double) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- EncodedGradientsAccumulator(int, MessageHandler, long, int, Double) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- EncodedGradientsAccumulator.Builder - Class in org.deeplearning4j.optimize.solvers.accumulation
-
- ENCODER_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- encoderLayerSizes(int...) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Size of the encoder layers, in units.
- encoderLayerSizes - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- encodeUpdates(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- EncodingHandler - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This MessageHandler implementation is suited for debugging mostly, but still can be used in production environment if you really want that.
- EncodingHandler() - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
This method builds new EncodingHandler instance with initial threshold of 1e-3
- EncodingHandler(double) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
This method builds new EncodingHandler instance
- EncodingHandler(double, Double) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
This method builds new EncodingHandler instance
- EncodingHandler(double, double, double, double, int, int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
This method builds new EncodingHandler instance
- EncodingHandler(double, double, double, double, int, int, Double) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
This method builds new EncodingHandler instance
- encodingThreshold(double) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
This method allows to set encoding threshold for this accumulator instance
Default value: 1e-3
- enforceSingleDevice(boolean) - Method in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator.Builder
-
- enforceSingleDevice - Variable in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator
-
- entropy(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the entropy (information gain, or uncertainty of a random variable).
- Entry(K, T, V) - Constructor for class org.deeplearning4j.util.MultiDimensionalMap.Entry
-
- entrySet() - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Returns a
Set
view of the mappings contained in this map.
- EnumUtil - Class in org.deeplearning4j.util
-
Created by agibsonccc on 9/3/14.
- epochs - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- EpochTerminationCondition - Interface in org.deeplearning4j.earlystopping.termination
-
Interface for termination conditions to be evaluated once per epoch (i.e., once per pass of the full data set),
based on a score and epoch number
- epochTerminationConditions(EpochTerminationCondition...) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Termination conditions to be evaluated every N epochs, with N set by evaluateEveryNEpochs option
- epochTerminationConditions(List<EpochTerminationCondition>) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Termination conditions to be evaluated every N epochs, with N set by evaluateEveryNEpochs option
- eps - Variable in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- eps - Variable in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- eps - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- eps(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
Epsilon value for batch normalization; small floating point value added to variance
(algorithm 1 in http://arxiv.org/pdf/1502.03167v3.pdf) to reduce/avoid underflow issues.
Default: 1e-5
- eps - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- eps - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- eps(double) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- eps - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- epsilon - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Deprecated.
- epsilon(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- epsilon - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Deprecated.
- epsilon(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Epsilon value for updaters: Adagrad and Adadelta.
- epsilon - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Deprecated.
- epsilon(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- epsilon - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- epsilon - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- epsilon() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- epsilon - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
Deprecated.
- EpsTermination - Class in org.deeplearning4j.optimize.terminations
-
Epsilon termination (absolute change based on tolerance)
- EpsTermination(double, double) - Constructor for class org.deeplearning4j.optimize.terminations.EpsTermination
-
- EpsTermination() - Constructor for class org.deeplearning4j.optimize.terminations.EpsTermination
-
- equals(Object) - Method in class org.deeplearning4j.eval.BaseEvaluation
-
- equals(Object) - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
-
- equals(Object) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- equals(Object) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- equals(Object) - Method in class org.deeplearning4j.util.Index
-
- equals(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
- error(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
- error(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- error(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- error(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- error() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the prediction error for this node
- error(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- error(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- error(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- error(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- error(Logger, String, Object...) - Static method in class org.deeplearning4j.util.OneTimeLogger
-
- errorFor(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
- errorIfGraphIfMLN() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- errorSum() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the total prediction error for this
tree and its children
- ESCAPE_CHAR - Static variable in class org.deeplearning4j.util.StringUtils
-
- escapeHTML(String) - Static method in class org.deeplearning4j.util.StringUtils
-
Escapes HTML Special characters present in the string.
- escapeString(String) - Static method in class org.deeplearning4j.util.StringUtils
-
Escape commas in the string using the default escape char
- escapeString(String, char, char) - Static method in class org.deeplearning4j.util.StringUtils
-
Escape charToEscape
in the string
with the escape char escapeChar
- escapeString(String, char, char[]) - Static method in class org.deeplearning4j.util.StringUtils
-
- esConfig - Variable in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- euclideanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the distance of two vectors
sum(i=1,n) (q_i - p_i)^2
- euclideanDistance(float[], float[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the distance of two vectors
sum(i=1,n) (q_i - p_i)^2
- eval(INDArray, INDArray, List<? extends Serializable>) - Method in class org.deeplearning4j.eval.BaseEvaluation
-
- eval(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.eval.BaseEvaluation
-
- eval(INDArray, INDArray, ComputationGraph) - Method in class org.deeplearning4j.eval.Evaluation
-
Evaluate the output
using the given true labels,
the input to the multi layer network
and the multi layer network to
use for evaluation
- eval(INDArray, INDArray, MultiLayerNetwork) - Method in class org.deeplearning4j.eval.Evaluation
-
Evaluate the output
using the given true labels,
the input to the multi layer network
and the multi layer network to
use for evaluation
- eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.Evaluation
-
Collects statistics on the real outcomes vs the
guesses.
- eval(INDArray, INDArray, List<? extends Serializable>) - Method in class org.deeplearning4j.eval.Evaluation
-
Evaluate the network, with optional metadata
- eval(int, int) - Method in class org.deeplearning4j.eval.Evaluation
-
Evaluate a single prediction (one prediction at a time)
- eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- eval(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- eval(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
- eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
- eval(INDArray, INDArray) - Method in interface org.deeplearning4j.eval.IEvaluation
-
- eval(INDArray, INDArray, List<? extends Serializable>) - Method in interface org.deeplearning4j.eval.IEvaluation
-
- eval(INDArray, INDArray, INDArray) - Method in interface org.deeplearning4j.eval.IEvaluation
-
- eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- eval(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.ROC
-
Evaluate (collect statistics for) the given minibatch of data.
- eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.ROCBinary
-
- eval(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.eval.ROCBinary
-
- eval(INDArray, INDArray) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Evaluate (collect statistics for) the given minibatch of data.
- evalAtIndex(IEvaluation, INDArray[], INDArray[], int) - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- evalTimeSeries(INDArray, INDArray) - Method in class org.deeplearning4j.eval.BaseEvaluation
-
- evalTimeSeries(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.eval.BaseEvaluation
-
- evalTimeSeries(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- evalTimeSeries(INDArray, INDArray) - Method in interface org.deeplearning4j.eval.IEvaluation
-
- evalTimeSeries(INDArray, INDArray, INDArray) - Method in interface org.deeplearning4j.eval.IEvaluation
-
- evaluate(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (classification performance - single output ComputationGraphs only)
- evaluate(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (classification performance - single output ComputationGraphs only)
- evaluate(DataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network on the provided data set (single output ComputationGraphs only).
- evaluate(MultiDataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network on the provided data set (single output ComputationGraphs only).
- evaluate(DataSetIterator, List<String>, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (for classification) on the provided data set, with top N accuracy in addition to standard accuracy.
- evaluate(MultiDataSetIterator, List<String>, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (for classification) on the provided data set, with top N accuracy in addition to standard accuracy.
- evaluate(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network (classification performance)
- evaluate(DataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network on the provided data set.
- evaluate(DataSetIterator, List<String>, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network (for classification) on the provided data set, with top N accuracy in addition to standard accuracy.
- evaluateEveryNEpochs(int) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
How frequently should evaluations be conducted (in terms of epochs)? Defaults to every (1) epochs.
- evaluateRegression(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the (single output layer only) network for regression performance
- evaluateRegression(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the (single output layer only) network for regression performance
- evaluateRegression(DataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the (single output layer only) network for regression performance
- evaluateRegression(MultiDataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the (single output layer only) network for regression performance
- evaluateRegression(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network for regression performance
- evaluateROC(DataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (must be a binary classifier) on the specified data, using the
ROC
class
- evaluateROC(MultiDataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (must be a binary classifier) on the specified data, using the
ROC
class
- evaluateROC(DataSetIterator, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network (must be a binary classifier) on the specified data, using the
ROC
class
- evaluateROCMultiClass(DataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network on the specified data, using the
ROCMultiClass
class
- evaluateROCMultiClass(MultiDataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network on the specified data, using the
ROCMultiClass
class
- evaluateROCMultiClass(DataSetIterator, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network on the specified data, using the
ROCMultiClass
class
- Evaluation - Class in org.deeplearning4j.eval
-
- Evaluation() - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(int) - Constructor for class org.deeplearning4j.eval.Evaluation
-
The number of classes to account
for in the evaluation
- Evaluation(List<String>) - Constructor for class org.deeplearning4j.eval.Evaluation
-
The labels to include with the evaluation.
- Evaluation(Map<Integer, String>) - Constructor for class org.deeplearning4j.eval.Evaluation
-
Use a map to generate labels
Pass in a label index with the actual label
you want to use for output
- Evaluation(List<String>, int) - Constructor for class org.deeplearning4j.eval.Evaluation
-
Constructor to use for top N accuracy
- Evaluation(double) - Constructor for class org.deeplearning4j.eval.Evaluation
-
Create an evaluation instance with a custom binary decision threshold.
- Evaluation(INDArray) - Constructor for class org.deeplearning4j.eval.Evaluation
-
Created evaluation instance with the specified cost array.
- Evaluation(List<String>, INDArray) - Constructor for class org.deeplearning4j.eval.Evaluation
-
Created evaluation instance with the specified cost array.
- EvaluationAveraging - Enum in org.deeplearning4j.eval
-
The averaging approach for binary valuation measures when applied to multiclass classification problems.
- EvaluationBinary - Class in org.deeplearning4j.eval
-
EvaluationBinary: used for evaluating networks with binary classification outputs.
- EvaluationBinary(INDArray) - Constructor for class org.deeplearning4j.eval.EvaluationBinary
-
Create an EvaulationBinary instance with an optional decision threshold array.
- EvaluationBinary(int, Integer) - Constructor for class org.deeplearning4j.eval.EvaluationBinary
-
This constructor allows for ROC to be calculated in addition to the standard evaluation metrics, when the
rocBinarySteps arg is non-null.
- EvaluationCalibration - Class in org.deeplearning4j.eval
-
EvaluationCalibration is an evaluation class designed to analyze the calibration of a classifier.
It provides a number of tools for this purpose:
- Counts of the number of labels and predictions for each class
- Reliability diagram (or reliability curve)
- Residual plot (histogram)
- Histograms of probabilities, including probabilities for each class separately
References:
- Reliability diagram: see for example Niculescu-Mizil and Caruana 2005, Predicting Good Probabilities With
Supervised Learning
- Residual plot: see Wallace and Dahabreh 2012, Class Probability Estimates are Unreliable for Imbalanced Data
(and How to Fix Them)
- EvaluationCalibration() - Constructor for class org.deeplearning4j.eval.EvaluationCalibration
-
Create an EvaluationCalibration instance with the default number of bins
- EvaluationCalibration(int, int) - Constructor for class org.deeplearning4j.eval.EvaluationCalibration
-
Create an EvaluationCalibration instance with the specified number of bins
- EvaluationCalibration(int, int, boolean) - Constructor for class org.deeplearning4j.eval.EvaluationCalibration
-
Create an EvaluationCalibration instance with the specified number of bins
- EvaluationCallback - Interface in org.deeplearning4j.optimize.listeners.callbacks
-
This interface describes callback, which can be used with EvaluativeListener, to extend its functionality.
- evaluations - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluationUtils - Class in org.deeplearning4j.eval
-
Utility methods for performing evaluation
- EvaluationUtils() - Constructor for class org.deeplearning4j.eval.EvaluationUtils
-
- EvaluativeListener - Class in org.deeplearning4j.optimize.listeners
-
This TrainingListener implementation provides simple way for model evaluation during training.
- EvaluativeListener(DataSetIterator, int) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iteration
- EvaluativeListener(DataSetIterator, int, InvocationType) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(MultiDataSetIterator, int) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iteration
- EvaluativeListener(MultiDataSetIterator, int, InvocationType) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(DataSetIterator, int, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iteration
- EvaluativeListener(DataSetIterator, int, InvocationType, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(MultiDataSetIterator, int, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iteration
- EvaluativeListener(MultiDataSetIterator, int, InvocationType, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(DataSet, int, InvocationType) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(MultiDataSet, int, InvocationType) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(DataSet, int, InvocationType, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(MultiDataSet, int, InvocationType, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- exampleNegLogProbability(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Calculate the negative log probability for each example individually
- ExistingDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
This wrapper provides DataSetIterator interface to existing java Iterable and Iterator
- ExistingDataSetIterator(Iterator<DataSet>) - Constructor for class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- ExistingDataSetIterator(Iterator<DataSet>, List<String>) - Constructor for class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- ExistingDataSetIterator(Iterable<DataSet>) - Constructor for class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- ExistingDataSetIterator(Iterable<DataSet>, List<String>) - Constructor for class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- ExistingDataSetIterator(Iterable<DataSet>, int, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- ExponentialReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
-
Exponential reconstruction distribution.
Supports data in range [0,infinity)
- ExponentialReconstructionDistribution() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- ExponentialReconstructionDistribution(String) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- ExponentialReconstructionDistribution(Activation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- ExponentialReconstructionDistribution(IActivation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- exportScores(OutputStream) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Export the scores in tab-delimited (one per line) UTF-8 format.
- exportScores(OutputStream, String) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Export the scores in delimited (one per line) UTF-8 format with the specified delimiter
- exportScores(File) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Export the scores to the specified file in delimited (one per line) UTF-8 format, tab delimited
- exportScores(File, String) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Export the scores to the specified file in delimited (one per line) UTF-8 format, using the specified delimiter
- extCounter - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- externalCall() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- externalCall() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- externalSource - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- extractNonMaskedTimeSteps(INDArray, INDArray, INDArray) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
- f1(int) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate f1 score for a given class
- f1() - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the (macro) average F1 score across all classes
TP: true positive
FP: False Positive
FN: False Negative
F1 score: 2 * TP / (2TP + FP + FN)
- f1(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the average F1 score across all classes, using macro or micro averaging
- f1(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the F1 score for the specified output
- f1Score(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Returns the f1 score for the given examples.
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- fa - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- factorial(double) - Static method in class org.deeplearning4j.util.MathUtils
-
This will return the factorial of the given number n.
- fallbackToSingleConsumerMode(boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- fallbackToSingleConsumerMode(boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- fallbackToSingleConsumerMode(boolean) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.Registerable
-
This method enables/disables bypass mode
- falseAlarmRate() - Method in class org.deeplearning4j.eval.Evaluation
-
False Alarm Rate (FAR) reflects rate of misclassified to classified records
http://ro.ecu.edu.au/cgi/viewcontent.cgi?article=1058&context=isw
- falseNegativeRate(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the false negative rate for a given label
- falseNegativeRate(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the false negative rate for a given label
- falseNegativeRate() - Method in class org.deeplearning4j.eval.Evaluation
-
False negative rate based on guesses so far
Takes into account all known classes and outputs average fnr across all of them
- falseNegativeRate(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the average false negative rate for all classes - can specify whether macro or micro averaging should be used
- falseNegativeRate(Integer) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Returns the false negative rate for a given label
- falseNegativeRate(Integer, double) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Returns the false negative rate for a given label
- falseNegativeRate(long, long, double) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
Calculate the false negative rate from the false negative counts and true positive count
- falseNegatives - Variable in class org.deeplearning4j.eval.Evaluation
-
- falseNegatives() - Method in class org.deeplearning4j.eval.Evaluation
-
False negatives: correctly rejected
- falseNegatives(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the false negatives count for the specified output
- falsePositiveRate(int) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the false positive rate for a given label
- falsePositiveRate(int, double) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the false positive rate for a given label
- falsePositiveRate() - Method in class org.deeplearning4j.eval.Evaluation
-
False positive rate based on guesses so far
Takes into account all known classes and outputs average fpr across all of them
- falsePositiveRate(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the average false positive rate across all classes.
- falsePositiveRate(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Returns the false positive rate for a given label
- falsePositiveRate(int, double) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Returns the false positive rate for a given label
- falsePositiveRate(long, long, double) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
Calculate the false positive rate from the false positive count and true negative count
- falsePositives - Variable in class org.deeplearning4j.eval.Evaluation
-
- falsePositives() - Method in class org.deeplearning4j.eval.Evaluation
-
False positive: wrong guess
- falsePositives(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the false positives count for the specified output
- FancyBlockingQueue<E> - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This BlockingQueue implementation is suited only for symmetric gradients updates, and should NOT be used anywhere else.
- FancyBlockingQueue(BlockingQueue<E>) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- FancyBlockingQueue(BlockingQueue<E>, int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- fBeta(double, int) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the f_beta for a given class, where f_beta is defined as:
(1+beta^2) * (precision * recall) / (beta^2 * precision + recall).
F1 is a special case of f_beta, with beta=1.0
- fBeta(double, int, double) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the f_beta for a given class, where f_beta is defined as:
(1+beta^2) * (precision * recall) / (beta^2 * precision + recall).
F1 is a special case of f_beta, with beta=1.0
- fBeta(double, EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the average F_beta score across all classes, using macro or micro averaging
- fBeta(double, int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Calculate the F-beta value for the given output
- fBeta(double, long, long, long) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
Calculate the F beta value from counts
- fBeta(double, double, double) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
Calculate the F-beta value from precision and recall
- featurize(MultiDataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
During training frozen vertices/layers can be treated as "featurizing" the input
The forward pass through these frozen layer/vertices can be done in advance and the dataset saved to disk to iterate
quickly on the smaller unfrozen part of the model
Currently does not support datasets with feature masks
- featurize(DataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
During training frozen vertices/layers can be treated as "featurizing" the input
The forward pass through these frozen layer/vertices can be done in advance and the dataset saved to disk to iterate
quickly on the smaller unfrozen part of the model
Currently does not support datasets with feature masks
- feedForward(int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
InputType for feed forward network data
- feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using a single input array.
- feedForward(INDArray[], boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using an array of inputs
- feedForward() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using the stored inputs, at test time
- feedForward(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using the stored inputs
- feedForward(boolean, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- feedForward(boolean, boolean, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- feedForward(boolean, boolean, boolean, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
PLEASE NEVER USE THIS METHOD IF YOU"RE NOT SURE WHAT YOU'll GET
- feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- feedForward(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- feedForward() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- feedForward(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer
- feedForward(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the output layer, given mask arrays (that may be null)
The masking arrays are used in situations such an one-to-many and many-to-one rucerrent neural network (RNN)
designs, as well as for supporting time series of varying lengths within the same minibatch for RNNs.
- FeedForwardLayer - Class in org.deeplearning4j.nn.conf.layers
-
Created by jeffreytang on 7/21/15.
- FeedForwardLayer(FeedForwardLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- FeedForwardLayer.Builder<T extends FeedForwardLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in interface org.deeplearning4j.nn.api.Layer
-
Feed forward the input mask array, setting in in the layer as appropriate.
- feedForwardMaskArray(INDArray, MaskState, int) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- FeedForwardToCnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, DenseLayer -> CNN
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D or 3D with shape
[numExamples, inputHeight*inputWidth*numChannels]) into 4d activations (with shape
[numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
(b) Reshapes 4d epsilons (weights*deltas) from CNN layer, with shape
[numExamples, numChannels, inputHeight, inputWidth]) into 2d epsilons (with shape
[numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer
Note: numChannels is equivalent to depth or featureMaps referenced in different literature
- FeedForwardToCnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
Reshape to a channels x rows x columns tensor
- FeedForwardToCnnPreProcessor(int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- feedForwardToLayer(int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
- feedForwardToLayer(int, INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
- feedForwardToLayer(int, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the specified layer, using the currently set input for the network.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
- FeedForwardToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow RNN and feed-forward network layers to be used together.
For example, DenseLayer -> GravesLSTM
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D with shape
[miniBatchSize*timeSeriesLength,layerSize]) into 3d activations (with shape
[miniBatchSize,layerSize,timeSeriesLength]) suitable to feed into RNN layers.
(b) Reshapes 3d epsilons (weights*deltas from RNN layer, with shape
[miniBatchSize,layerSize,timeSeriesLength]) into 2d epsilons (with shape
[miniBatchSize*timeSeriesLength,layerSize]) for use in feed forward layer
- FeedForwardToRnnPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- fetch(int) - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
-
Deprecated.
Fetches the next dataset.
- fetch(int) - Method in class org.deeplearning4j.datasets.iterator.impl.MovingWindowDataSetFetcher
-
Fetches the next dataset.
- fetcher - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- FileCallback - Interface in org.deeplearning4j.datasets.iterator.callbacks
-
- FileOperations - Class in org.deeplearning4j.util
-
- FileSplitDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
Simple iterator working with list of files.
- FileSplitDataSetIterator(List<File>, FileCallback) - Constructor for class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- FileSplitParallelDataSetIterator - Class in org.deeplearning4j.datasets.iterator.parallel
-
- FileSplitParallelDataSetIterator(File, String, FileCallback) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.FileSplitParallelDataSetIterator
-
- FileSplitParallelDataSetIterator(File, String, FileCallback, int) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.FileSplitParallelDataSetIterator
-
- FileSplitParallelDataSetIterator(File, String, FileCallback, int, InequalityHandling) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.FileSplitParallelDataSetIterator
-
- FileSplitParallelDataSetIterator(File, String, FileCallback, int, int, InequalityHandling) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.FileSplitParallelDataSetIterator
-
- fillDown(String, int) - Method in class org.deeplearning4j.util.StringGrid
-
- fillQueue() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
- filterBySimilarity(double, int, int) - Method in class org.deeplearning4j.util.StringGrid
-
- filterResultsBy(Predicate<String>) - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- filterRowsByColumn(int, Collection<String>) - Method in class org.deeplearning4j.util.StringGrid
-
- findNext(String, char, char, int, StringBuilder) - Static method in class org.deeplearning4j.util.StringUtils
-
Finds the first occurrence of the separator character ignoring the escaped
separators starting from the index.
- finetune() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Run SGD based on the given labels
- FineTuneConfiguration - Class in org.deeplearning4j.nn.transferlearning
-
Created by Alex on 21/02/2017.
- FineTuneConfiguration() - Constructor for class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- fineTuneConfiguration(FineTuneConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Fine tune configurations specified will overwrite the existing configuration if any
Usage example: specify a learning rate will set specified learning rate on all layers
Refer to the fineTuneConfiguration class for more details
- fineTuneConfiguration(FineTuneConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Set parameters to selectively override existing learning parameters
Usage eg.
- FineTuneConfiguration.Builder - Class in org.deeplearning4j.nn.transferlearning
-
- FingerPrintKeyer - Class in org.deeplearning4j.util
-
Copied from google refine:
takes the key and gets rid of all punctuation, transforms to lower case
and alphabetic sorts the words
- FingerPrintKeyer() - Constructor for class org.deeplearning4j.util.FingerPrintKeyer
-
- firstChild() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- firstOne - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit() - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- fit() - Method in interface org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer
-
Conduct early stopping training
- fit(DataSetIterator) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Train the model based on the datasetiterator
- fit(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Fit the model
- fit(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Fit the model
- fit(INDArray, int[]) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Fit the model
- fit() - Method in interface org.deeplearning4j.nn.api.Model
-
All models have a fit method
- fit(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Fit the model to the given data
- fit(DataSet) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method fits model with a given DataSet
- fit(MultiDataSet) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method fits model with a given MultiDataSet
- fit(DataSetIterator) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method fits model with a given DataSetIterator
- fit(MultiDataSetIterator) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method fits model with a given MultiDataSetIterator
- fit(DataSet) - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- fit(DataSetIterator) - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- fit(DataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a DataSet.
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a DataSetIterator.
- fit(MultiDataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a MultiDataSet
- fit(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a MultiDataSetIterator
- fit(INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph given arrays of inputs and labels.
- fit(INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using the specified inputs and labels (and mask arrays)
- fit() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model to the given data
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Fit the model
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Fit the model
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Fit the model
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- fit(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- fit() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model
- fit(INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model
- fit(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the unsupervised model
- fit(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model
- fit() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- fit(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- fitFeaturized(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Fit from a featurized dataset.
- fitFeaturized(MultiDataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- fitFeaturized(DataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- fitFeaturized(DataSetIterator) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- flattenedGradients - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- flattenedGradients - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- flattenedParams - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- flattenedParams - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- flatteningOrderForVariable(String) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- flatteningOrderForVariable(String) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Return the gradient flattening order for the specified variable, or null if it is not explicitly set
- FloatsDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
float[] wrapper for DataSetIterator impementation.
- FloatsDataSetIterator(Iterable<Pair<float[], float[]>>, int) - Constructor for class org.deeplearning4j.datasets.iterator.FloatsDataSetIterator
-
- forgetGateBiasInit - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
- forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Set forget gate bias initalizations.
- forgetGateBiasInit - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Set forget gate bias initalizations.
- format(double, int) - Method in class org.deeplearning4j.eval.curves.BaseCurve
-
- formatPercent(double, int) - Static method in class org.deeplearning4j.util.StringUtils
-
Format a percentage for presentation to the user.
- formatTime(long) - Static method in class org.deeplearning4j.util.StringUtils
-
Given the time in long milliseconds, returns a
String in the format Xhrs, Ymins, Z sec.
- formatTimeDiff(long, long) - Static method in class org.deeplearning4j.util.StringUtils
-
Given a finish and start time in long milliseconds, returns a
String in the format Xhrs, Ymins, Z sec, for the time difference between two times.
- frequency - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- from - Variable in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- fromFile(String, String) - Static method in class org.deeplearning4j.util.StringGrid
-
- fromInput(InputStream, String) - Static method in class org.deeplearning4j.util.StringGrid
-
- fromJson(String, Class<T>) - Static method in class org.deeplearning4j.eval.BaseEvaluation
-
- fromJson(String, Class<T>) - Static method in class org.deeplearning4j.eval.curves.BaseCurve
-
- fromJson(String, Class<T>) - Static method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- fromJson(String) - Static method in class org.deeplearning4j.eval.curves.Histogram
-
- fromJson(String) - Static method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- fromJson(String) - Static method in class org.deeplearning4j.eval.curves.RocCurve
-
- fromJson(String) - Static method in class org.deeplearning4j.eval.Evaluation
-
- fromJson(String) - Static method in class org.deeplearning4j.eval.EvaluationBinary
-
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Create a computation graph configuration from json
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
Create a neural net configuration from json
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Create a neural net configuration from json
- fromJson(String) - Static method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- fromString(String, String) - Static method in class org.deeplearning4j.util.MathUtils
-
This will take a given string and separator and convert it to an equivalent
double array.
- fromYaml(String, Class<T>) - Static method in class org.deeplearning4j.eval.BaseEvaluation
-
- fromYaml(String, Class<T>) - Static method in class org.deeplearning4j.eval.curves.BaseCurve
-
- fromYaml(String, Class<T>) - Static method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- fromYaml(String) - Static method in class org.deeplearning4j.eval.curves.Histogram
-
- fromYaml(String) - Static method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- fromYaml(String) - Static method in class org.deeplearning4j.eval.curves.RocCurve
-
- fromYaml(String) - Static method in class org.deeplearning4j.eval.Evaluation
-
- fromYaml(String) - Static method in class org.deeplearning4j.eval.EvaluationBinary
-
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Create a neural net configuration from json
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
Create a neural net configuration from json
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Create a neural net configuration from json
- fromYaml(String) - Static method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- FrozenLayer - Class in org.deeplearning4j.nn.conf.layers.misc
-
Created by Alex on 10/07/2017.
- FrozenLayer(Layer) - Constructor for class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- FrozenLayer - Class in org.deeplearning4j.nn.layers
-
For purposes of transfer learning
A frozen layers wraps another dl4j layer within it.
- FrozenLayer(Layer) - Constructor for class org.deeplearning4j.nn.layers.FrozenLayer
-
- FrozenLayer.Builder - Class in org.deeplearning4j.nn.conf.layers.misc
-
- FrozenLayerParamInitializer - Class in org.deeplearning4j.nn.params
-
- FrozenLayerParamInitializer() - Constructor for class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- fwdPassOutput - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- fwdPassOutputAsArrays - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- FwdPassReturn - Class in org.deeplearning4j.nn.layers.recurrent
-
Created by benny on 12/31/15.
- FwdPassReturn() - Constructor for class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- fz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- ga - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- gamma - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- gamma(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- gamma - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- GAMMA - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- gateActivationFn - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
- gateActivationFn - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- gateActivationFunction(String) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Activation function for the LSTM gates.
- gateActivationFunction(Activation) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Activation function for the LSTM gates.
- gateActivationFunction(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Activation function for the LSTM gates.
- gateActivationFunction(String) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Activation function for the LSTM gates.
- gateActivationFunction(Activation) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Activation function for the LSTM gates.
- gateActivationFunction(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Activation function for the LSTM gates.
- GaussianDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
A normal distribution.
- GaussianDistribution(double, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.GaussianDistribution
-
Create a gaussian distribution (equivalent to normal)
with the given mean and std
- GaussianReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
-
Gaussian reconstruction distribution for variational autoencoder.
Outputs are modelled by a Gaussian distribution, with the mean and variances (diagonal covariance matrix) for each
output determined by the network forward pass.
- GaussianReconstructionDistribution() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
Create a GaussianReconstructionDistribution with the default identity activation function.
- GaussianReconstructionDistribution(String) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- GaussianReconstructionDistribution(Activation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- GaussianReconstructionDistribution(IActivation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- generalValidation(String, Layer, boolean, boolean, Double, Double, Double, Double, Double, Distribution) - Static method in class org.deeplearning4j.nn.conf.layers.LayerValidation
-
- generalValidation(String, Layer, boolean, boolean, double, double, double, double, double, Distribution) - Static method in class org.deeplearning4j.nn.conf.layers.LayerValidation
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- generateAtMean(INDArray) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Generate a sample from P(x|z), where x = E[P(x|z)]
i.e., return the mean value for the distribution
- generateAtMeanGivenZ(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
Given a specified values for the latent space as input (latent space being z in p(z|data)), generate output
from P(x|z), where x = E[P(x|z)]
i.e., return the mean value for the distribution P(x|z)
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- generateRandom(INDArray) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Randomly sample from P(x|z) using the specified distribution parameters
- generateRandomGivenZ(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
Given a specified values for the latent space as input (latent space being z in p(z|data)), randomly generate output
x, where x ~ P(x|z)
- generateUniform(int) - Static method in class org.deeplearning4j.util.MathUtils
-
This will generate a series of uniformally distributed
numbers between l times
- get(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.MultiBoolean
-
Gets current state for specified entry
- get(int) - Method in class org.deeplearning4j.util.Index
-
- get(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Returns the value to which the specified key is mapped,
or null
if this map contains no mapping for the key.
- get(K, T) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
- getActualTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
Computes the total number of times the class actually appeared in the data.
- getAllFields(Class<?>) - Static method in class org.deeplearning4j.util.Dl4jReflection
-
- getAllWithSimilarity(double, int, int) - Method in class org.deeplearning4j.util.StringGrid
-
- getAlpha() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getBegin() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getBestModel() - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
-
Retrieve the best model that was previously saved
- getBestModel() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingResult
-
- getBestModel() - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- getBestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- getBestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- getBinCounts() - Method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- getBinLowerBounds() - Method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- getBinLowerBounds() - Method in class org.deeplearning4j.eval.curves.Histogram
-
- getBinMidValues() - Method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- getBinMidValues() - Method in class org.deeplearning4j.eval.curves.Histogram
-
- getBinUpperBounds() - Method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- getBinUpperBounds() - Method in class org.deeplearning4j.eval.curves.Histogram
-
- getBytesPerElement(DataBuffer.Type) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- getChildren() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getClass(T) - Static method in class org.deeplearning4j.util.ReflectionUtils
-
Return the correctly-typed
Class
of the given object.
- getClasses() - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
Gives the applyTransformToDestination of all classes in the confusion matrix.
- getClassLabel(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
- getClusters() - Method in class org.deeplearning4j.util.StringCluster
-
- getColumn(int) - Method in class org.deeplearning4j.util.StringGrid
-
- getComputationGraphUpdater() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- getComputationGraphUpdater() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getConf(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- getConf() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- getConf() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getConfiguration() - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- getConfiguration() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method returns configuration of this ComputationGraph
- getConfusionMatrix() - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the confusion matrix variable
- getConfusionMatrixAtPoint(int) - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
Get the binary confusion matrix for the given position.
- getConfusionMatrixAtThreshold(double) - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
Get the binary confusion matrix for the given threshold.
- getCorruptedInput(INDArray, double) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
Corrupts the given input by doing a binomial sampling
given the corruption level
- getCount(T, T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
Gives the count of the number of times the "predicted" class was predicted for the "actual"
class.
- getCount() - Method in class org.deeplearning4j.util.TestDataSetConsumer
-
- getCountActualNegative(int) - Method in class org.deeplearning4j.eval.ROCBinary
-
Get the actual negative count (accounting for any masking) for the specified output/column
- getCountActualNegative(int) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Get the actual negative count (accounting for any masking) for the specified output/column
- getCountActualPositive(int) - Method in class org.deeplearning4j.eval.ROCBinary
-
Get the actual positive count (accounting for any masking) for the specified output/column
- getCountActualPositive(int) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Get the actual positive count (accounting for any masking) for the specified class
- getCurrentProducerIndex() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- getDefaultConfiguration() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getDefaultStepFunctionForOptimizer(Class<? extends ConvexOptimizer>) - Static method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getEmptyConstructor(Class<?>) - Static method in class org.deeplearning4j.util.Dl4jReflection
-
Gets the empty constructor from a class
- getEnd() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getEps() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getEpsilon() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getEpsilon() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the epsilon/error (i.e., dL/dOutput) array previously set for this GraphVertex
- getFalsePositiveRate(int) - Method in class org.deeplearning4j.eval.curves.RocCurve
-
- getFieldsAsProperties(Object, Class<?>[]) - Static method in class org.deeplearning4j.util.Dl4jReflection
-
Get fields as properties
- getFirstKey() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
-
- getFlattenedGradientsView() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getFlattenedGradientsView() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- getFlattenedGradientsView() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- getFlattenedGradientsView() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- getFlattenedSize() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- getFormattedTimeWithDiff(DateFormat, long, long) - Static method in class org.deeplearning4j.util.StringUtils
-
Formats time in ms and appends difference (finishTime - startTime)
as returned by formatTimeDiff().
- getGradientCheck() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getGradientFor(String) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- getGradientFor(String) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
The gradient for the given variable
- getGradientsAccumulator() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
This method returns GradientsAccumulator instance used in this optimizer.
- getGradientsAccumulator() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
Return a map of gradients (in their standard non-flattened representation), taken from the flattened (row vector) gradientView array.
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- getGradientsViewArray() - Method in interface org.deeplearning4j.nn.api.Model
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getGradientUpdater() - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- getHardwareUID() - Static method in class org.deeplearning4j.util.UIDProvider
-
- getHeadWord() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getHeightAndWidth(NeuralNetConfiguration) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get the height and width
from the configuration
- getHeightAndWidth(int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get the height and width
for an image
- getHostname() - Static method in class org.deeplearning4j.util.StringUtils
-
Return hostname without throwing exception.
- getIndex() - Method in interface org.deeplearning4j.nn.api.Layer
-
Get the layer index.
- getIndex() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getIndex() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getIndex() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- getIndex() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getIndex() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getInnerConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getInput(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the previously set input for the ComputationGraph
- getInput() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getInput() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- getInput() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getInputMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the previously set feature/input mask arrays for the ComputationGraph
- getInputMiniBatchSize() - Method in interface org.deeplearning4j.nn.api.Layer
-
Get current/last input mini-batch size, as set by setInputMiniBatchSize(int)
- getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getInputPreProcess(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- getInputs() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the previously set inputs for the ComputationGraph
- getInputs() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the array of inputs previously set for this GraphVertex
- getInputVertices() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
A representation of the vertices that are inputs to this vertex (inputs duing forward pass)
Specifically, if inputVertices[X].getVertexIndex() = Y, and inputVertices[X].getVertexEdgeNumber() = Z
then the Zth output of vertex Y is the Xth input to this vertex
- getInputVertices() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
A representation of the vertices that are inputs to this vertex (inputs duing forward pass)
Specifically, if inputVertices[X].getVertexIndex() = Y, and inputVertices[X].getVertexEdgeNumber() = Z
then the Zth output connection (see
GraphVertex.getNumOutputConnections()
of vertex Y is the Xth input to this vertex
- getInsideLayer() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- getIterationCount(Model) - Static method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getIUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Get the updater for the given parameter.
- getIUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getIUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getIUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Get the updater for the given parameter.
- getIUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getIUpdaterWithDefaultConfig() - Method in enum org.deeplearning4j.nn.conf.Updater
-
- getJVMUID() - Static method in class org.deeplearning4j.util.UIDProvider
-
- getKey() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
-
Returns the key corresponding to this entry.
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Get the L1 coefficient for the given parameter.
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- getL1ByParam(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Get the L2 coefficient for the given parameter.
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- getL2ByParam(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- getLabelCountsEachClass() - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
- getLabelMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the previously set label/output mask arrays for the ComputationGraph
- getLabelName(int) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Get dataset iterator record reader labels
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Get dataset iterator record reader labels
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Get dataset iterator record reader labels
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- getLabels() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- getLabels() - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
- getLabels() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- getLabels() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- getLabels() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLabels2d() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- getLabels2d() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- getLabels2d() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- getLambda() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getLastEtlTime() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method returns ETL time field value
- getLastEtlTime() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLatestModel() - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
-
Retrieve the most recent model that was previously saved
- getLatestModel() - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- getLatestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- getLatestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- getLayer(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the layer by the number of that layer, in range 0 to getNumLayers()-1
NOTE: This is different from the internal GraphVertex index for the layer
- getLayer(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get a given layer by name.
- getLayer() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the Layer (if any).
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- getLayer(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLayer(String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLayerNames() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLayers() - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- getLayers() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get all layers in the ComputationGraph
- getLayers() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLayerwise() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- getLayerWiseConfigurations() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Get the (initial) learning rate coefficient for the given parameter.
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- getLearningRateByParam(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- getLeaves() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Gets the leaves of the tree.
- getLeaves(List<T>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Gets the leaves of the tree.
- getListeners() - Method in interface org.deeplearning4j.nn.api.Layer
-
Get the iteration listeners for this layer.
- getListeners() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the IterationListeners for the ComputationGraph
- getListeners() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getListeners() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getListeners() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- getListeners() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getListeners() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLogMetaInstability() - Method in class org.deeplearning4j.util.Viterbi
-
- getLogOfDiangnalTProb() - Method in class org.deeplearning4j.util.Viterbi
-
- getLogPCorrect() - Method in class org.deeplearning4j.util.Viterbi
-
- getLogPIncorrect() - Method in class org.deeplearning4j.util.Viterbi
-
- getLogStates() - Method in class org.deeplearning4j.util.Viterbi
-
- getLossFunction() - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
-
- getLower() - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
-
- getMask() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getMaskArray() - Method in interface org.deeplearning4j.nn.api.Layer
-
- getMaskArray() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getMaskArray() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getMaskArray() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getMaskArray() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getMax() - Method in class org.deeplearning4j.util.SummaryStatistics
-
- getMaxIterations() - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- getMean() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- getMean() - Method in class org.deeplearning4j.util.SummaryStatistics
-
- getMemoryBytes(MemoryType, int, MemoryUseMode, CacheMode, DataBuffer.Type) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- getMemoryBytes(MemoryType, int, MemoryUseMode, CacheMode) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get the memory estimate (in bytes) for the specified type of memory, using the current ND4J data type
- getMemoryBytes(MemoryType, int, MemoryUseMode, CacheMode, DataBuffer.Type) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get the memory estimate (in bytes) for the specified type of memory
- getMemoryBytes(MemoryType, int, MemoryUseMode, CacheMode, DataBuffer.Type) - Method in class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Get a
MemoryReport
for the given computation graph configuration.
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
This is a report of the estimated memory consumption for the given vertex
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
This is a report of the estimated memory consumption for the given layer
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LSTM
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.RBM
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- getMemoryReport(AbstractLSTM, InputType) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
- getMemoryReport(GravesBidirectionalLSTM, InputType) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
- getMemoryReport(boolean, FeedForwardLayer, InputType) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
- getMetaStability() - Method in class org.deeplearning4j.util.Viterbi
-
- getMin() - Method in class org.deeplearning4j.util.SummaryStatistics
-
- getModuleName() - Method in interface org.deeplearning4j.nn.conf.module.GraphBuilderModule
-
A module should return its name.
- getName() - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- getName() - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Name of the object that the memory report was generated for
- getName() - Method in class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- getnLayers() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the number of layers in the network
- getNumberOfTrials() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- getNumClasses() - Method in class org.deeplearning4j.eval.ROCMultiClass
-
- getNumColumns() - Method in class org.deeplearning4j.util.StringGrid
-
- getNumInputArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
The number of inputs to this network
- getNumInputArrays() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getNumInputArrays() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the number of input arrays.
- getNumLayers() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Returns the number of layers in the ComputationGraph
- getNumOutputArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
The number of output (arrays) for this network
- getNumOutputConnections() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getNumOutputConnections() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the number of outgoing connections from this GraphVertex.
- getNumRowCounter() - Method in class org.deeplearning4j.eval.Evaluation
-
- getOptimalBufferSize(int, int, int) - Static method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method returns optimal bufferSize for a given model
We know, that updates are guaranteed to have MAX size of params / 16.
- getOptimalBufferSize(Model, int, int) - Static method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- getOptimizer() - Method in interface org.deeplearning4j.nn.api.Model
-
Returns this models optimizer
- getOptimizer() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method returns Optimizer used for training
- getOptimizer() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- getOptimizer() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getOptimizer() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- getOptimizer() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getOptimizer() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getOptimizer() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getOptimizer() - Method in class org.deeplearning4j.optimize.Solver
-
- getOrderedLayers() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getOrderedLayers() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- getOrderedLayers() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- getOrderedLayers() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- getOutputLayer(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the specified output layer, by index.
- getOutputLayer() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the output layer
- getOutputSize(INDArray, int[], int[], int[], ConvolutionMode) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get the output size (height/width) for the given inpud data and CNN configuration
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
Determine the type of output for this GraphVertex, given the specified inputs.
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- getOutputType(InputType) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
For a given type of input to this preprocessor, what is the type of the output?
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
For a given type of input to this layer, what is the type of the output?
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.BinomialSamplingPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanAndUnitVariancePreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanPrePreProcessor
-
- getOutputTypeCnnLayers(InputType, int[], int[], int[], ConvolutionMode, int, int, String, Class<?>) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getOutputVertices() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
A representation of the vertices that this vertex is connected to (outputs duing forward pass)
Specifically, if outputVertices[X].getVertexIndex() = Y, and outputVertices[X].getVertexEdgeNumber() = Z
then the Xth output of this vertex is connected to the Zth input of vertex Y
- getOutputVertices() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
A representation of the vertices that this vertex is connected to (outputs duing forward pass)
Specifically, if outputVertices[X].getVertexIndex() = Y, and outputVertices[X].getVertexEdgeNumber() = Z
then the Xth output of this vertex is connected to the Zth input of vertex Y
- getParam(String) - Method in interface org.deeplearning4j.nn.api.Model
-
Get the parameter
- getParam(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getParam(String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getParams() - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- getParams() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getParams() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- getParams() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- getParams() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- getpCorrect() - Method in class org.deeplearning4j.util.Viterbi
-
- getPnorm() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getPointAtPrecision(double) - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
Get the point (index, threshold, precision, recall) at the given precision.
Specifically, return the points at the lowest threshold that has precision equal to or greater than the
requested precision.
- getPointAtRecall(double) - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
Get the point (index, threshold, precision, recall) at the given recall.
Specifically, return the points at the highest threshold that has recall equal to or greater than the
requested recall.
- getPointAtThreshold(double) - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
Get the point (index, threshold, precision, recall) at the given threshold.
Note that if the threshold is not found exactly, the next highest threshold exceeding the requested threshold
is returned
- getPossibleLabels() - Method in class org.deeplearning4j.util.Viterbi
-
- getPrecision(int) - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- getPrecisionRecallCurve() - Method in class org.deeplearning4j.eval.ROC
-
Get the precision recall curve as array.
- getPrecisionRecallCurve(int) - Method in class org.deeplearning4j.eval.ROCBinary
-
Get the Precision-Recall curve for the specified output
- getPrecisionRecallCurve(int) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Get the (one vs.
- getPredictedTotal(T) - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
Computes the total number of times the class was predicted by the classifier.
- getPredictionByPredictedClass(int) - Method in class org.deeplearning4j.eval.Evaluation
-
Get a list of predictions, for all data with the specified predicted class, regardless of the actual data
class.
- getPredictionCountsEachClass() - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
- getPredictionErrors() - Method in class org.deeplearning4j.eval.Evaluation
-
Get a list of prediction errors, on a per-record basis
- getPredictions(int, int) - Method in class org.deeplearning4j.eval.Evaluation
-
Get a list of predictions in the specified confusion matrix entry (i.e., for the given actua/predicted class pair)
- getPredictionsByActualClass(int) - Method in class org.deeplearning4j.eval.Evaluation
-
Get a list of predictions, for all data with the specified actual class, regardless of the predicted
class.
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Returns preprocessors, if defined
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Returns preprocessors, if defined
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldMultiDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationMultiDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- getPreProcessor() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate
InputPreProcessor
for this layer, such as a
CnnToFeedForwardPreProcessor
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- getPreProcessorForInputTypeCnnLayers(InputType, String) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getPreprocessorForInputTypeRnnLayers(InputType, String) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getProbabilityHistogram(int) - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
Return a probability histogram of the specified label class index.
- getProbabilityHistogramAllClasses() - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
Return a probability histogram for all predictions/classes.
- getProbabilityOfSuccess() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- getProbAndLabelUsed() - Method in class org.deeplearning4j.eval.ROC
-
- getRecall(int) - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- getRecordMetaData(Class<T>) - Method in class org.deeplearning4j.eval.meta.Prediction
-
Convenience method for getting the record meta data as a particular class (as an alternative to casting it manually).
- getReliabilityDiagram(int) - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
Get the reliability diagram for the specified class
- getReportClass() - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- getReportClass() - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- getReportClass() - Method in class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- getResidualPlot(int) - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
Get the residual plot, only for examples of the specified class..
- getResidualPlotAllClasses() - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
Get the residual plot for all classes combined.
- getROCBinary() - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- getRocCurve() - Method in class org.deeplearning4j.eval.ROC
-
Get the ROC curve, as a set of (threshold, falsePositive, truePositive) points
- getRocCurve(int) - Method in class org.deeplearning4j.eval.ROCBinary
-
Get the ROC curve for the specified output
- getRocCurve(int) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Get the (one vs.
- getRow(int) - Method in class org.deeplearning4j.util.StringGrid
-
- getRowsWithColumnValues(Collection<String>, int) - Method in class org.deeplearning4j.util.StringGrid
-
- getRowsWithDuplicateValuesInColumn(int) - Method in class org.deeplearning4j.util.StringGrid
-
- getRowWithOnlyOneOccurrence(int) - Method in class org.deeplearning4j.util.StringGrid
-
- getSameModeBottomRightPadding(int[], int[], int[], int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get bottom and right padding for same mode only.
- getSameModeTopLeftPadding(int[], int[], int[], int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get top and left padding for same mode only.
- getScore() - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- getScoreVsIter() - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
- getSecondKey() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
-
- getShape(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- getStates() - Method in class org.deeplearning4j.util.Viterbi
-
- getStateViewArray() - Method in interface org.deeplearning4j.nn.api.Updater
-
- getStateViewArray() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getStd() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- getStepFunction() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
This method returns StepFunction defined within this Optimizer instance
- getStepMax() - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- getStore() - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- getStringCollection(String) - Static method in class org.deeplearning4j.util.StringUtils
-
Returns a collection of strings.
- getStrings(String) - Static method in class org.deeplearning4j.util.StringUtils
-
Returns an arraylist of strings.
- getSum() - Method in class org.deeplearning4j.util.SummaryStatistics
-
- getThreshold(int) - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- getThreshold(int) - Method in class org.deeplearning4j.eval.curves.RocCurve
-
- getTitle() - Method in class org.deeplearning4j.eval.curves.BaseCurve
-
- getTitle() - Method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- getTitle() - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- getTitle() - Method in class org.deeplearning4j.eval.curves.ReliabilityDiagram
-
- getTitle() - Method in class org.deeplearning4j.eval.curves.RocCurve
-
- getTokens() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getTopNCorrectCount() - Method in class org.deeplearning4j.eval.Evaluation
-
Return the number of correct predictions according to top N value.
- getTopNTotalCount() - Method in class org.deeplearning4j.eval.Evaluation
-
Return the total number of top N evaluations.
- getTotalMemoryBytes(int, MemoryUseMode, CacheMode, DataBuffer.Type) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- getTotalMemoryBytes(int, MemoryUseMode, CacheMode) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get the total memory use in bytes for the given configuration (using the current ND4J data type)
- getTotalMemoryBytes(int, MemoryUseMode, CacheMode, DataBuffer.Type) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get the total memory use in bytes for the given configuration
- getTotalMemoryBytes(int, MemoryUseMode, CacheMode, DataBuffer.Type) - Method in class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- getTrimmedStringCollection(String) - Static method in class org.deeplearning4j.util.StringUtils
-
Splits a comma separated value String
, trimming leading and trailing whitespace on each value.
- getTrimmedStrings(String) - Static method in class org.deeplearning4j.util.StringUtils
-
Splits a comma separated value String
, trimming leading and trailing whitespace on each value.
- getTruePositiveRate(int) - Method in class org.deeplearning4j.eval.curves.RocCurve
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
-
- getType() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
The type of node; mainly extra meta data
- getUnflattenedType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- getUniqueRows() - Method in class org.deeplearning4j.util.StringGrid
-
- getUpdater() - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- getUpdater() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the ComputationGraphUpdater for the network
- getUpdater() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the updater for this MultiLayerNetwork
- getUpdater(Model) - Static method in class org.deeplearning4j.nn.updater.UpdaterCreator
-
- getUpdater() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- getUpdater() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
Deprecated.
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getUpper() - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
-
- getValue() - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
-
- getVertex(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return a given GraphVertex by name, or null if no vertex with that name exists
- getVertexEdgeNumber() - Method in class org.deeplearning4j.nn.graph.vertex.VertexIndices
-
The edge number.
- getVertexIndex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getVertexIndex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the index of the GraphVertex
- getVertexIndex() - Method in class org.deeplearning4j.nn.graph.vertex.VertexIndices
-
Index of the vertex
- getVertexName() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getVertexName() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the name/label of the GraphVertex
- getVertices() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Returns an array of all GraphVertex objects.
- getX() - Method in class org.deeplearning4j.eval.curves.BaseCurve
-
- getX() - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- getX() - Method in class org.deeplearning4j.eval.curves.ReliabilityDiagram
-
- getX() - Method in class org.deeplearning4j.eval.curves.RocCurve
-
- getY() - Method in class org.deeplearning4j.eval.curves.BaseCurve
-
- getY() - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- getY() - Method in class org.deeplearning4j.eval.curves.ReliabilityDiagram
-
- getY() - Method in class org.deeplearning4j.eval.curves.RocCurve
-
- gibbhVh(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
Gibbs sampling step: hidden ---> visible ---> hidden
- GLOBAL_MEAN - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- GLOBAL_VAR - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- globalConfiguration - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- GlobalPoolingLayer - Class in org.deeplearning4j.nn.conf.layers
-
Global pooling layer - used to do pooling over time for RNNs, and 2d pooling for CNNs.
Supports the following
PoolingType
s: SUM, AVG, MAX, PNORM
Global pooling layer can also handle mask arrays when dealing with variable length inputs.
- GlobalPoolingLayer - Class in org.deeplearning4j.nn.layers.pooling
-
Global pooling layer - used to do pooling over time for RNNs, and 2d pooling for CNNs.
Supports the following
PoolingType
s: SUM, AVG, MAX, PNORM
Global pooling layer can also handle mask arrays when dealing with variable length inputs.
- GlobalPoolingLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- GlobalPoolingLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- gMeasure(int) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the G-measure for the given output
- gMeasure(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculates the average G measure for all outputs using micro or macro averaging
- gMeasure(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Calculate the G-measure for the given output
- gMeasure(double, double) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
Calculate the G-measure from precision and recall
- goldLabel() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- gr(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
Tests if a is greater than b.
- gradient() - Method in interface org.deeplearning4j.nn.api.Model
-
Calculate a gradient
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- gradient(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Calculate the gradient of the negative log probability with respect to the preOutDistributionParams
- gradient(List<String>) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- gradient() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- Gradient - Interface in org.deeplearning4j.nn.gradient
-
Generic gradient
- gradient(List<String>) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
The full gradient as one flat vector
- gradient() - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
The full gradient as one flat vector
- gradient - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- gradient() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- gradient() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- gradient - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Gets the gradient from one training iteration
- gradient() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Gets the gradient from one training iteration
- gradient() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- gradient() - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
Gets the gradient from one training iteration
- gradient - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- gradient() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- gradient - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- gradient() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- gradient - Variable in class org.deeplearning4j.optimize.listeners.SharedGradient
-
- GRADIENT_KEY - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- gradientAndScore() - Method in interface org.deeplearning4j.nn.api.Model
-
Get the gradient and score
- gradientAndScore() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- gradientAndScore() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
The gradient and score for this optimizer
- gradientAndScore() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- gradientCheck - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- gradientCheck(boolean) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- gradientCheck - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- GradientCheckUtil - Class in org.deeplearning4j.gradientcheck
-
A utility for numerically checking gradients.
- gradientForVariable() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- gradientForVariable() - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Gradient look up table
- GradientNormalization - Enum in org.deeplearning4j.nn.conf
-
Gradient normalization strategies.
- gradientNormalization - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- gradientNormalization(GradientNormalization) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Gradient normalization strategy.
- gradientNormalization - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- gradientNormalization(GradientNormalization) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Gradient normalization strategy.
- gradientNormalization - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- gradientNormalization(GradientNormalization) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Gradient normalization strategy.
- gradientNormalization - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- gradientNormalizationThreshold(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise.
L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping.
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- gradientNormalizationThreshold(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise.
L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping.
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- gradientNormalizationThreshold(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise.
L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping.
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- gradients - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- GradientsAccumulator - Interface in org.deeplearning4j.optimize.solvers.accumulation
-
- gradientsFlattened - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- gradientsFlattened - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- GradientStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Normal gradient step function
- GradientStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
-
- GradientStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
-
Normal gradient step function
- GradientStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
-
- gradientViews - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- gradientViews - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- graph - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- GraphBuilder(NeuralNetConfiguration.Builder) - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- GraphBuilder(ComputationGraphConfiguration, NeuralNetConfiguration.Builder) - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- graphBuilder() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Create a GraphBuilder (for creating a ComputationGraphConfiguration).
- GraphBuilder(ComputationGraph) - Constructor for class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Computation Graph to tweak for transfer learning
- GraphBuilderModule - Interface in org.deeplearning4j.nn.conf.module
-
GraphBuilderModule for nn layers.
- GraphVertex - Class in org.deeplearning4j.nn.conf.graph
-
A GraphVertex is a vertex in the computation graph.
- GraphVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- GraphVertex - Interface in org.deeplearning4j.nn.graph.vertex
-
A GraphVertex is a vertex in the computation graph.
- GravesBidirectionalLSTM - Class in org.deeplearning4j.nn.conf.layers
-
LSTM recurrent net, based on Graves: Supervised Sequence Labelling with Recurrent Neural Networks
http://www.cs.toronto.edu/~graves/phd.pdf
- GravesBidirectionalLSTM - Class in org.deeplearning4j.nn.layers.recurrent
-
RNN tutorial: http://deeplearning4j.org/usingrnns.html
READ THIS FIRST
Bdirectional LSTM layer implementation.
- GravesBidirectionalLSTM(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- GravesBidirectionalLSTM(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- GravesBidirectionalLSTM.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- GravesBidirectionalLSTMParamInitializer - Class in org.deeplearning4j.nn.params
-
LSTM Parameter initializer, for LSTM based on
Graves: Supervised Sequence Labelling with Recurrent Neural Networks
http://www.cs.toronto.edu/~graves/phd.pdf
- GravesBidirectionalLSTMParamInitializer() - Constructor for class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- GravesLSTM - Class in org.deeplearning4j.nn.conf.layers
-
LSTM recurrent net, based on Graves: Supervised Sequence Labelling with Recurrent Neural Networks
http://www.cs.toronto.edu/~graves/phd.pdf
- GravesLSTM - Class in org.deeplearning4j.nn.layers.recurrent
-
LSTM layer implementation.
- GravesLSTM(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- GravesLSTM(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- GravesLSTM.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- GravesLSTMParamInitializer - Class in org.deeplearning4j.nn.params
-
LSTM Parameter initializer, for LSTM based on
Graves: Supervised Sequence Labelling with Recurrent Neural Networks
http://www.cs.toronto.edu/~graves/phd.pdf
- GravesLSTMParamInitializer() - Constructor for class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- gz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- i2d - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- ia - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- id - Variable in class org.deeplearning4j.optimize.listeners.SharedGradient
-
- idf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
Inverse document frequency: the total docs divided by the number of times the word
appeared in a document
- IEarlyStoppingTrainer<T extends Model> - Interface in org.deeplearning4j.earlystopping.trainer
-
Interface for early stopping trainers
- IEvaluation<T extends IEvaluation> - Interface in org.deeplearning4j.eval
-
- incrementFalseNegatives(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
- incrementFalsePositive(long) - Method in class org.deeplearning4j.eval.ROC.CountsForThreshold
-
- incrementFalsePositives(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
- incrementIterationCount(Model, int) - Static method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- incrementTrueNegatives(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
- incrementTruePositive(long) - Method in class org.deeplearning4j.eval.ROC.CountsForThreshold
-
- incrementTruePositives(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
- INDArrayDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
- INDArrayDataSetIterator(Iterable<Pair<INDArray, INDArray>>, int) - Constructor for class org.deeplearning4j.datasets.iterator.INDArrayDataSetIterator
-
- index - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- index - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- index - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- index - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- Index - Class in org.deeplearning4j.util
-
An index is a transform of objects augmented with a list and a reverse lookup table
for fast lookups.
- Index() - Constructor for class org.deeplearning4j.util.Index
-
- indexOf(Object) - Method in class org.deeplearning4j.util.Index
-
- inequalityHandling - Variable in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- inferenceWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- inferenceWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- inferenceWorkspaceMode(WorkspaceMode) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
This method defines Workspace mode being used during inference:
NONE: workspace won't be used
SINGLE: one workspace will be used during whole iteration loop
SEPARATE: separate workspaces will be used for feedforward and backprop iteration loops
- inferenceWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- inferenceWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- inferenceWorkspaceMode(WorkspaceMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
This method defines Workspace mode being used during inference:
NONE: workspace won't be used
SINGLE: one workspace will be used during whole iteration loop
SEPARATE: separate workspaces will be used for feedforward and backprop iteration loops
- inferInputType(INDArray) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- inferInputTypes(INDArray...) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- info(Logger, String, Object...) - Static method in class org.deeplearning4j.util.OneTimeLogger
-
- information(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the entropy for a given vector of probabilities.
- init() - Method in interface org.deeplearning4j.nn.api.Model
-
Init the model
- init() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method does initialization of model
PLEASE NOTE: All implementations should track own state, to avoid double spending
- init(NeuralNetConfiguration, INDArray, boolean) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
Initialize the parameters
- init() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Initialize the ComputationGraph network
- init(INDArray, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Initialize the ComputationGraph, optionally with an existing parameters array.
- init() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
Init the model
- init() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
Init the model
- init() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
Init the model
- init() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Initialize the MultiLayerNetwork.
- init(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Initialize the MultiLayerNetwork, optionally with an existing parameters array.
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- init() - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- initCalled - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- initCalled - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- initDone - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- initGradientsView() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method: initializes the flattened gradients array (used in backprop) and sets the appropriate subset in all layers.
- initGradientsView() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method: initializes the flattened gradients array (used in backprop) and sets the appropriate subset in all layers.
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
-
- initialize() - Method in interface org.deeplearning4j.earlystopping.termination.EpochTerminationCondition
-
Initialize the epoch termination condition (often a no-op)
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
-
- initialize() - Method in interface org.deeplearning4j.earlystopping.termination.IterationTerminationCondition
-
Initialize the iteration termination condition (sometimes a no-op)
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
-
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
-
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
-
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
-
- initialize(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Sets the input and labels from this dataset
- initialize(GradientsAccumulator) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- initialize(GradientsAccumulator) - Method in class org.deeplearning4j.optimize.solvers.accumulation.LocalHandler
-
- initialize(GradientsAccumulator) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.MessageHandler
-
This method does initial configuration of given MessageHandler instance
- initializeCurrFromList(List<DataSet>) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
Initializes this data transform fetcher from the passed in datasets
- initializeIterators(List<DataSetIterator>) - Method in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator
-
- initializeLayers(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Base class for initializing the neuralNets based on the input.
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.LSTM
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.OutputLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.RBM
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- initializeWorkspaces(long) - Method in class org.deeplearning4j.datasets.iterator.callbacks.InterleavedDataSetCallback
-
- initialMemory - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- initialMemory - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- initOptimizer() - Method in class org.deeplearning4j.optimize.Solver
-
- initParams() - Method in interface org.deeplearning4j.nn.api.Model
-
- initParams() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- initParams() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- initParams() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- initParams() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- initParams() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- initParams() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- initWeights(int[], float, float) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
- initWeights(double, double, int[], WeightInit, Distribution, INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Initializes a matrix with the given weight initialization scheme.
- initWeights(double, double, int[], WeightInit, Distribution, char, INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
- InMemoryModelSaver<T extends Model> - Class in org.deeplearning4j.earlystopping.saver
-
Save the best (and latest) models for early stopping training to memory for later retrieval
Note: Assumes that network is cloneable via .clone() method
- InMemoryModelSaver() - Constructor for class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- input() - Method in interface org.deeplearning4j.nn.api.Model
-
The input/feature matrix for the model
- input() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- input - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- input() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- input() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- input - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- input() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- input - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- input() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- INPUT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- INPUT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- INPUT_WEIGHT_KEY_BACKWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- INPUT_WEIGHT_KEY_FORWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- inputColumns - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- inputColumns() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Input columns for the dataset
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Input columns for the dataset
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Input columns for the dataset
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- inputColumns() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
-
Deprecated.
The length of a feature vector for an individual example
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
Input columns for the dataset
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
Input columns for the dataset
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- inputColumns() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- inputMaskArray - Variable in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- inputMaskArrayState - Variable in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- inputPreProcessor(String, InputPreProcessor) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- InputPreProcessor - Interface in org.deeplearning4j.nn.conf
-
Input pre processor used
for pre processing input before passing it
to the neural network.
- inputPreProcessor(Integer, InputPreProcessor) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
Specify the processors.
- inputPreProcessors - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- inputPreProcessors - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- inputPreProcessors(Map<Integer, InputPreProcessor>) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- inputPreProcessors - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- inputs - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- InputSplit - Class in org.deeplearning4j.util
-
- inputStreamFromPath(String) - Static method in class org.deeplearning4j.util.DeepLearningIOUtil
-
- InputType - Class in org.deeplearning4j.nn.conf.inputs
-
The InputType class is used to track and define the types of activations etc used in a ComputationGraph.
- InputType() - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType
-
- inputType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- InputType.InputTypeConvolutional - Class in org.deeplearning4j.nn.conf.inputs
-
- InputType.InputTypeConvolutionalFlat - Class in org.deeplearning4j.nn.conf.inputs
-
- InputType.InputTypeFeedForward - Class in org.deeplearning4j.nn.conf.inputs
-
- InputType.InputTypeRecurrent - Class in org.deeplearning4j.nn.conf.inputs
-
- InputType.Type - Enum in org.deeplearning4j.nn.conf.inputs
-
The type of activations in/out of a given GraphVertex
FF: Standard feed-foward (2d minibatch, 1d per example) data
RNN: Recurrent neural network (3d minibatch) time series data
CNN: Convolutional neural n
- InputTypeConvolutional() - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
- InputTypeConvolutionalFlat() - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- InputTypeFeedForward() - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
-
- InputTypeRecurrent(int) - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
-
- InputTypeUtil - Class in org.deeplearning4j.nn.conf.layers
-
Utilities for calculating input types
- InputTypeUtil() - Constructor for class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- InputVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
An InputVertex simply defines the location (and connection structure) of inputs to the ComputationGraph.
- InputVertex(ComputationGraph, String, int, VertexIndices[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- inputVertices - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
A representation of the vertices that are inputs to this vertex (inputs during forward pass)
Specifically, if inputVertices[X].getVertexIndex() = Y, and inputVertices[X].getVertexEdgeNumber() = Z
then the Zth output of vertex Y is the Xth input to this vertex
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
Create a
GraphVertex
instance, for the given computation graph,
given the configuration instance.
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.LSTM
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.OutputLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.RBM
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- instantiate(NeuralNetConfiguration, Collection<IterationListener>, int, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- InterleavedDataSetCallback - Class in org.deeplearning4j.datasets.iterator.callbacks
-
This callback migrates incoming datasets in round-robin manner, to ensure TDA for ParallelWrapper
- InterleavedDataSetCallback(int) - Constructor for class org.deeplearning4j.datasets.iterator.callbacks.InterleavedDataSetCallback
-
- intersection(Collection<T>, Collection<T>) - Static method in class org.deeplearning4j.util.SetUtils
-
- intersectionP(Set<? extends T>, Set<? extends T>) - Static method in class org.deeplearning4j.util.SetUtils
-
- intializeConfigurations() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- InvalidInputTypeException - Exception in org.deeplearning4j.nn.conf.inputs
-
InvalidInputTypeException: Thrown if the GraphVertex cannot handle the type of input provided.
- InvalidInputTypeException(String) - Constructor for exception org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException
-
- InvalidInputTypeException(String, Throwable) - Constructor for exception org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException
-
- InvalidInputTypeException(Throwable) - Constructor for exception org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException
-
- InvalidScoreIterationTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Terminate training at this iteration if score is NaN or Infinite for the last minibatch
- InvalidScoreIterationTerminationCondition() - Constructor for class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
-
- InvalidStepException - Exception in org.deeplearning4j.exception
-
Created by agibsonccc on 8/20/14.
- InvalidStepException(String) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
-
Constructs a new exception with the specified detail message.
- InvalidStepException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
-
Constructs a new exception with the specified detail message and
cause.
- InvalidStepException(Throwable) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
-
Constructs a new exception with the specified cause and a detail
message of (cause==null ? null : cause.toString()) (which
typically contains the class and detail message of cause).
- InvalidStepException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
-
Constructs a new exception with the specified detail message,
cause, suppression enabled or disabled, and writable stack
trace enabled or disabled.
- inverse(RBM.HiddenUnit) - Static method in class org.deeplearning4j.util.RBMUtil
-
- inverse(RBM.VisibleUnit) - Static method in class org.deeplearning4j.util.RBMUtil
-
- invocationCount - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- InvocationType - Enum in org.deeplearning4j.optimize.api
-
This enum holds options for TrainingListener invocation scheme
- invocationType - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- invoke() - Method in interface org.deeplearning4j.optimize.api.IterationListener
-
Change invoke to true
- invoke() - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
- invoke() - Method in class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
- invoke() - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Change invoke to true
- invoke() - Method in class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
-
- invoke() - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener
-
- invoke() - Method in class org.deeplearning4j.optimize.listeners.ScoreIterationListener
-
- invoke() - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- invoke() - Method in class org.deeplearning4j.optimize.listeners.TimeIterationListener
-
- invoked() - Method in interface org.deeplearning4j.optimize.api.IterationListener
-
Get if listener invoked
- invoked() - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
- invoked() - Method in class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
- invoked() - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Get if listener invoked
- invoked() - Method in class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
-
- invoked() - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener
-
- invoked() - Method in class org.deeplearning4j.optimize.listeners.ScoreIterationListener
-
- invoked() - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- invoked() - Method in class org.deeplearning4j.optimize.listeners.TimeIterationListener
-
- invokeListener(Model) - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- IOutputLayer - Interface in org.deeplearning4j.nn.api.layers
-
Interface for output layers (those that calculate gradients with respect to a labels array)
- isDebug - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- isDebug - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- isDone - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- isDone - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- isEligible(String) - Static method in class org.deeplearning4j.util.OneTimeLogger
-
- isEmpty() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- isEmpty() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- isEmpty() - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Returns true if this map contains no key-value mappings.
- isEmpty() - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Returns true if this applyTransformToDestination contains no elements.
- isFirst - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- isFirst - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- isInference() - Method in enum org.deeplearning4j.nn.conf.memory.MemoryType
-
- isInitCalled() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- isInputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- isInputVertex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex is an input vertex
- isInputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- isLeaf() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns whether the node has any children or not
- isMinibatch - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- isMinibatch - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- isMiniBatch() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- isMiniBatch() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- isMiniBatch() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- isMiniBatch() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- isOutputVertex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex is an output vertex
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- isPreTerminal() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Node has one child that is a leaf
- isPretrainLayer() - Method in interface org.deeplearning4j.nn.api.Layer
-
Returns true if the layer can be trained in an unsupervised/pretrain manner (VAE, RBMs etc)
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't
used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- isPretrainUpdaterBlock() - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- isSingleLayerUpdater() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- isSingleLayerUpdater() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- iter - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- iterate(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Run one iteration
- iterate(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
iterate one iteration of the network
- iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
iterate one iteration of the network
- iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- iterate(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- iterate(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- iterationCount - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- iterationCount - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- iterationCount - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- iterationCount - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- iterationDone(Model, int) - Method in interface org.deeplearning4j.optimize.api.IterationListener
-
Event listener for each iteration
- iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
- iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
- iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Event listener for each iteration
- iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
-
- iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener
-
- iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.ScoreIterationListener
-
- iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- iterationDone(Model, int) - Method in class org.deeplearning4j.optimize.listeners.TimeIterationListener
-
- IterationListener - Interface in org.deeplearning4j.optimize.api
-
Each iteration the listener is called, mainly used for debugging or visualizations
- iterationListeners - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- iterationListeners - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- iterationListeners - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- iterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Number of optimization iterations.
- iterations(int) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- iterations - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- iterationsCounter - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- IterationTerminationCondition - Interface in org.deeplearning4j.earlystopping.termination
-
Interface for termination conditions to be evaluated once per iteration (i.e., once per minibatch).
- iterationTerminationConditions(IterationTerminationCondition...) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Termination conditions to be evaluated every iteration (minibatch)
- iterator - Variable in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- iterator - Variable in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- iterator() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- iterator() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- iterator() - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Returns an iterator over the elements in this applyTransformToDestination.
- IteratorDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
A DataSetIterator that works on an Iterator, combining and splitting the input DataSet objects as
required to get a consistent batch size.
- IteratorDataSetIterator(Iterator<DataSet>, int) - Constructor for class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- IteratorMultiDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
A DataSetIterator that works on an Iterator, combining and splitting the input DataSet objects as
required to get a consistent batch size.
- IteratorMultiDataSetIterator(Iterator<MultiDataSet>, int) - Constructor for class org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator
-
- iupdater - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- iUpdater - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- iUpdater - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- iUpdater - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- iz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- l1 - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- l1(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
L1 regularization coefficient (weights only).
- l1 - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- l1(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
L1 regularization coefficient (weights only).
- l1 - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- l1(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
L1 regularization coefficient for the weights.
- l1 - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- l1Bias - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- l1Bias(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
L1 regularization coefficient for the bias.
- l1Bias - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- l1Bias(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
L1 regularization coefficient for the bias.
- l1Bias - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- l1Bias(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
L1 regularization coefficient for the bias.
- l1Bias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- l1ByParam - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- l2 - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- l2(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
L2 regularization coefficient (weights only).
- l2 - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- l2(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
L2 regularization coefficient (weights only).
- l2 - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- l2(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
L2 regularization coefficient for the weights.
- l2 - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- l2Bias - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- l2Bias(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
L2 regularization coefficient for the bias.
- l2Bias - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- l2Bias(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
L2 regularization coefficient for the bias.
- l2Bias - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- l2Bias(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
L2 regularization coefficient for the bias.
- l2Bias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- l2ByParam - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- L2NormalizeVertex - Class in org.deeplearning4j.nn.conf.graph
-
L2NormalizeVertex performs L2 normalization on a single input.
- L2NormalizeVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- L2NormalizeVertex(int[], double) - Constructor for class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- L2NormalizeVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
L2NormalizeVertex performs L2 normalization on a single input.
- L2NormalizeVertex(ComputationGraph, String, int, int[], double) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- L2NormalizeVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], int[], double) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- L2Vertex - Class in org.deeplearning4j.nn.conf.graph
-
L2Vertex calculates the L2 least squares error of two inputs.
- L2Vertex() - Constructor for class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- L2Vertex(double) - Constructor for class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- L2Vertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
L2Vertex calculates the L2 least squares error of two inputs.
- L2Vertex(ComputationGraph, String, int, double) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- L2Vertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], double) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- label() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- labelProbabilities(INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Returns the probabilities for each label
for each example row wise
- labelProbabilities(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Returns the probabilities for each label
for each example row wise
- labelProbabilities(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Returns the probabilities for each label
for each example row wise
- labelProbabilities(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns the probabilities for each label
for each example row wise
- labels - Variable in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- labels - Variable in class org.deeplearning4j.nn.layers.LossLayer
-
- labels - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- labelsList - Variable in class org.deeplearning4j.eval.Evaluation
-
- lambda - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- lambda(double) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- lambda - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- lastAct - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- lastBatch - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- lastBP - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastChild() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- lastEE - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastES - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastEtlTime - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- lastEtlTime - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- lastFF - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastIteration - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastMemCell - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- lastStep - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- LastTimeStepVertex - Class in org.deeplearning4j.nn.conf.graph.rnn
-
LastTimeStepVertex is used in the context of recurrent neural network activations, to go from 3d (time series)
activations to 2d activations, by extracting out the last time step of activations for each example.
This can be used for example in sequence to sequence architectures, and potentially for sequence classification.
- LastTimeStepVertex(String) - Constructor for class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- LastTimeStepVertex - Class in org.deeplearning4j.nn.graph.vertex.impl.rnn
-
LastTimeStepVertex is used in the context of recurrent neural network activations, to go from 3d (time series)
activations to 2d activations, by extracting out the last time step of activations for each example.
This can be used for example in sequence to sequence architectures, and potentially for sequence classification.
- LastTimeStepVertex(ComputationGraph, String, int, String) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- LastTimeStepVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], String) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- Layer - Interface in org.deeplearning4j.nn.api
-
Interface for a layer of a neural network.
- Layer - Class in org.deeplearning4j.nn.conf.layers
-
A neural network layer.
- Layer(Layer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.Layer
-
- layer(Layer) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer.Builder
-
- layer - Variable in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- layer - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- layer(Layer) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Layer class.
- layer - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- layer(int, Layer) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- Layer.Builder<T extends Layer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- Layer.TrainingMode - Enum in org.deeplearning4j.nn.api
-
- Layer.Type - Enum in org.deeplearning4j.nn.api
-
- layerConf() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- layerConf() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- layerConf() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- layerId() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- layerId() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- layerId() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- layerIndex - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- layerMap - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- LayerMemoryReport - Class in org.deeplearning4j.nn.conf.memory
-
A
MemoryReport
Designed to report estimated memory use for a single layer or graph vertex.
- LayerMemoryReport(LayerMemoryReport.Builder) - Constructor for class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- LayerMemoryReport.Builder - Class in org.deeplearning4j.nn.conf.memory
-
- layerName - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- layerName - Variable in class org.deeplearning4j.nn.conf.layers.Layer
-
- layers - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
A list of layers.
- layers - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- layersByName - Variable in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- LayerUpdater - Class in org.deeplearning4j.nn.updater
-
Updater for a single layer, excluding MultiLayerNetwork (which also implements the Layer interface)
- LayerUpdater(Layer) - Constructor for class org.deeplearning4j.nn.updater.LayerUpdater
-
- LayerUpdater(Layer, INDArray) - Constructor for class org.deeplearning4j.nn.updater.LayerUpdater
-
- LayerValidation - Class in org.deeplearning4j.nn.conf.layers
-
Created by Alex on 22/02/2017.
- LayerValidation() - Constructor for class org.deeplearning4j.nn.conf.layers.LayerValidation
-
- LayerValidation - Class in org.deeplearning4j.util
-
Created by Alex on 12/11/2016.
- LayerValidation() - Constructor for class org.deeplearning4j.util.LayerValidation
-
- LayerVertex - Class in org.deeplearning4j.nn.conf.graph
-
LayerVertex is a GraphVertex with a neural network Layer (and, optionally an
InputPreProcessor
) in it
- LayerVertex(NeuralNetConfiguration, InputPreProcessor) - Constructor for class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- LayerVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
LayerVertex is a GraphVertex with a neural network Layer (and, optionally an
InputPreProcessor
) in it
- LayerVertex(ComputationGraph, String, int, Layer, InputPreProcessor, boolean) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
Create a network input vertex:
- LayerVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], Layer, InputPreProcessor, boolean) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- layerWiseConfigurations - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- LBFGS - Class in org.deeplearning4j.optimize.solvers
-
LBFGS
- LBFGS(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LBFGS
-
- LBFGS(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LBFGS
-
- leakyreluAlpha - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Deprecated.
- leakyreluAlpha(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- leakyreluAlpha - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Deprecated.
- learningRate - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- learningRate(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Learning rate.
- learningRate - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- learningRate(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Learning rate.
- learningRate - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- learningRate(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Learning rate.
- learningRate - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- learningRateByParam - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- learningRateDecayPolicy(LearningRatePolicy) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Learning rate decay policy.
- learningRateDecayPolicy(LearningRatePolicy) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Learning rate decay policy.
- learningRateDecayPolicy(LearningRatePolicy) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Learning rate decay policy.
- learningRatePolicy - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- LearningRatePolicy - Enum in org.deeplearning4j.nn.conf
-
Learning Rate Policy
How to decay learning rate during training.
- learningRatePolicy - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- learningRatePolicy - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- learningRatePolicy - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- learningRateSchedule - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- learningRateSchedule(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Learning rate schedule.
- learningRateSchedule - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- learningRateSchedule(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Learning rate schedule.
- learningRateSchedule - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- learningRateSchedule(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Learning rate schedule.
- learningRateSchedule - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- learningRateScoreBasedDecayRate(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Rate to decrease learningRate by when the score stops improving.
- LegacyDistributionDeserializer - Class in org.deeplearning4j.nn.conf.distribution.serde
-
Jackson Json deserializer to handle legacy format for distributions.
Now, we use 'type' field which contains class information.
Previously, we used wrapper objects for type information instead (see TestDistributionDeserializer for examples)
- LegacyDistributionDeserializer() - Constructor for class org.deeplearning4j.nn.conf.distribution.serde.LegacyDistributionDeserializer
-
- LegacyDistributionHelper - Class in org.deeplearning4j.nn.conf.distribution.serde
-
A dummy helper "distribution" for deserializing distributions in legacy/different JSON format.
- leverageTo(String) - Method in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
This method is OPTIONAL, and written mostly for future use
- limitDecimalTo2(double) - Static method in class org.deeplearning4j.util.StringUtils
-
- LineGradientDescent - Class in org.deeplearning4j.optimize.solvers
-
Stochastic Gradient Descent with Line Search
- LineGradientDescent(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LineGradientDescent
-
- LineGradientDescent(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LineGradientDescent
-
- lineMaximizer - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- LineOptimizer - Interface in org.deeplearning4j.optimize.api
-
Line optimizer interface adapted from mallet
- list() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Create a ListBuilder (for creating a MultiLayerConfiguration)
Usage:
- list(Layer...) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Create a ListBuilder (for creating a MultiLayerConfiguration) with the specified layers
Usage:
- ListBuilder(NeuralNetConfiguration.Builder, Map<Integer, NeuralNetConfiguration.Builder>) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- ListBuilder(NeuralNetConfiguration.Builder) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- ListDataSetIterator<T extends org.nd4j.linalg.dataset.DataSet> - Class in org.deeplearning4j.datasets.iterator.impl
-
Wraps a data applyTransformToDestination collection
- ListDataSetIterator(Collection<T>, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- ListDataSetIterator(Collection<T>) - Constructor for class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
Initializes with a batch of 5
- listener(IterationListener...) - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- listeners - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- listeners(Collection<IterationListener>) - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- LocalFileGraphSaver - Class in org.deeplearning4j.earlystopping.saver
-
Save the best (and latest/most recent)
ComputationGraph
s learned during early stopping training to the local file system.
Instances of this class will save 3 files for best (and optionally, latest) models:
(a) The network configuration: bestGraphConf.json
(b) The network parameters: bestGraphParams.bin
(c) The network updater: bestGraphUpdater.bin
NOTE: The model updater is an object that contains the internal state for training features such as AdaGrad, Momentum
and RMSProp.
The updater is
not required to use the network at test time; it is saved in case further training is required.
- LocalFileGraphSaver(String) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
Constructor that uses default character set for configuration (json) encoding
- LocalFileGraphSaver(String, Charset) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- LocalFileModelSaver - Class in org.deeplearning4j.earlystopping.saver
-
Save the best (and latest/most recent) models learned during early stopping training to the local file system.
Instances of this class will save 3 files for best (and optionally, latest) models:
(a) The network configuration: bestModelConf.json
(b) The network parameters: bestModelParams.bin
(c) The network updater: bestModelUpdater.bin
NOTE: The model updater is an object that contains the internal state for training features such as AdaGrad, Momentum
and RMSProp.
The updater is not required to use the network at test time; it is saved in case further training is required.
- LocalFileModelSaver(String) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
Constructor that uses default character set for configuration (json) encoding
- LocalFileModelSaver(String, Charset) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- LocalHandler - Class in org.deeplearning4j.optimize.solvers.accumulation
-
MessageHandler implementation suited for ParallelWrapper running on single box
PLEASE NOTE: This handler does NOT provide any network connectivity.
- LocalHandler() - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.LocalHandler
-
- LocalResponseNormalization - Class in org.deeplearning4j.nn.conf.layers
-
Created by nyghtowl on 10/29/15.
- LocalResponseNormalization - Class in org.deeplearning4j.nn.layers.normalization
-
Deep neural net normalization approach normalizes activations between layers
"brightness normalization"
Used for nets like AlexNet
- LocalResponseNormalization(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- LocalResponseNormalization(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- LocalResponseNormalization.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- LocalResponseNormalizationHelper - Interface in org.deeplearning4j.nn.layers.normalization
-
Helper for the local response normalization layer.
- lock - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- lockGammaBeta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- lockGammaBeta(boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- lockGammaBeta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- locks - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- log - Static variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- log - Static variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- log - Static variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- log - Static variable in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- log - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- log2 - Static variable in class org.deeplearning4j.util.MathUtils
-
The natural logarithm of 2.
- log2(double) - Static method in class org.deeplearning4j.util.MathUtils
-
Returns the logarithm of a for base 2.
- logger - Static variable in class org.deeplearning4j.util.TestDataSetConsumer
-
- logs2probs(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
Converts an array containing the natural logarithms of
probabilities stored in a vector back into probabilities.
- logTestMode(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- logTestMode(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- lossFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- lossFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
-
- lossFn - Variable in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- lossFunction(LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- lossFunction(ILossFunction) - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- lossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- lossFunction(LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- lossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- lossFunction(IActivation, LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Configure the VAE to use the specified loss function for the reconstruction, instead of a ReconstructionDistribution.
- lossFunction(Activation, LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Configure the VAE to use the specified loss function for the reconstruction, instead of a ReconstructionDistribution.
- lossFunction(IActivation, ILossFunction) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Configure the VAE to use the specified loss function for the reconstruction, instead of a ReconstructionDistribution.
- LossFunctionWrapper - Class in org.deeplearning4j.nn.conf.layers.variational
-
LossFunctionWrapper allows training of a VAE model with a standard (possibly deterministic) neural network loss function
for the reconstruction, instead of using a
ReconstructionDistribution
as would normally be done with a VAE model.
- LossFunctionWrapper(IActivation, ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- LossFunctionWrapper(Activation, ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- LossLayer - Class in org.deeplearning4j.nn.conf.layers
-
LossLayer is a flexible output "layer" that performs a loss function on
an input without MLP logic.
- LossLayer(LossLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.LossLayer
-
- LossLayer - Class in org.deeplearning4j.nn.layers
-
LossLayer is a flexible output "layer" that performs a loss function on
an input without MLP logic.
- LossLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.LossLayer
-
- LossLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.LossLayer
-
- LossLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- lrPolicyDecayRate - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- lrPolicyDecayRate(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set the decay rate for the learning rate decay policy.
- lrPolicyDecayRate - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- lrPolicyDecayRate - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- lrPolicyPower - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- lrPolicyPower(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set the power used for learning rate inverse policy.
- lrPolicyPower - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- lrPolicyPower - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- lrPolicySteps - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- lrPolicySteps(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set the number of steps used for learning decay rate steps policy.
- lrPolicySteps - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- lrPolicySteps - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- lrSchedulesEqual(Layer, String, Layer, String) - Static method in class org.deeplearning4j.nn.updater.UpdaterUtils
-
- lrScoreBasedDecay - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- lrScoreBasedDecay - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- LSTM - Class in org.deeplearning4j.nn.conf.layers
-
LSTM recurrent net without peephole connections.
- LSTM - Class in org.deeplearning4j.nn.layers.recurrent
-
LSTM layer implementation.
- LSTM(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- LSTM(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- LSTM.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- LSTMHelper - Interface in org.deeplearning4j.nn.layers.recurrent
-
Helper for the recurrent LSTM layer (no peephole connections).
- LSTMHelpers - Class in org.deeplearning4j.nn.layers.recurrent
-
RNN tutorial: http://deeplearning4j.org/usingrnns.html
READ THIS FIRST if you want to understand what the heck is happening here.
- LSTMParamInitializer - Class in org.deeplearning4j.nn.params
-
LSTM Parameter initializer, for LSTM based on
Graves: Supervised Sequence Labelling with Recurrent Neural Networks
http://www.cs.toronto.edu/~graves/phd.pdf
- LSTMParamInitializer() - Constructor for class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- main(String[]) - Static method in class org.deeplearning4j.eval.ConfusionMatrix
-
- manhattanDistance(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This will calculate the Manhattan distance between two sets of points.
- mapByPrimaryKey(int) - Method in class org.deeplearning4j.util.StringGrid
-
- mapper() - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Object mapper for serialization of configurations
- mapperYaml() - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Object mapper for serialization of configurations
- mask - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- maskArray - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- maskArray - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- maskedPoolingConvolution(PoolingType, INDArray, INDArray, boolean, int) - Static method in class org.deeplearning4j.util.MaskedReductionUtil
-
- maskedPoolingEpsilonCnn(PoolingType, INDArray, INDArray, INDArray, boolean, int) - Static method in class org.deeplearning4j.util.MaskedReductionUtil
-
- maskedPoolingEpsilonTimeSeries(PoolingType, INDArray, INDArray, INDArray, int) - Static method in class org.deeplearning4j.util.MaskedReductionUtil
-
- maskedPoolingTimeSeries(PoolingType, INDArray, INDArray, int) - Static method in class org.deeplearning4j.util.MaskedReductionUtil
-
- MaskedReductionUtil - Class in org.deeplearning4j.util
-
This is a TEMPORARY class for implementing global pooling with masking.
- MaskedReductionUtil() - Constructor for class org.deeplearning4j.util.MaskedReductionUtil
-
- MaskState - Enum in org.deeplearning4j.nn.api
-
MaskState: specifies whether a mask should be applied or not.
- maskState - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- MathUtils - Class in org.deeplearning4j.util
-
This is a math utils class.
- MathUtils() - Constructor for class org.deeplearning4j.util.MathUtils
-
- matthewsCorrelation(int) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the binary Mathews correlation coefficient, for the specified class.
MCC = (TP*TN - FP*FN) / sqrt((TP+FP)(TP+FN)(TN+FP)(TN+FN))
- matthewsCorrelation(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the average binary Mathews correlation coefficient, using macro or micro averaging.
MCC = (TP*TN - FP*FN) / sqrt((TP+FP)(TP+FN)(TN+FP)(TN+FN))
Note: This is NOT the same as the multi-class Matthews correlation coefficient
- matthewsCorrelation(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Calculate the Matthews correlation coefficient for the specified output
- matthewsCorrelation(long, long, long, long) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
Calculate the binary Matthews correlation coefficient from counts
- max(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
- MaxEpochsTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Terminate training if the number of epochs exceeds the maximum number of epochs
- MaxEpochsTerminationCondition(int) - Constructor for class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
-
- maxIndex(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
Returns index of maximum element in a given
array of doubles.
- maxNumLineSearchIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- maxNumLineSearchIterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Maximum number of line search iterations.
- maxNumLineSearchIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- maxNumLineSearchIterations - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- maxOutcomeForRow(int) - Method in class org.deeplearning4j.nn.simple.multiclass.RankClassificationResult
-
Get the max index for the given row
- maxOutcomes() - Method in class org.deeplearning4j.nn.simple.multiclass.RankClassificationResult
-
- MaxScoreIterationTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Iteration termination condition for terminating training if the minibatch score exceeds a certain value.
- MaxScoreIterationTerminationCondition(double) - Constructor for class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
-
- MaxTimeIterationTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Terminate training based on max time.
- MaxTimeIterationTerminationCondition(long, TimeUnit) - Constructor for class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- mds - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- mdsIterator - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- mean(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
Computes the mean for an array of doubles.
- meanAbsoluteError(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- meanSquaredError(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- memCellActivations - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- memCellState - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- memoryParameters(long, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
This method allows to define buffer memory parameters for this GradientsAccumulator
Default values: 100MB initialMemory, 5 queueSize
- MemoryReport - Class in org.deeplearning4j.nn.conf.memory
-
A MemoryReport is designed to represent the estimated memory usage of a model, as a function of:
- Training vs.
- MemoryReport() - Constructor for class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- MemoryType - Enum in org.deeplearning4j.nn.conf.memory
-
Type of memory
- MemoryUseMode - Enum in org.deeplearning4j.nn.conf.memory
-
This simple enumeration defines the memory is used during inference or training.
- merge(Evaluation) - Method in class org.deeplearning4j.eval.Evaluation
-
Merge the other evaluation object into this one.
- merge(EvaluationBinary) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- merge(EvaluationCalibration) - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
- merge(T) - Method in interface org.deeplearning4j.eval.IEvaluation
-
- merge(RegressionEvaluation) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- merge(ROC) - Method in class org.deeplearning4j.eval.ROC
-
Merge this ROC instance with another.
- merge(ROCBinary) - Method in class org.deeplearning4j.eval.ROCBinary
-
- merge(ROCMultiClass) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
Merge this ROCMultiClass instance with another.
- merge(Layer, int) - Method in interface org.deeplearning4j.nn.api.Layer
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
Averages the given logistic regression from a mini batch into this layer
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
Averages the given logistic regression from a mini batch into this layer
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- merge(Layer, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- merge(MultiLayerNetwork, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- merge(int, int) - Method in class org.deeplearning4j.util.StringGrid
-
- mergeCoords(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This will merge the coordinates of the given coordinate system.
- mergeCoords(List<Double>, List<Double>) - Static method in class org.deeplearning4j.util.MathUtils
-
This will merge the coordinates of the given coordinate system.
- MergeVertex - Class in org.deeplearning4j.nn.conf.graph
-
A MergeVertex is used to combine the activations of two or more layers/GraphVertex by means of concatenation/merging.
Exactly how this is done depends on the type of input.
For 2d (feed forward layer) inputs: MergeVertex([numExamples,layerSize1],[numExamples,layerSize2]) -> [numExamples,layerSize1 + layerSize2]
For 3d (time series) inputs: MergeVertex([numExamples,layerSize1,timeSeriesLength],[numExamples,layerSize2,timeSeriesLength])
-> [numExamples,layerSize1 + layerSize2,timeSeriesLength]
For 4d (convolutional) inputs: MergeVertex([numExamples,depth1,width,height],[numExamples,depth2,width,height])
-> [numExamples,depth1 + depth2,width,height]
- MergeVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- MergeVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
A MergeVertex is used to combine the activations of two or more layers/GraphVertex by means of concatenation/merging.
Exactly how this is done depends on the type of input.
For 2d (feed forward layer) inputs: MergeVertex([numExamples,layerSize1],[numExamples,layerSize2]) -> [numExamples,layerSize1 + layerSize2]
For 3d (time series) inputs: MergeVertex([numExamples,layerSize1,timeSeriesLength],[numExamples,layerSize2,timeSeriesLength])
-> [numExamples,layerSize1 + layerSize2,timeSeriesLength]
For 4d (convolutional) inputs: MergeVertex([numExamples,depth1,width,height],[numExamples,depth2,width,height])
-> [numExamples,depth1 + depth2,width,height]
- MergeVertex(ComputationGraph, String, int) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- MergeVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- messageHandler(MessageHandler) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
This method allows to specify MessageHandler instance
Default value: EncodingHandler
- MessageHandler - Interface in org.deeplearning4j.optimize.solvers.accumulation
-
This interface describes communication primitive for GradientsAccumulator
PLEASE NOTE: All implementations of this interface must be thread-safe.
- messages - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- migrate(MultiDataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- migrate(DataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- min(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
- minibatch(boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
If doing minibatch training or not.
- miniBatch - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- miniBatch(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Process input as minibatch vs full dataset.
- miniBatch - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- miniBatch - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- minimize - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- minimize(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Objective function to minimize or maximize cost function
Default set to minimize true.
- minimize - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- minimize - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- minThreshold - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- model - Variable in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- Model - Interface in org.deeplearning4j.nn.api
-
A Model is meant for predicting something from data.
- model(Model) - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- model - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- modelSaver(EarlyStoppingModelSaver<T>) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
How should models be saved? (Default: in memory)
- ModelSavingCallback - Class in org.deeplearning4j.optimize.listeners.callbacks
-
This callback will save model after each EvaluativeListener invocation.
- ModelSavingCallback(String) - Constructor for class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
This constructor will create ModelSavingCallback instance that will save models in current folder
PLEASE NOTE: Make sure you have write access to the current folder
- ModelSavingCallback(File, String) - Constructor for class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
This constructor will create ModelSavingCallback instance that will save models in specified folder
PLEASE NOTE: Make sure you have write access to the target folder
- ModelSerializer - Class in org.deeplearning4j.util
-
Utility class suited to save/restore neural net models
- momentum - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Deprecated.
- momentum(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- momentum - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Deprecated.
- momentum(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Momentum rate.
- momentum - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Deprecated.
- momentum(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- momentum - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
Deprecated.
- momentumAfter - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Deprecated.
- momentumAfter(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- momentumAfter(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Momentum schedule.
- momentumAfter(Map<Integer, Double>) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- momentumSchedule - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Deprecated.
- momentumSchedule - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Deprecated.
- momentumSchedule - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
Deprecated.
- movingAverage(INDArray, int) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Calculate a moving average given the length
- MovingWindowBaseDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
DataSetIterator for moving window (rotating matrices)
- MovingWindowBaseDataSetIterator(int, int, DataSet, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.MovingWindowBaseDataSetIterator
-
- MovingWindowDataSetFetcher - Class in org.deeplearning4j.datasets.iterator.impl
-
Moving window data fetcher.
- MovingWindowDataSetFetcher(DataSet, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MovingWindowDataSetFetcher
-
- MovingWindowMatrix - Class in org.deeplearning4j.util
-
Moving window on a matrix (usually used for images)
Given a: This is a list of flattened arrays:
1 1 1 1 1 1 2 2
2 2 2 2 ----> 1 1 2 2
3 3 3 3 3 3 4 4
4 4 4 4 3 3 4 4
- MovingWindowMatrix(INDArray, int, int, boolean) - Constructor for class org.deeplearning4j.util.MovingWindowMatrix
-
- MovingWindowMatrix(INDArray, int, int) - Constructor for class org.deeplearning4j.util.MovingWindowMatrix
-
Same as calling new MovingWindowMatrix(toSlice,windowRowSize,windowColumnSize,false)
- MultiBoolean - Class in org.deeplearning4j.datasets.iterator.parallel
-
This is utility class, that allows easy handling of multiple joint boolean states.
- MultiBoolean(int) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.MultiBoolean
-
- MultiBoolean(int, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.MultiBoolean
-
- MultiBoolean(int, boolean, boolean) - Constructor for class org.deeplearning4j.datasets.iterator.parallel.MultiBoolean
-
- MultiDataSetIteratorAdapter - Class in org.deeplearning4j.datasets.iterator.impl
-
Iterator that adapts a DataSetIterator to a MultiDataSetIterator
- MultiDataSetIteratorAdapter(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- MultiDataSetWrapperIterator - Class in org.deeplearning4j.datasets.iterator
-
This class is simple wrapper that takes single-input MultiDataSets and converts them to DataSets on the fly
PLEASE NOTE: This only works if number of features/labels/masks is 1
- MultiDataSetWrapperIterator(MultiDataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- MultiDimensionalMap<K,T,V> - Class in org.deeplearning4j.util
-
Multiple key map
- MultiDimensionalMap(Map<Pair<K, T>, V>) - Constructor for class org.deeplearning4j.util.MultiDimensionalMap
-
- MultiDimensionalMap.Entry<K,T,V> - Class in org.deeplearning4j.util
-
- MultiDimensionalSet<K,V> - Class in org.deeplearning4j.util
-
Created by agibsonccc on 4/29/14.
- MultiDimensionalSet(Set<Pair<K, V>>) - Constructor for class org.deeplearning4j.util.MultiDimensionalSet
-
- MultiLayerConfiguration - Class in org.deeplearning4j.nn.conf
-
Configuration for a multi layer network
- MultiLayerConfiguration() - Constructor for class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- MultiLayerConfiguration.Builder - Class in org.deeplearning4j.nn.conf
-
- MultiLayerConfigurationDeserializer - Class in org.deeplearning4j.nn.conf.serde
-
- MultiLayerConfigurationDeserializer(JsonDeserializer<?>) - Constructor for class org.deeplearning4j.nn.conf.serde.MultiLayerConfigurationDeserializer
-
- MultiLayerNetwork - Class in org.deeplearning4j.nn.multilayer
-
MultiLayerNetwork is a neural network with multiple layers in a stack, and usually an output layer.
- MultiLayerNetwork(MultiLayerConfiguration) - Constructor for class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- MultiLayerNetwork(String, INDArray) - Constructor for class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Initialize the network based on the configuration
- MultiLayerNetwork(MultiLayerConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Initialize the network based on the configuraiton
- MultiLayerUpdater - Class in org.deeplearning4j.nn.updater
-
MultiLayerUpdater: Gradient updater for MultiLayerNetworks.
- MultiLayerUpdater(MultiLayerNetwork) - Constructor for class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- MultiLayerUpdater(MultiLayerNetwork, INDArray) - Constructor for class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- MultiLayerUtil - Class in org.deeplearning4j.util
-
Various cooccurrences for manipulating a multi layer network
- MultipleEpochsIterator - Class in org.deeplearning4j.datasets.iterator
-
A dataset iterator for doing multiple passes over a dataset
- MultipleEpochsIterator(int, DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- MultipleEpochsIterator(int, DataSetIterator, int) - Constructor for class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
Deprecated.
- MultipleEpochsIterator(DataSetIterator, int, long) - Constructor for class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
Deprecated.
- MultipleEpochsIterator(DataSetIterator, long) - Constructor for class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- MultipleEpochsIterator(int, DataSet) - Constructor for class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- MultiThreadUtils - Class in org.deeplearning4j.util
-
- n(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
Number of adjacent kernel maps to use when doing LRN.
- n - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- name(String) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Layer name assigns layer string name.
- name(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
Layer name assigns layer string name.
- negative() - Method in class org.deeplearning4j.eval.Evaluation
-
Total negatives true negatives + false negatives
- NegativeDefaultStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Inverse step function
- NegativeDefaultStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
-
- NegativeDefaultStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
-
Inverse step function
- NegativeDefaultStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
-
- NegativeGradientStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Subtract the line
- NegativeGradientStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
-
- NegativeGradientStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
-
Subtract the line
- NegativeGradientStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- negLogProbability(INDArray, INDArray, boolean) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Calculate the negative log probability (summed or averaged over each example in the minibatch)
- network - Variable in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- networkInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- networkInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
List of inputs to the network, by name
- networkInputTypes - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- NetworkMemoryReport - Class in org.deeplearning4j.nn.conf.memory
-
Network memory reports is a class that is used to store/represent the memory requirements of a
MultiLayerNetwork
or
ComputationGraph
,
composed of multiple layers and/or vertices.
- NetworkMemoryReport(Map<String, MemoryReport>, Class<?>, String, InputType...) - Constructor for class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- networkOutputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- networkOutputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
List of network outputs, by name
- NeuralNetConfiguration - Class in org.deeplearning4j.nn.conf
-
A Serializable configuration
for neural nets that covers per layer parameters
- NeuralNetConfiguration() - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- NeuralNetConfiguration.Builder - Class in org.deeplearning4j.nn.conf
-
- NeuralNetConfiguration.ListBuilder - Class in org.deeplearning4j.nn.conf
-
Fluent interface for building a list of configurations
- NeuralNetwork - Interface in org.deeplearning4j.nn.api
-
- NeuralNetworkPrototype - Interface in org.deeplearning4j.nn.api
-
- newEpoch - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- newExecutorService() - Static method in class org.deeplearning4j.util.MultiThreadUtils
-
- newHashBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
-
Thread safe hash map impl
- newShape - Variable in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- newThreadSafeHashBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
-
Thread safe hash map implementation
- newThreadSafeTreeBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
-
Thread safe sorted map implementation
- newTreeBackedMap() - Static method in class org.deeplearning4j.util.MultiDimensionalMap
-
Tree map implementation
- next() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Like the standard next method but allows a
customizable number of examples returned
- next() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Returns the next element in the iteration.
- next(int) - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Like the standard next method but allows a
customizable number of examples returned
- next() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Returns the next element in the iteration.
- next(int) - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
Like the standard next method but allows a
customizable number of examples returned
- next() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
Returns the next element in the iteration.
- next(int) - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Like the standard next method but allows a
customizable number of examples returned
- next() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Returns the next element in the iteration.
- next(int) - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldMultiDataSetIterator
-
Fetch the next 'num' examples.
- next() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldMultiDataSetIterator
-
Returns the next element in the iteration.
- next() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- next() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
-
Deprecated.
Returns the next data applyTransformToDestination
- next(int) - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationMultiDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationMultiDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
Returns the next element in the iteration.
- next(int) - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
Returns the next element in the iteration.
- next() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- next() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
Like the standard next method but allows a
customizable number of examples returned
- next() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
Like the standard next method but allows a
customizable number of examples returned
- next() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
Returns the next element in the iteration.
- next() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- next() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- nextElement - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- nextElement - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- nextFor() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- nextFor(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- nextFor(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.FileSplitParallelDataSetIterator
-
- nextFor(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator
-
- nextPowOf2(long) - Static method in class org.deeplearning4j.util.MathUtils
-
See: http://stackoverflow.com/questions/466204/rounding-off-to-nearest-power-of-2
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- nIn - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
- nIn - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- NONE - Static variable in class org.deeplearning4j.util.StringGrid
-
- Norm2Termination - Class in org.deeplearning4j.optimize.terminations
-
Terminate if the norm2 of the gradient is < a certain tolerance
- Norm2Termination(double) - Constructor for class org.deeplearning4j.optimize.terminations.Norm2Termination
-
- NormalDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
A normal distribution.
- NormalDistribution(double, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
Create a normal distribution
with the given mean and std
- normalize(double, double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
Normalize a value
(val - min) / (max - min)
- normalize(double[], double) - Static method in class org.deeplearning4j.util.MathUtils
-
Normalizes the doubles in the array using the given value.
- NORMALIZER_BIN - Static variable in class org.deeplearning4j.util.ModelSerializer
-
- normalizeToOne(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- nOut - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
- nOut - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Set the size of the VAE state Z.
- nOutReplace(int, int, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
- nOutReplace(int, int, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
- nOutReplace(int, int, WeightInit, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(int, int, Distribution, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(int, int, WeightInit, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(int, int, Distribution, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(String, int, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Modify the architecture of a vertex layer by changing nOut
Note this will also affect the vertex layer that follows the layer specified, unless it is the output layer
Currently does not support modifying nOut of layers that feed into non-layer vertices like merge, subset etc
To modify nOut for such vertices use remove vertex, followed by add vertex
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(String, int, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Modify the architecture of a vertex layer by changing nOut
Note this will also affect the vertex layer that follows the layer specified, unless it is the output layer
Currently does not support modifying nOut of layers that feed into non-layer vertices like merge, subset etc
To modify nOut for such vertices use remove vertex, followed by add vertex
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(String, int, Distribution, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Modified nOut of specified layer.
- nOutReplace(String, int, WeightInit, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- nOutReplace(String, int, Distribution, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- nOutReplace(String, int, WeightInit, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- numChannels(int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Returns the number of
feature maps for a given shape (must be at least 3 dimensions
- numClasses() - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
- numColumns() - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- numElementsDrained - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- numElementsReady - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- numEpochs - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Total number of examples in the dataset
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Total number of examples in the dataset
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Total number of examples in the dataset
- numExamples - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
Total number of examples in the dataset
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
Total number of examples in the dataset
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- numExamples() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- numFeatureMap(NeuralNetConfiguration) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- numIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- numIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- numIterations - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- numLabels() - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Returns the number of labels - (i.e., size of the prediction/labels arrays) - if known.
- numLabels() - Method in class org.deeplearning4j.eval.ROCBinary
-
Returns the number of labels - (i.e., size of the prediction/labels arrays) - if known.
- numLabels() - Method in interface org.deeplearning4j.nn.api.Classifier
-
Returns the number of possible labels
- numLabels() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Returns the number of possible labels
- numLabels() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Returns the number of possible labels
- numLabels() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns the number of possible labels
- numOutcomes - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- numParams() - Method in interface org.deeplearning4j.nn.api.Model
-
the number of parameters for the model
- numParams(boolean) - Method in interface org.deeplearning4j.nn.api.Model
-
the number of parameters for the model
- numParams(NeuralNetConfiguration) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
- numParams(Layer) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- numParams() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- numParams() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
The number of parameters for the model
- numParams(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
The number of parameters for the model
- numParams(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- numParams() - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
The number of parameters for the model, for backprop (i.e., excluding visible bias)
- numParams() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- numParams() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns a 1 x m vector where the vector is composed of
a flattened vector of all of the weights for the
various neuralNets and output layer
- numParams(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- numPoints() - Method in class org.deeplearning4j.eval.curves.BaseCurve
-
- numPoints() - Method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- numPoints() - Method in class org.deeplearning4j.eval.curves.Histogram
-
- numPoints() - Method in class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- numPoints() - Method in class org.deeplearning4j.eval.curves.ReliabilityDiagram
-
- numPoints() - Method in class org.deeplearning4j.eval.curves.RocCurve
-
- numProducers - Variable in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- numRowCounter - Variable in class org.deeplearning4j.eval.Evaluation
-
- numSamples(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Set the number of samples per data point (from VAE state Z) used when doing pretraining.
- numSamples - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- padding(int) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- padding - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- padding - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- padding(int) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
Padding
- padding - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
Padding
- padding - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- parallelTasks(List<Runnable>, ExecutorService) - Static method in class org.deeplearning4j.util.MultiThreadUtils
-
- ParamAndGradientIterationListener - Class in org.deeplearning4j.optimize.listeners
-
An iteration listener that provides details on parameters and gradients at each iteration during traning.
- ParamAndGradientIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
-
Default constructor for output to console only every iteration, tab delimited
- ParamAndGradientIterationListener(int, boolean, boolean, boolean, boolean, boolean, boolean, boolean, File, String) - Constructor for class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
-
Full constructor with all options.
- ParamInitializer - Interface in org.deeplearning4j.nn.api
-
Param initializer for a layer
- params() - Method in interface org.deeplearning4j.nn.api.Model
-
Parameters of the model (if any)
- params() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method returns model parameters as single INDArray
- params(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the parameters for the ComputationGraph
- params() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- params() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
Returns the parameters of the neural network as a flattened row vector
- params() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- params - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
Returns the parameters of the neural network as a flattened row vector
- params() - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- params() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- params - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- params() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- params(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns a 1 x m vector where the vector is composed of
a flattened vector of all of the weights for the
various neuralNets(w,hbias NOT VBIAS) and output layer
- params() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns a 1 x m vector where the vector is composed of
a flattened vector of all of the weights for the
various neuralNets(w,hbias NOT VBIAS) and output layer
- PARAMS_KEY - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- paramsFlattened - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- paramsFlattened - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- ParamState() - Constructor for class org.deeplearning4j.nn.updater.UpdaterBlock.ParamState
-
- paramTable() - Method in interface org.deeplearning4j.nn.api.Model
-
The param table
- paramTable(boolean) - Method in interface org.deeplearning4j.nn.api.Model
-
Table of parameters by key, for backprop
For many models (dense layers, etc) - all parameters are backprop parameters
- paramTable() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- paramTable() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- parent(Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the parent of the passed in tree via traversal
- parent() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- parse(String, Class<E>) - Static method in class org.deeplearning4j.util.EnumUtil
-
- parties - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- parties - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- parties - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- partitionVariable(List<Double>, int) - Static method in class org.deeplearning4j.util.MathUtils
-
- peek() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- peek() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- PerformanceListener - Class in org.deeplearning4j.optimize.listeners
-
Simple IterationListener that tracks time spend on training per iteration.
- PerformanceListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.PerformanceListener
-
- PerformanceListener(int, boolean) - Constructor for class org.deeplearning4j.optimize.listeners.PerformanceListener
-
- PerformanceListener.Builder - Class in org.deeplearning4j.optimize.listeners
-
- permutation(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the permutation of n choose r.
- pnorm(int) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
P-norm constant.
- pnorm - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- pnorm(int) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- pnorm - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- Point() - Constructor for class org.deeplearning4j.eval.curves.PrecisionRecallCurve.Point
-
- poll() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- poll(long, TimeUnit) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- poll() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- PoolHelperVertex - Class in org.deeplearning4j.nn.conf.graph
-
Removes the first column and row from an input.
- PoolHelperVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- PoolHelperVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
A custom layer for removing the first column and row from an input.
- PoolHelperVertex(ComputationGraph, String, int) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- PoolHelperVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- poolingDimensions(int...) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
Pooling dimensions.
- poolingType(PoolingType) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
- PoolingType - Enum in org.deeplearning4j.nn.conf.layers
-
Created by Alex on 17/01/2017.
- poolingType - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- poolingType(SubsamplingLayer.PoolingType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- poolingType - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- positive() - Method in class org.deeplearning4j.eval.Evaluation
-
Returns all of the positive guesses:
true positive + false negative
- postApply(Layer, String, INDArray, INDArray) - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
Apply L1 and L2 regularization, if necessary.
- postFirstStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- postStep(INDArray) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
After the step has been made, do an action
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
Post step to update searchDirection with new gradient and parameter information
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.ConjugateGradient
-
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.LBFGS
-
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.LineGradientDescent
-
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
-
- preApply(Layer, Gradient, int) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
Pre-apply: Apply gradient normalization/clipping
- precision(Integer) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the precision for a given label
- precision(Integer, double) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the precision for a given label
- precision() - Method in class org.deeplearning4j.eval.Evaluation
-
Precision based on guesses so far
Takes into account all known classes and outputs average precision across all of them.
- precision(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the average precision for all classes.
- precision(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the precision (tp / (tp + fp)) for the specified output
- precision(long, long, double) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
Calculate the precision from true positive and false positive counts
- PrecisionRecallCurve - Class in org.deeplearning4j.eval.curves
-
Precision recall curve: A set of (recall, precision) points and different thresholds
- PrecisionRecallCurve(double[], double[], double[], int[], int[], int[], int) - Constructor for class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- PrecisionRecallCurve.Confusion - Class in org.deeplearning4j.eval.curves
-
- PrecisionRecallCurve.Point - Class in org.deeplearning4j.eval.curves
-
- predict(INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Takes in a list of examples
For each row, returns a label
- predict(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Takes in a DataSet of examples
For each row, returns a label
- predict(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Returns the predictions for each example in the dataset
- predict(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Return predicted label names
- predict(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Returns the predictions for each example in the dataset
- predict(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Return predicted label names
- predict(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns the predictions for each example in the dataset
- predict(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Return predicted label names
- Prediction - Class in org.deeplearning4j.eval.meta
-
Prediction: a prediction for classification, used with the
Evaluation
class.
- Prediction() - Constructor for class org.deeplearning4j.eval.meta.Prediction
-
- prediction() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- prefetchSize - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- prefetchSize - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- preOutput(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
Raw activations
- preOutput(INDArray, Layer.TrainingMode) - Method in interface org.deeplearning4j.nn.api.Layer
-
Raw activations
- preOutput(INDArray, boolean) - Method in interface org.deeplearning4j.nn.api.Layer
-
Raw activations
- preOutput - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- preOutput(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
Classify input
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- preOutput(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- preOutput(INDArray, INDArray, INDArray, int[], int[], int[], ConvolutionLayer.AlgoMode, ConvolutionLayer.FwdAlgo, ConvolutionMode) - Method in interface org.deeplearning4j.nn.layers.convolution.ConvolutionHelper
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- preOutput(boolean, boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
instead of being calculated again.
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- preOutput(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- preOutput(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- preOutput(INDArray, boolean, int[], INDArray, INDArray, INDArray, INDArray, double, double) - Method in interface org.deeplearning4j.nn.layers.normalization.BatchNormalizationHelper
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- preOutput(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- preOutput(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- preOutput(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- preOutput(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- preOutput(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- preOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- preOutput2d(boolean) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- preOutput2d(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- preOutput4d(boolean, boolean) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- preOutput4d(boolean, boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard
non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying
the public API
- prependToEach(String, int) - Method in class org.deeplearning4j.util.StringGrid
-
- preProcess(MultiDataSet) - Method in class org.deeplearning4j.datasets.iterator.CombinedMultiDataSetPreProcessor
-
- preProcess(DataSet) - Method in class org.deeplearning4j.datasets.iterator.CombinedPreProcessor
-
Pre process a dataset sequentially
- preProcess(DataSet) - Method in class org.deeplearning4j.datasets.iterator.DummyPreProcessor
-
Pre process a dataset
- preProcess(INDArray, int) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
Pre preProcess input/activations for a multi layer network
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.BinomialSamplingPreProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.UnitVarianceProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanAndUnitVariancePreProcessor
-
- preProcess(INDArray, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ZeroMeanPrePreProcessor
-
- preProcessLine() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Pre preProcess a line before an iteration
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
Pre preProcess to setup initial searchDirection approximation
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.ConjugateGradient
-
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.LBFGS
-
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.LineGradientDescent
-
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
-
- preProcessor - Variable in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- preProcessor - Variable in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- preProcessor - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- PreprocessorVertex - Class in org.deeplearning4j.nn.conf.graph
-
PreprocessorVertex is a simple adaptor class that allows a
InputPreProcessor
to be used in a ComputationGraph
GraphVertex, without it being associated with a layer.
- PreprocessorVertex(InputPreProcessor) - Constructor for class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- PreprocessorVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
PreprocessorVertex is a simple adaptor class that allows a
InputPreProcessor
to be used in a ComputationGraph
GraphVertex, without it being associated with a layer.
- PreprocessorVertex(ComputationGraph, String, int, InputPreProcessor) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- PreprocessorVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], InputPreProcessor) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- pretrain(DataSetIterator) - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- pretrain - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- pretrain(boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Whether to do layerwise pre training or not
- pretrain - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- pretrain - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- pretrain(boolean) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
Whether to do pre train or not
- pretrain - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- pretrain - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- pretrain(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- pretrain - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- pretrain(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Pretrain network with a single input and single output.
- pretrain(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Pretrain network with multiple inputs and/or outputs
- pretrain(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform layerwise pretraining on all pre-trainable layers in the network (VAEs, RBMs, Autoencoders, etc)
Note that pretraining will be performed on one layer after the other, resetting the DataSetIterator between iterations.
For multiple epochs per layer, appropriately wrap the iterator (for example, a MultipleEpochsIterator) or train
each layer manually using
MultiLayerNetwork.pretrainLayer(int, DataSetIterator)
- pretrain(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- pretrain - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- preTrainIterations - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- preTrainIterations(int) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- pretrainLayer(String, DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Pretrain a specified layer with the given DataSetIterator
- pretrainLayer(String, MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Pretrain a specified layer with the given MultiDataSetIterator
- pretrainLayer(int, DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform layerwise unsupervised training on a single pre-trainable layer in the network (VAEs, RBMs, Autoencoders, etc)
If the specified layer index (0 to numLayers - 1) is not a pretrainable layer, this is a no-op.
- pretrainLayer(int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform layerwise unsupervised training on a single pre-trainable layer in the network (VAEs, RBMs, Autoencoders, etc)
If the specified layer index (0 to numLayers - 1) is not a pretrainable layer, this is a no-op.
- PretrainParamInitializer - Class in org.deeplearning4j.nn.params
-
Pretrain weight initializer.
- PretrainParamInitializer() - Constructor for class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- prevAct - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- prevMemCell - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- printConfiguration() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Prints the configuration
- printThreadInfo(PrintWriter, String) - Static method in class org.deeplearning4j.util.ReflectionUtils
-
Print all of the thread's information and stack traces.
- probRound(double, Random) - Static method in class org.deeplearning4j.util.MathUtils
-
Rounds a double to the next nearest integer value in a probabilistic
fashion (e.g.
- probToLogOdds(double) - Static method in class org.deeplearning4j.util.MathUtils
-
Returns the log-odds for a given probability.
- producerAffinity - Variable in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- propDown(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
Calculates the activation of the hidden:
activation(h * W + vbias)
- propUp(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
Calculates the activation of the visible :
sigmoid(v * W + hbias)
- propUp(INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
Calculates the activation of the visible :
sigmoid(v * W + hbias)
- propUpDerivative(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- put(E) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- put(Pair<K, T>, V) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Associates the specified value with the specified key in this map
(optional operation).
- put(K, T, V) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
- putAll(Map<? extends Pair<K, T>, ? extends V>) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Copies all of the mappings from the specified map to this map
(optional operation).
- PXZ_B - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for bias parameters connecting the last decoder layer and p(data|z) (according to whatever
ReconstructionDistribution
is set for the VAE)
- PXZ_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- PXZ_W - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for weight parameters connecting the last decoder layer and p(data|z) (according to whatever
ReconstructionDistribution
is set for the VAE)
- PZX_LOGSTD2_B - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for bias parameters for log(sigma^2) in p(z|data)
- PZX_LOGSTD2_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- PZX_LOGSTD2_W - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for weight parameters connecting the last encoder layer and the log(sigma^2) values for p(z|data)
- PZX_MEAN_B - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for bias parameters for the mean values for p(z|data)
- PZX_MEAN_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- PZX_MEAN_W - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for weight parameters connecting the last encoder layer and the mean values for p(z|data)
- PZX_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- pzxActivationFn(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Activation function for the input to P(z|data).
Care should be taken with this, as some activation functions (relu, etc) are not suitable due to being
bounded in range [0,infinity).
- pzxActivationFn - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- pzxActivationFunction(String) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
- pzxActivationFunction(Activation) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Activation function for the input to P(z|data).
Care should be taken with this, as some activation functions (relu, etc) are not suitable due to being
bounded in range [0,infinity).
- randomDoubleBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
- randomFloatBetween(float, float) - Static method in class org.deeplearning4j.util.MathUtils
-
- randomNumberBetween(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
Generates a random integer between the specified numbers
- randomNumberBetween(double, double, RandomGenerator) - Static method in class org.deeplearning4j.util.MathUtils
-
Generates a random integer between the specified numbers
- RankClassificationResult - Class in org.deeplearning4j.nn.simple.multiclass
-
- RankClassificationResult(INDArray) - Constructor for class org.deeplearning4j.nn.simple.multiclass.RankClassificationResult
-
Takes in just a classification matrix
and initializes the labels to just be indices
- RankClassificationResult(INDArray, List<String>) - Constructor for class org.deeplearning4j.nn.simple.multiclass.RankClassificationResult
-
Takes in a classification matrix
and the labels for each column
- RBM - Class in org.deeplearning4j.nn.conf.layers
-
Restricted Boltzmann Machine.
- RBM - Class in org.deeplearning4j.nn.layers.feedforward.rbm
-
Restricted Boltzmann Machine.
- RBM(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- RBM(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
- RBM.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- RBM.HiddenUnit - Enum in org.deeplearning4j.nn.conf.layers
-
- RBM.VisibleUnit - Enum in org.deeplearning4j.nn.conf.layers
-
- RBMUtil - Class in org.deeplearning4j.util
-
Handles various cooccurrences for RBM specific cooccurrences
- readObject(File) - Static method in class org.deeplearning4j.util.SerializationUtils
-
- readObject(InputStream) - Static method in class org.deeplearning4j.util.SerializationUtils
-
Reads an object from the given input stream
- readString(DataInputStream, int) - Static method in class org.deeplearning4j.util.ByteUtil
-
- recall(int) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the recall for a given label
- recall(int, double) - Method in class org.deeplearning4j.eval.Evaluation
-
Returns the recall for a given label
- recall() - Method in class org.deeplearning4j.eval.Evaluation
-
Recall based on guesses so far
Takes into account all known classes and outputs average recall across all of them
- recall(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Calculate the average recall for all classes - can specify whether macro or micro averaging should be used
NOTE: if any classes have tp=0 and fn=0, (recall=0/0) these are excluded from the average
- recall(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the recall (tp / (tp + fn)) for the specified output
- recall(long, long, double) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
Calculate the recall from true positive and false negative counts
- receiveUpdate(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method accepts updates suitable for StepFunction and puts them to the queue, which is used in backpropagation loop
PLEASE NOTE: array is expected to be ready for use and match params dimensionality
- receiveUpdate(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method accepts updates suitable for StepFunction and puts them to the queue, which is used in backpropagation loop
- receiveUpdate(INDArray) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method accepts updates suitable for StepFunction and puts them to the queue, which is used in backpropagation loop
PLEASE NOTE: array is expected to be ready for use and match params dimensionality
- reconstruct(INDArray, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Reconstructs the input.
- ReconstructionDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
Wraps a data applyTransformToDestination iterator setting the first (feature matrix) as
the labels.
- ReconstructionDataSetIterator(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
- ReconstructionDistribution - Interface in org.deeplearning4j.nn.conf.layers.variational
-
The ReconstructionDistribution is used with variational autoencoders
VariationalAutoencoder
to specify the form of the distribution p(data|x).
- reconstructionDistribution(ReconstructionDistribution) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
The reconstruction distribution for the data given the hidden state - i.e., P(data|Z).
This should be selected carefully based on the type of data being modelled.
- reconstructionDistribution - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- reconstructionError(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- reconstructionLogProbability(INDArray, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- reconstructionProbability(INDArray, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
Calculate the reconstruction probability, as described in An & Cho, 2015 - "Variational Autoencoder based
Anomaly Detection using Reconstruction Probability" (Algorithm 4)
The authors describe it as follows: "This is essentially the probability of the data being generated from a given
latent variable drawn from the approximate posterior distribution."
Specifically, for each example x in the input, calculate p(x).
- recurrent(int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
InputType for recurrent neural network (time series) data
- recurrent(int, int) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
InputType for recurrent neural network (time series) data
- RECURRENT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
Weights for previous time step -> current time step connections
- RECURRENT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
Weights for previous time step -> current time step connections
- RECURRENT_WEIGHT_KEY_BACKWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- RECURRENT_WEIGHT_KEY_FORWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
Weights for previous time step -> current time step connections
- RecurrentLayer - Interface in org.deeplearning4j.nn.api.layers
-
Created by Alex on 28/08/2016.
- ReflectionsHelper - Class in org.deeplearning4j.nn.conf
-
Original credit:
https://gist.github.com/nonrational/287ed109bb0852f982e8
- ReflectionsHelper() - Constructor for class org.deeplearning4j.nn.conf.ReflectionsHelper
-
- ReflectionUtils - Class in org.deeplearning4j.util
-
General reflection utils
- Registerable - Interface in org.deeplearning4j.optimize.solvers.accumulation
-
- registerConsumers(int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- registerConsumers(int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- registerConsumers(int) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.Registerable
-
This method notifies producer about number of consumers for the current consumption cycle
- registered - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- registerUrlTypes() - Static method in class org.deeplearning4j.nn.conf.ReflectionsHelper
-
OSX contains file:// resources on the classpath including .mar and .jnilib files.
- RegressionEvaluation - Class in org.deeplearning4j.eval
-
Evaluation method for the evaluation of regression algorithms.
Provides the following metrics, for each column:
- MSE: mean squared error
- MAE: mean absolute error
- RMSE: root mean squared error
- RSE: relative squared error
- correlation coefficient
See for example: http://www.saedsayad.com/model_evaluation_r.htm
For classification, see
Evaluation
- RegressionEvaluation() - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
- RegressionEvaluation(int) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
Create a regression evaluation object with the specified number of columns, and default precision
for the stats() method.
- RegressionEvaluation(int, int) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
Create a regression evaluation object with the specified number of columns, and specified precision
for the stats() method.
- RegressionEvaluation(String...) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
Create a regression evaluation object with default precision for the stats() method
- RegressionEvaluation(List<String>) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
Create a regression evaluation object with default precision for the stats() method
- RegressionEvaluation(List<String>, int) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
Create a regression evaluation object with specified precision for the stats() method
- regularization(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Whether to use regularization (l1, l2, dropout, etc
- regularization(boolean) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- reinitMapperWithSubtypes(Collection<NamedType>) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Reinitialize and return the Jackson/json ObjectMapper with additional named types.
- relativeSquaredError(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- ReliabilityDiagram - Class in org.deeplearning4j.eval.curves
-
Created by Alex on 05/07/2017.
- ReliabilityDiagram(String, double[], double[]) - Constructor for class org.deeplearning4j.eval.curves.ReliabilityDiagram
-
- relocatable - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- remainingCapacity() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Removes from the underlying collection the last element returned
by this iterator (optional operation).
- remove() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Removes from the underlying collection the last element returned
by this iterator (optional operation).
- remove() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
Removes from the underlying collection the last element returned
by this iterator (optional operation).
- remove() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Removes from the underlying collection the last element returned
by this iterator (optional operation).
- remove() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldMultiDataSetIterator
-
Removes from the underlying collection the last element returned
by this iterator (optional operation).
- remove() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationMultiDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
Removes from the underlying collection the last element returned
by this iterator (optional operation).
- remove() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
Removes from the underlying collection the last element returned
by this iterator (optional operation).
- remove() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
Removes from the underlying collection the last element returned
by this iterator (optional operation).
- remove() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
Removes from the underlying collection the last element returned
by this iterator (optional operation).
- remove() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- remove() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- remove(Object) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- remove(Object) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- remove() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- remove(Object) - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Removes the mapping for a key from this map if it is present
(optional operation).
- remove(Object) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Removes the specified element from this applyTransformToDestination if it is present
(optional operation).
- removeAll(Collection<?>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- removeAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- removeAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Removes from this applyTransformToDestination all of its elements that are contained in the
specified collection (optional operation).
- removeColumns(Integer...) - Method in class org.deeplearning4j.util.StringGrid
-
Removes the specified columns from the grid
- removeLayersFromOutput(int) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Remove last "n" layers of the net
At least an output layer must be added back in
- removeOutputLayer() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Helper method to remove the outputLayer of the net.
- removeRowsWithEmptyColumn(int) - Method in class org.deeplearning4j.util.StringGrid
-
Removes all rows with a column of NONE
- removeRowsWithEmptyColumn(int, String) - Method in class org.deeplearning4j.util.StringGrid
-
Removes all rows with a column of missingValue
- removeVertex(String) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Intended for use with the transfer learning API.
- removeVertex(String, boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Intended for use with the transfer learning API.
- removeVertexAndConnections(String) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Remove specified vertex and it's connections from the computation graph
- removeVertexKeepConnections(String) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Remove the specified vertex from the computation graph but keep it's connections.
- reportBatch(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if batches/sec should be reported together with other data
- reportETL(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if ETL time per iteration should be reported together with other data
- reportIteration(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if iteration number should be reported together with other data
- reportSample(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if samples/sec should be reported together with other data
- reportScore(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if score should be reported together with other data
- reportTime(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if time per iteration should be reported together with other data
- reset() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Resets the iterator back to the beginning
- reset() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Resets the iterator back to the beginning
- reset() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
Resets the iterator back to the beginning
- reset() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Resets the iterator back to the beginning
- reset() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldMultiDataSetIterator
-
Resets the iterator back to the beginning
- reset() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- reset() - Method in interface org.deeplearning4j.datasets.iterator.callbacks.DataSetCallback
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.callbacks.DefaultCallback
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.callbacks.InterleavedDataSetCallback
-
- reset() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
-
Deprecated.
Returns the fetcher back to the beginning of the dataset
- reset() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationMultiDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
Resets the iterator back to the beginning
- reset() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- reset(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- reset(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.FileSplitParallelDataSetIterator
-
- reset(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
Resets the iterator back to the beginning
- reset() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- reset() - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- reset() - Method in class org.deeplearning4j.eval.Evaluation
-
- reset() - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- reset() - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
- reset() - Method in interface org.deeplearning4j.eval.IEvaluation
-
- reset() - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- reset() - Method in class org.deeplearning4j.eval.ROC
-
- reset() - Method in class org.deeplearning4j.eval.ROCBinary
-
- reset() - Method in class org.deeplearning4j.eval.ROCMultiClass
-
- reset() - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method resets all accumulated updates (if any)
- reset() - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method resets all accumulated updates (if any)
- reset() - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method resets all accumulated updates (if any)
- reset() - Static method in class org.deeplearning4j.util.OneTimeLogger
-
- resetLayerDefaultConfig() - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Reset the learning related configs of the layer to default.
- resetLayerDefaultConfig() - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Reset the learning related configs of the layer to default.
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Is resetting supported by this DataSetIterator? Many DataSetIterators do support resetting,
but some don't
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
Is resetting supported by this DataSetIterator? Many DataSetIterators do support resetting,
but some don't
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Is resetting supported by this DataSetIterator? Many DataSetIterators do support resetting,
but some don't
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldMultiDataSetIterator
-
Is resetting supported by this DataSetIterator? Many DataSetIterators do support resetting,
but some don't
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationMultiDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- resetTracker - Variable in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- resetVariables() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- reshape2dTo3d(INDArray, int) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
- reshape3dTo2d(INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
- reshapePerOutputTimeSeriesMaskTo2d(INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
- reshapeTimeSeriesMaskToVector(INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reshape time series mask arrays.
- reshapeTimeSeriesTo2d(INDArray) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
- reshapeVectorToTimeSeriesMask(INDArray, int) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reshape time series mask arrays.
- ReshapeVertex - Class in org.deeplearning4j.nn.conf.graph
-
Adds the ability to reshape and flatten the tensor in the computation graph.
NOTE: This class should only be used if you know exactly what you are doing with reshaping activations.
- ReshapeVertex(int...) - Constructor for class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- ReshapeVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
Adds the ability to reshape and flatten the tensor in the computation graph.
- ReshapeVertex(ComputationGraph, String, int, int[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- ReshapeVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], int[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- reshapeWeights(int[], INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Reshape the parameters view, without modifying the paramsView array values.
- reshapeWeights(int[], INDArray, char) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Reshape the parameters view, without modifying the paramsView array values.
- resolve(DeserializationContext) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- restoreComputationGraph(String) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a file
- restoreComputationGraph(String, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a file
- restoreComputationGraph(InputStream, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a InputStream
- restoreComputationGraph(InputStream) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a InputStream
- restoreComputationGraph(File) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a file
- restoreComputationGraph(File, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a file
- restoreMultiLayerNetwork(File) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a multi layer network from a file
- restoreMultiLayerNetwork(File, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a multi layer network from a file
- restoreMultiLayerNetwork(InputStream, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a MultiLayerNetwork from InputStream from a file
- restoreMultiLayerNetwork(InputStream) - Static method in class org.deeplearning4j.util.ModelSerializer
-
- restoreMultiLayerNetwork(String) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a MultilayerNetwork model from a file
- restoreMultiLayerNetwork(String, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a MultilayerNetwork model from a file
- restoreNormalizerFromFile(File) - Static method in class org.deeplearning4j.util.ModelSerializer
-
This method restores normalizer from a given persisted model file
PLEASE NOTE: File should be model file saved earlier with ModelSerializer with addNormalizerToModel being called
- restoreNormalizerFromInputStream(InputStream) - Static method in class org.deeplearning4j.util.ModelSerializer
-
This method restores the normalizer form a persisted model file.
- retainAll(Collection<?>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- retainAll(Collection<?>) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- retainAll(Collection<?>) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Retains only the elements in this applyTransformToDestination that are contained in the
specified collection (optional operation).
- rho - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Deprecated.
- rho(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- rho - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Deprecated.
- rho(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Ada delta coefficient, rho.
- rho - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Deprecated.
- rho(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- rho - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
Deprecated.
- rmsDecay - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Deprecated.
- rmsDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- rmsDecay - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Deprecated.
- rmsDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Decay rate for RMSProp.
- rmsDecay - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Deprecated.
- rmsDecay(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- rmsDecay - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
Deprecated.
- rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Similar to rnnTimeStep, this method is used for activations using the state
stored in the stateMap as the initialization.
- rnnActivateUsingStoredState(INDArray[], boolean, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Similar to rnnTimeStep and feedForward() methods.
- rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Similar to rnnTimeStep and feedForward() methods.
- rnnClearPreviousState() - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Reset/clear the stateMap for rnnTimeStep() and tBpttStateMap for rnnActivateUsingStoredState()
- rnnClearPreviousState() - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- rnnClearPreviousState() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnClearPreviousState() - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
Reset/clear the stateMap for rnnTimeStep() and tBpttStateMap for rnnActivateUsingStoredState()
- rnnClearPreviousState() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Clear the previous state of the RNN layers (if any).
- rnnGetPreviousState() - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Returns a shallow copy of the RNN stateMap (that contains the stored history for use in methods such
as rnnTimeStep
- rnnGetPreviousState(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnGetPreviousState(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnGetPreviousState() - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
Returns a shallow copy of the stateMap
- rnnGetPreviousState(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the state of the RNN layer, as used in rnnTimeStep().
- rnnGetPreviousStates() - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- rnnGetPreviousStates() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnGetTBPTTState() - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Get the RNN truncated backpropagations through time (TBPTT) state for the recurrent layer.
- rnnGetTBPTTState() - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
- RnnOutputLayer - Class in org.deeplearning4j.nn.conf.layers
-
- RnnOutputLayer - Class in org.deeplearning4j.nn.layers.recurrent
-
Recurrent Neural Network Output Layer.
Handles calculation of gradients etc for various objective functions.
Functionally the same as OutputLayer, but handles output and label reshaping
automatically.
Input and output activations are same as other RNN layers: 3 dimensions with shape
[miniBatchSize,nIn,timeSeriesLength] and [miniBatchSize,nOut,timeSeriesLength] respectively.
- RnnOutputLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- RnnOutputLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- RnnOutputLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- rnnSetPreviousState(Map<String, INDArray>) - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Set the stateMap (stored history).
- rnnSetPreviousState(int, Map<String, INDArray>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnSetPreviousState(String, Map<String, INDArray>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnSetPreviousState(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
Set the state map.
- rnnSetPreviousState(int, Map<String, INDArray>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the state of the RNN layer.
- rnnSetPreviousStates(Map<String, Map<String, INDArray>>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnSetTBPTTState(Map<String, INDArray>) - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Set the RNN truncated backpropagations through time (TBPTT) state for the recurrent layer.
- rnnSetTBPTTState(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
- rnnTimeStep(INDArray) - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Do one or more time steps using the previous time step state stored in stateMap.
Can be used to efficiently do forward pass one or n-steps at a time (instead of doing
forward pass always from t=0)
If stateMap is empty, default initialization (usually zeros) is used
Implementations also update stateMap at the end of this method
- rnnTimeStep(INDArray...) - Method in interface org.deeplearning4j.nn.api.NeuralNetworkPrototype
-
- rnnTimeStep(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
If this ComputationGraph contains one or more RNN layers: conduct forward pass (prediction)
but using previous stored state for any RNN layers.
- rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
If this MultiLayerNetwork contains one or more RNN layers: conduct forward pass (prediction)
but using previous stored state for any RNN layers.
- RnnToCnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow RNN and CNN layers to be used together
For example, time series (video) input -> ConvolutionLayer, or conceivable GravesLSTM -> ConvolutionLayer
Functionally equivalent to combining RnnToFeedForwardPreProcessor + FeedForwardToCnnPreProcessor
Specifically, this does two things:
(a) Reshape 3d activations out of RNN layer, with shape [miniBatchSize, numChannels*inputHeight*inputWidth, timeSeriesLength])
into 4d (CNN) activations (with shape [numExamples*timeSeriesLength, numChannels, inputWidth, inputHeight])
(b) Reshapes 4d epsilons (weights.*deltas) out of CNN layer (with shape
[numExamples*timeSeriesLength, numChannels, inputHeight, inputWidth]) into 3d epsilons with shape
[miniBatchSize, numChannels*inputHeight*inputWidth, timeSeriesLength] suitable to feed into CNN layers.
- RnnToCnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- RnnToFeedForwardPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow RNN and feed-forward network layers to be used together.
For example, GravesLSTM -> OutputLayer or GravesLSTM -> DenseLayer
This does two things:
(a) Reshapes activations out of RNN layer (which is 3D with shape
[miniBatchSize,layerSize,timeSeriesLength]) into 2d activations (with shape
[miniBatchSize*timeSeriesLength,layerSize]) suitable for use in feed-forward layers.
(b) Reshapes 2d epsilons (weights*deltas from feed forward layer, with shape
[miniBatchSize*timeSeriesLength,layerSize]) into 3d epsilons (with shape
[miniBatchSize,layerSize,timeSeriesLength]) for use in RNN layer
- RnnToFeedForwardPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- rnnUpdateStateWithTBPTTState() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Update the internal state of RNN layers after a truncated BPTT fit call
- ROC - Class in org.deeplearning4j.eval
-
ROC (Receiver Operating Characteristic) for binary classifiers.
ROC has 2 modes of operation:
(a) Thresholded (default, less memory)
(b) Exact (use numSteps == 0.
- ROC() - Constructor for class org.deeplearning4j.eval.ROC
-
- ROC(int) - Constructor for class org.deeplearning4j.eval.ROC
-
- ROC(int, boolean) - Constructor for class org.deeplearning4j.eval.ROC
-
- ROC(int, boolean, int) - Constructor for class org.deeplearning4j.eval.ROC
-
- ROC.CountsForThreshold - Class in org.deeplearning4j.eval
-
- ROCArraySerializer - Class in org.deeplearning4j.eval.serde
-
Custom Jackson serializer for ROC[].
- ROCArraySerializer() - Constructor for class org.deeplearning4j.eval.serde.ROCArraySerializer
-
- ROCBinary - Class in org.deeplearning4j.eval
-
ROC (Receiver Operating Characteristic) for multi-task binary classifiers.
- ROCBinary() - Constructor for class org.deeplearning4j.eval.ROCBinary
-
- ROCBinary(int) - Constructor for class org.deeplearning4j.eval.ROCBinary
-
- ROCBinary(int, boolean) - Constructor for class org.deeplearning4j.eval.ROCBinary
-
- RocCurve - Class in org.deeplearning4j.eval.curves
-
ROC curve: a set of (false positive, true positive) tuples at different thresholds
- RocCurve(double[], double[], double[]) - Constructor for class org.deeplearning4j.eval.curves.RocCurve
-
- ROCMultiClass - Class in org.deeplearning4j.eval
-
ROC (Receiver Operating Characteristic) for multi-class classifiers.
- ROCMultiClass() - Constructor for class org.deeplearning4j.eval.ROCMultiClass
-
- ROCMultiClass(int) - Constructor for class org.deeplearning4j.eval.ROCMultiClass
-
- ROCMultiClass(int, boolean) - Constructor for class org.deeplearning4j.eval.ROCMultiClass
-
- ROCSerializer - Class in org.deeplearning4j.eval.serde
-
Custom Jackson serializer for ROC.
- ROCSerializer() - Constructor for class org.deeplearning4j.eval.serde.ROCSerializer
-
- rootFolder - Variable in class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
- rootMeanSquaredError(int) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- rootMeansSquaredError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the root mean squared error of two data sets
- round(double) - Static method in class org.deeplearning4j.util.MathUtils
-
Rounds a double to the next nearest integer value.
- roundDouble(double, int) - Static method in class org.deeplearning4j.util.MathUtils
-
Rounds a double to the given number of decimal places.
- roundFloat(float, int) - Static method in class org.deeplearning4j.util.MathUtils
-
Rounds a double to the given number of decimal places.
- run() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator.AsyncPrefetchThread
-
- run() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator.AsyncPrefetchThread
-
- sampleDoublesInInterval(double[][], int) - Static method in class org.deeplearning4j.util.MathUtils
-
- sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
Sample the hidden distribution given the visible
- sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
Binomial sampling of the hidden values given visible
- sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
Sample the visible distribution given the hidden
- sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
Guess the visible values given the hidden
- SamplingDataSetIterator - Class in org.deeplearning4j.datasets.iterator
-
A wrapper for a dataset to sample from.
- SamplingDataSetIterator(DataSet, int, int) - Constructor for class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- save(Model, String) - Method in class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
This method saves model
- saveBestModel(T, double) - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
-
Save the best model (so far) learned during early stopping training
- saveBestModel(T, double) - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- saveBestModel(ComputationGraph, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- saveBestModel(MultiLayerNetwork, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- saveLastModel(boolean) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Save the last model? If true: save the most recent model at each epoch, in addition to the best
model (whenever the best model improves).
- saveLatestModel(T, double) - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
-
Save the latest (most recent) model learned during early stopping
- saveLatestModel(T, double) - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- saveLatestModel(ComputationGraph, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- saveLatestModel(MultiLayerNetwork, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- saveObject(Object, File) - Static method in class org.deeplearning4j.util.SerializationUtils
-
- scaleFactor - Variable in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- ScaleVertex - Class in org.deeplearning4j.nn.conf.graph
-
A ScaleVertex is used to scale the size of activations of a single layer
For example, ResNet activations can be scaled in repeating blocks to keep variance
under control.
- ScaleVertex(double) - Constructor for class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- ScaleVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
A ScaleVertex is used to scale the size of activations of a single layer
For example, ResNet activations can be scaled in repeating blocks to keep variance
under control.
- ScaleVertex(ComputationGraph, String, int, double) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- ScaleVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], double) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- scan(Object) - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- scan(Vfs.File, Object) - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- score() - Method in interface org.deeplearning4j.nn.api.Model
-
The score for the model
- score - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- score(DataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Sets the input and labels and returns a score for the prediction with respect to the true labels
This is equivalent to
ComputationGraph.score(DataSet, boolean)
with training==true.
NOTE: this version of the score function can only be used with ComputationGraph networks that have
a single input and a single output.
- score(DataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Sets the input and labels and returns a score for the prediction with respect to the true labels
NOTE: this version of the score function can only be used with ComputationGraph networks that have
a single input and a single output.
- score(MultiDataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Score the network given the MultiDataSet, at test time
- score(MultiDataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Sets the input and labels and returns a score for the prediction with respect to the true labels
- score() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- score() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- score - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- score() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
Objective function: the specified objective
- score() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- score() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- score - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- score() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- score - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- score(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- score(DataSet, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate the score (loss function) of the prediction with respect to the true labels
- score() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Score of the model (relative to the objective function)
- score() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
The score for the optimizer so far
- score - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- score() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- SCORE_KEY - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- scoreCalculator(ScoreCalculator<T>) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Score calculator.
- ScoreCalculator<T extends Model> - Interface in org.deeplearning4j.earlystopping.scorecalc
-
ScoreCalculator interface is used to calculate a score for a neural network.
- scoreExamples(DataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the score for each example in a DataSet individually.
- scoreExamples(MultiDataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the score for each example in a DataSet individually.
- scoreExamples(DataSetIterator, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- scoreExamples(DataSet, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate the score for each example in a DataSet individually.
- ScoreImprovementEpochTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Terminate training if best model score does not improve for N epochs
- ScoreImprovementEpochTerminationCondition(int) - Constructor for class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
-
- ScoreImprovementEpochTerminationCondition(int, double) - Constructor for class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
-
- ScoreIterationListener - Class in org.deeplearning4j.optimize.listeners
-
Score iteration listener
- ScoreIterationListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.ScoreIterationListener
-
- ScoreIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.ScoreIterationListener
-
Default constructor printing every 10 iterations
- SEARCH_DIR - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- searchState - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- secondary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- secondary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- seed - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- seed(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Random number generator seed.
- seed(long) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Random number generator seed.
- seed - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- seed(int) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- seed(long) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- seed - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- select(int, String) - Method in class org.deeplearning4j.util.StringGrid
-
- sendMessage(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
This method does loops encoded data back to updates queue
- SerializationUtils - Class in org.deeplearning4j.util
-
Serialization utils for saving and reading serializable objects
- serialize(ConfusionMatrix<Integer>, JsonGenerator, SerializerProvider) - Method in class org.deeplearning4j.eval.serde.ConfusionMatrixSerializer
-
- serialize(ROC[], JsonGenerator, SerializerProvider) - Method in class org.deeplearning4j.eval.serde.ROCArraySerializer
-
- serialize(ROC, JsonGenerator, SerializerProvider) - Method in class org.deeplearning4j.eval.serde.ROCSerializer
-
- serializeWithType(ROC, JsonGenerator, SerializerProvider, TypeSerializer) - Method in class org.deeplearning4j.eval.serde.ROCSerializer
-
- set(boolean, int) - Method in class org.deeplearning4j.datasets.iterator.parallel.MultiBoolean
-
Sets specified entry to specified state
- setAbsTolx(double) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
Sets the tolerance of absolute diff in function value.
- setBackpropGradientsViewArray(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the gradients array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setBackpropGradientsViewArray(INDArray) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setBatchSize(int) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Set the batch size for the optimizer
- setBatchSize(int) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setBegin(int) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setBufferSizePerSplit(int) - Method in class org.deeplearning4j.datasets.iterator.parallel.JointParallelDataSetIterator.Builder
-
- setCacheMode(CacheMode) - Method in interface org.deeplearning4j.nn.api.Layer
-
This method sets given CacheMode for current layer
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method sets specified CacheMode for all layers within network
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method sets specified CacheMode for all layers within network
- setConf(NeuralNetConfiguration) - Method in interface org.deeplearning4j.nn.api.Model
-
Setter for the configuration
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setConfiguration(Configuration) - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- setContentionTracing(boolean) - Static method in class org.deeplearning4j.util.ReflectionUtils
-
- setEnd(int) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setEpsilon(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setEpsilon(INDArray) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Set the errors (epsilon - aka dL/dActivation) for this GraphVertex
- setError(double) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setExternalSource(Queue<INDArray>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- setExternalSource(Queue<INDArray>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method allows to pass external updates to accumulator, they will be populated across all workers using this GradientsAccumulator instance
- setExternalSource(Queue<INDArray>) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method allows to pass external updates to accumulator, they will be populated across all workers using this GradientsAccumulator instance
- setFeatureExtractor(int) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Specify a layer to set as a "feature extractor"
The specified layer and the layers preceding it will be "frozen" with parameters staying constant
- setFeatureExtractor(String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Specify a layer vertex to set as a "feature extractor"
The specified layer vertex and the layers on the path from an input vertex to it it will be "frozen" with parameters staying constant
- setFirstKey(K) - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
-
- setFrequency(int) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
Desired IterationListener activation frequency
- setGoldLabel(int) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setGradientFor(String, INDArray) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- setGradientFor(String, INDArray, Character) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- setGradientFor(String, INDArray) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Update gradient for the given variable
- setGradientFor(String, INDArray, Character) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Update gradient for the given variable; also (optionally) specify the order in which the array should be flattened
to a row vector
- setGradientsAccumulator(GradientsAccumulator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method allows you to specificy GradientsAccumulator instance to be used with this model
PLEASE NOTE: Do not use this method unless you understand how to use GradientsAccumulator & updates sharing.
- setGradientsAccumulator(GradientsAccumulator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method allows you to specificy GradientsAccumulator instance to be used with this model
PLEASE NOTE: Do not use this method unless you understand how to use GradientsAccumulator & updates sharing.
- setGradientsAccumulator(GradientsAccumulator) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
This method specifies GradientsAccumulator instance to be used for updates sharing across multiple models
- setGradientsAccumulator(GradientsAccumulator) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setHeadWord(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setIndex(int) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set the layer index.
- setIndex(int) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setIndex(int) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setIndex(int) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- setIndex(int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setIndex(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setInput(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
Get the layer input.
- setInput(int, INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the specified input for the ComputationGraph
- setInput(int, INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setInput(int, INDArray) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Set the input activations.
- setInput(int, INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- setInput(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setInput(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setInput(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setInput(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Note that if input isn't null
and the neuralNets are null, this is a way
of initializing the neural network
- setInputMiniBatchSize(int) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set current/last input mini-batch size.
Used for score and gradient calculations.
- setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setInputPreProcessor(int, InputPreProcessor) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Specify the preprocessor for the added layers
for cases where they cannot be inferred automatically.
- setInputs(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set all inputs for the ComputationGraph network
- setInputs(INDArray...) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Set all inputs for this GraphVertex
- setInputs(String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Sets new inputs for the computation graph.
- setInputType(InputType) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- setInputTypes(InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Specify the types of inputs to the network, so that:
(a) preprocessors can be automatically added, and
(b) the nIns (input size) for each layer can be automatically calculated and set
The order here is the same order as .addInputs().
- setInputTypes(InputType...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Sets the input type of corresponding inputs.
- setInputVertices(VertexIndices[]) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setInputVertices(VertexIndices[]) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Sets the input vertices.
- setLabel(int, INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the specified label for the ComputationGraph
- setLabel(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setLabelNames(List<String>) - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
Sets a list of label names to the curr dataset
- setLabelNames(List<String>) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
- setLabelNames(List<String>) - Method in class org.deeplearning4j.eval.ROCBinary
-
- setLabels(INDArray) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
Set the labels array for this output layer
- setLabels(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set all labels for the ComputationGraph network
- setLabels(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- setLabels(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- setLabels(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setLastEtlTime(long) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method allows to set ETL field time, useful for performance tracking
- setLastEtlTime(long) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setLayerAsFrozen() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setLayerAsFrozen() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Only applies to layer vertices.
- setLayerAsFrozen() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- setLayerMaskArrays(INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the mask arrays for features and labels.
- setLayerMaskArrays(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the mask arrays for features and labels.
- setLayerName(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- setLayerParamLR(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- setLayers(Layer[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setLayerWiseConfigurations(MultiLayerConfiguration) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setLearningRateByParam(String, double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- setListener(EarlyStoppingListener<T>) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- setListener(EarlyStoppingListener<T>) - Method in interface org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer
-
Set the early stopping listener
- setListeners(IterationListener...) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set the iteration listeners for this layer.
- setListeners(Collection<IterationListener>) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set the iteration listeners for this layer.
- setListeners(Collection<IterationListener>) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the IterationListeners for the ComputationGraph (and all layers in the network)
- setListeners(IterationListener...) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the IterationListeners for the ComputationGraph (and all layers in the network)
- setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the IterationListeners for the ComputationGraph (and all layers in the network)
- setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the IterationListeners for the ComputationGraph (and all layers in the network)
- setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setListeners(IterationListener...) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setListeners(Collection<IterationListener>) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.optimize.Solver
-
- setListeners(Collection<IterationListener>) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setLogMetaInstability(double) - Method in class org.deeplearning4j.util.Viterbi
-
- setLogOfDiangnalTProb(double) - Method in class org.deeplearning4j.util.Viterbi
-
- setLogPCorrect(double) - Method in class org.deeplearning4j.util.Viterbi
-
- setLogPIncorrect(double) - Method in class org.deeplearning4j.util.Viterbi
-
- setLogStates(double) - Method in class org.deeplearning4j.util.Viterbi
-
- setLower(double) - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
-
- setMask(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setMaskArray(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set the mask array.
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setMax(double) - Method in class org.deeplearning4j.util.SummaryStatistics
-
- setMaxIterations(int) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- setMean(double) - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- setMean(double) - Method in class org.deeplearning4j.util.SummaryStatistics
-
- setMetaStability(double) - Method in class org.deeplearning4j.util.Viterbi
-
- setMin(double) - Method in class org.deeplearning4j.util.SummaryStatistics
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Set the nIn value (number of inputs, or input depth for CNNs) based on the given input type
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- setOutputs(String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Set the network output labels.
- setOutputs(String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Set outputs to the computation graph, will add to ones that are existing
Also determines the order, like in ComputationGraphConfiguration
- setOutputVertices(VertexIndices[]) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setOutputVertices(VertexIndices[]) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
set the output vertices.
- setParam(String, INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the parameter with a new ndarray
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setParameters(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Sets parameters for the model.
- setParams(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the parameters for this model.
- setParams(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParams(INDArray, char) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParams(INDArray, char) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the parameters for this model.
- setParamsViewArray(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the initial parameters array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setParamTable(Map<String, INDArray>) - Method in interface org.deeplearning4j.nn.api.Model
-
Setter for the param table
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setParent(Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setParse(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setpCorrect(double) - Method in class org.deeplearning4j.util.Viterbi
-
- setPossibleLabels(INDArray) - Method in class org.deeplearning4j.util.Viterbi
-
- setPrediction(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Set a pre processor
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Set a pre processor
- setPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
Set the preprocessor to be applied to each MultiDataSet, before each MultiDataSet is returned.
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Set a pre processor
- setPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldMultiDataSetIterator
-
Set the preprocessor to be applied to each MultiDataSet, before each MultiDataSet is returned.
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- setPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationMultiDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- setPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkMultiDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- setPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- setPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- setPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.IteratorMultiDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- setPreProcessor(DataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- setProbabilityOfSuccess(double) - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- setProperties(Object, Properties) - Static method in class org.deeplearning4j.util.Dl4jReflection
-
Sets the properties of the given object
- setRelTolx(double) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
Sets the tolerance of relative diff in function value.
- setScore(double) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setScore(double) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setScoreFor(INDArray) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- setSecondKey(T) - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
-
- setStates(int) - Method in class org.deeplearning4j.util.Viterbi
-
- setStateViewArray(Layer, INDArray, boolean) - Method in interface org.deeplearning4j.nn.api.Updater
-
Set the internal (historical) state view array for this updater
- setStateViewArray(INDArray) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
Set the view array.
- setStateViewArray(Layer, INDArray, boolean) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- setStd(double) - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- setStepMax(double) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- setStore(Multimap<String, String>) - Method in class org.deeplearning4j.util.reflections.DL4JSubTypesScanner
-
- setSum(double) - Method in class org.deeplearning4j.util.SummaryStatistics
-
- setTags(List<String>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setTokens(List<String>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setType(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setUpdater(ComputationGraphUpdater) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the computationGraphUpdater for the network
- setUpdater(Updater) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the updater for the MultiLayerNetwork
- setUpdater(Updater) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- setUpdater(Updater) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setUpdaterComputationGraph(ComputationGraphUpdater) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- setUpdaterComputationGraph(ComputationGraphUpdater) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setUpper(double) - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
-
- setupSearchState(Pair<Gradient, Double>) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Based on the gradient and score
setup a search state
- setupSearchState(Pair<Gradient, Double>) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
Setup the initial search state
- setupSearchState(Pair<Gradient, Double>) - Method in class org.deeplearning4j.optimize.solvers.LBFGS
-
- SetUtils - Class in org.deeplearning4j.util
-
- setValue(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setValue(V) - Method in class org.deeplearning4j.util.MultiDimensionalMap.Entry
-
Replaces the value corresponding to this entry with the specified
value (optional operation).
- setVector(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setWorkspaceMode(WorkspaceMode) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- shakeFrequency - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- shape - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- SharedGradient - Class in org.deeplearning4j.optimize.listeners
-
- SharedGradient() - Constructor for class org.deeplearning4j.optimize.listeners.SharedGradient
-
- shiftFactor - Variable in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- ShiftVertex - Class in org.deeplearning4j.nn.conf.graph
-
A ShiftVertex is used to shift the activations of a single layer
One could use it to add a bias or as part of some other calculation.
- ShiftVertex(double) - Constructor for class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- ShiftVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
A ShiftVertex is used to shift the activations of a single layer
One could use it to add a bias or as part of some other calculation.
- ShiftVertex(ComputationGraph, String, int, double) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- ShiftVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], double) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- shouldWork - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- shouldWork - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- shuffleArray(int[], long) - Static method in class org.deeplearning4j.util.MathUtils
-
- shuffleArray(int[], Random) - Static method in class org.deeplearning4j.util.MathUtils
-
- shutdown() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator.AsyncPrefetchThread
-
- shutdown() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
This method will terminate background thread AND will destroy attached workspace (if any)
PLEASE NOTE: After shutdown() call, this instance can't be used anymore
- shutdown() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator.AsyncPrefetchThread
-
- shutdown() - Method in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
This method will terminate background thread AND will destroy attached workspace (if any)
PLEASE NOTE: After shutdown() call, this instance can't be used anymore
- sigma - Variable in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
Deprecated.
- sigmoid(double) - Static method in class org.deeplearning4j.util.MathUtils
-
1 / 1 + exp(-x)
- silentOutput(boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- silentOutput(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- silentOutput(INDArray, boolean, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- simpleHostname(String) - Static method in class org.deeplearning4j.util.StringUtils
-
Given a full hostname, return the word upto the first dot.
- SingletonMultiDataSetIterator - Class in org.deeplearning4j.datasets.iterator.impl
-
A very simple adapter class for converting a single MultiDataSet to a MultiDataSetIterator.
- SingletonMultiDataSetIterator(MultiDataSet) - Constructor for class org.deeplearning4j.datasets.iterator.impl.SingletonMultiDataSetIterator
-
- size() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- size() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- size() - Method in class org.deeplearning4j.util.Index
-
- size() - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Returns the number of key-value mappings in this map.
- size() - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Returns the number of elements in this applyTransformToDestination (its cardinality).
- SizeComparator() - Constructor for class org.deeplearning4j.util.StringCluster.SizeComparator
-
- skipDueToPretrainConfig() - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- sleep(long) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- sleep(AtomicLong, long) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- sleepMode - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- SleepyTrainingListener - Class in org.deeplearning4j.optimize.listeners
-
This TrainingListener implementation provides a way to "sleep" during specific Neural Network training phases.
- SleepyTrainingListener() - Constructor for class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- SleepyTrainingListener.SleepMode - Enum in org.deeplearning4j.optimize.listeners
-
- SleepyTrainingListener.TimeMode - Enum in org.deeplearning4j.optimize.listeners
-
- slope(double, double, double, double) - Method in class org.deeplearning4j.util.MathUtils
-
This returns the slope of the given points.
- sm(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
Tests if a is smaller than b.
- SMALL - Static variable in class org.deeplearning4j.util.MathUtils
-
The small deviation allowed in double comparisons.
- solver - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- solver - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- solver - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- solver - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- Solver - Class in org.deeplearning4j.optimize
-
Generic purpose solver
- Solver() - Constructor for class org.deeplearning4j.optimize.Solver
-
- Solver.Builder - Class in org.deeplearning4j.optimize
-
- sort() - Method in class org.deeplearning4j.util.StringCluster
-
- sortBy(int) - Method in class org.deeplearning4j.util.StringGrid
-
- sortColumnsByWordLikelihoodIncluded(int) - Method in class org.deeplearning4j.util.StringGrid
-
- sparsity(double) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
- sparsity - Variable in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- sparsity(double) - Method in class org.deeplearning4j.nn.conf.layers.RBM.Builder
-
- sparsity - Variable in class org.deeplearning4j.nn.conf.layers.RBM
-
- split(int, String) - Method in class org.deeplearning4j.util.StringGrid
-
- split(String) - Static method in class org.deeplearning4j.util.StringUtils
-
Split a string using the default separator
- split(String, char, char) - Static method in class org.deeplearning4j.util.StringUtils
-
Split a string using the given separator
- splitInputs(INDArray, INDArray, List<Pair<INDArray, INDArray>>, List<Pair<INDArray, INDArray>>, double) - Static method in class org.deeplearning4j.util.InputSplit
-
- splitInputs(List<Pair<INDArray, INDArray>>, List<Pair<INDArray, INDArray>>, List<Pair<INDArray, INDArray>>, double) - Static method in class org.deeplearning4j.util.InputSplit
-
- splitOnCharWithQuoting(String, char, char, char) - Static method in class org.deeplearning4j.util.StringUtils
-
This function splits the String s into multiple Strings using the
splitChar.
- squaredLoss(double[], double[], double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
This will return the squared loss of the given
points
- ssError(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
How much of the variance is NOT explained by the regression
- ssReg(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
How much of the variance is explained by the regression
- ssTotal(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
Total variance in target attribute
- stackSize - Variable in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- StackVertex - Class in org.deeplearning4j.nn.conf.graph
-
StackVertex allows for stacking of inputs so that they may be forwarded through
a network.
- StackVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.StackVertex
-
- StackVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
StackVertex allows for stacking of inputs so that they may be forwarded through
a network.
- StackVertex(ComputationGraph, String, int) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- StackVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[]) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- standardMemory(long, long) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
Report the standard memory
- state - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- STATE_KEY_PREV_ACTIVATION - Static variable in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- STATE_KEY_PREV_ACTIVATION - Static variable in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- STATE_KEY_PREV_MEMCELL - Static variable in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- STATE_KEY_PREV_MEMCELL - Static variable in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- stateMap - Variable in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
stateMap stores the INDArrays needed to do rnnTimeStep() forward pass.
- states - Variable in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- stats() - Method in class org.deeplearning4j.eval.Evaluation
-
- stats(boolean) - Method in class org.deeplearning4j.eval.Evaluation
-
Method to obtain the classification report as a String
- stats() - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get a String representation of the EvaluationBinary class, using the default precision
- stats(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get a String representation of the EvaluationBinary class, using the specified precision
- stats() - Method in class org.deeplearning4j.eval.EvaluationCalibration
-
- stats() - Method in interface org.deeplearning4j.eval.IEvaluation
-
- stats() - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- stats() - Method in class org.deeplearning4j.eval.ROC
-
- stats() - Method in class org.deeplearning4j.eval.ROCBinary
-
- stats(int) - Method in class org.deeplearning4j.eval.ROCBinary
-
- stats() - Method in class org.deeplearning4j.eval.ROCMultiClass
-
- stats(int) - Method in class org.deeplearning4j.eval.ROCMultiClass
-
- std - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- step(INDArray, INDArray, double) - Method in interface org.deeplearning4j.optimize.api.StepFunction
-
Step with the given parameters
- step(INDArray, INDArray) - Method in interface org.deeplearning4j.optimize.api.StepFunction
-
Step with no parameters
- step() - Method in interface org.deeplearning4j.optimize.api.StepFunction
-
- step - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- step - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
-
Does x = x + stepSize * line
- step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
-
- step() - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
-
- step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
-
- step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
-
- step() - Method in class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
-
- step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
-
- step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
-
- step() - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
-
- step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
-
- step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
-
- step() - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
-
- stepDelay - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- stepForward() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- stepFunction - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- stepFunction(StepFunction) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Step function to apply for back track line search.
- stepFunction - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- StepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Custom step function for line search.
- StepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.StepFunction
-
- stepFunction - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- StepFunction - Interface in org.deeplearning4j.optimize.api
-
Custom step function for line search
- stepFunction - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- StepFunctions - Class in org.deeplearning4j.optimize.stepfunctions
-
- stepMax - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- stepTrigger - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- StochasticGradientDescent - Class in org.deeplearning4j.optimize.solvers
-
Stochastic Gradient Descent
Standard fix step size
No line search
- StochasticGradientDescent(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
-
- StochasticGradientDescent(NeuralNetConfiguration, StepFunction, Collection<IterationListener>, Collection<TerminationCondition>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
-
- storage - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- storeUpdate(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method accepts updates suitable for StepFunction, and accumulates/propagates it across all workers
- storeUpdate(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method accepts updates suitable for StepFunction, and accumulates/propagates it across all workers
- storeUpdate(INDArray) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method accepts updates suitable for StepFunction, and accumulates/propagates it across all workers
- stride(int) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- stride - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- stride - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- stride(int) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
Stride
- stride - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
Stride
- stride - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- string2long(String) - Static method in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
-
Convert a string to long.
- StringCluster - Class in org.deeplearning4j.util
-
Clusters strings based on fingerprint: for example
Two words and TWO words or WORDS TWO would be put together
- StringCluster(List<String>) - Constructor for class org.deeplearning4j.util.StringCluster
-
- StringCluster.SizeComparator - Class in org.deeplearning4j.util
-
- StringGrid - Class in org.deeplearning4j.util
-
String matrix
- StringGrid(StringGrid) - Constructor for class org.deeplearning4j.util.StringGrid
-
- StringGrid(String, int) - Constructor for class org.deeplearning4j.util.StringGrid
-
- StringGrid(String, Collection<String>) - Constructor for class org.deeplearning4j.util.StringGrid
-
- stringifyException(Throwable) - Static method in class org.deeplearning4j.util.StringUtils
-
Make a string representation of the exception.
- stringSimilarity(String...) - Static method in class org.deeplearning4j.util.MathUtils
-
Calculate string similarity with tfidf weights relative to each character
frequency and how many times a character appears in a given string
- stringToURI(String[]) - Static method in class org.deeplearning4j.util.StringUtils
-
- StringUtils - Class in org.deeplearning4j.util
-
General string utils
- StringUtils.TraditionalBinaryPrefix - Enum in org.deeplearning4j.util
-
The traditional binary prefixes, kilo, mega, ..., exa,
which can be represented by a 64-bit integer.
- stripDuplicateRows() - Method in class org.deeplearning4j.util.StringGrid
-
- Subsampling1DLayer - Class in org.deeplearning4j.nn.conf.layers
-
1D (temporal) subsampling layer.
- Subsampling1DLayer - Class in org.deeplearning4j.nn.layers.convolution.subsampling
-
1D (temporal) subsampling layer.
- Subsampling1DLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer
-
- Subsampling1DLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer
-
- Subsampling1DLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- SubsamplingHelper - Interface in org.deeplearning4j.nn.layers.convolution.subsampling
-
Helper for the subsampling layer.
- SubsamplingLayer - Class in org.deeplearning4j.nn.conf.layers
-
Subsampling layer also referred to as pooling in convolution neural nets
Supports the following pooling types:
MAX
AVG
NON
- SubsamplingLayer(SubsamplingLayer.BaseSubsamplingBuilder<?>) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- SubsamplingLayer - Class in org.deeplearning4j.nn.layers.convolution.subsampling
-
Subsampling layer.
- SubsamplingLayer(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- SubsamplingLayer(NeuralNetConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- SubsamplingLayer.BaseSubsamplingBuilder<T extends SubsamplingLayer.BaseSubsamplingBuilder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- SubsamplingLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- SubsamplingLayer.PoolingType - Enum in org.deeplearning4j.nn.conf.layers
-
- SubsetVertex - Class in org.deeplearning4j.nn.conf.graph
-
SubsetVertex is used to select a subset of the activations out of another GraphVertex.
For example, a subset of the activations out of a layer.
Note that this subset is specifying by means of an interval of the original activations.
- SubsetVertex(int, int) - Constructor for class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- SubsetVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
SubsetVertex is used to select a subset of the activations out of another GraphVertex.
For example, a subset of the activations out of a layer.
Note that this subset is specifying by means of an interval of the original activations.
- SubsetVertex(ComputationGraph, String, int, int, int) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- SubsetVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], int, int) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- sum(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the sum of the given array.
- summary() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
String detailing the architecture of the computation graph.
- summary() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
String detailing the architecture of the multilayernetwork.
- SummaryStatistics - Class in org.deeplearning4j.util
-
- summaryStats(INDArray) - Static method in class org.deeplearning4j.util.SummaryStatistics
-
- summaryStatsString(INDArray) - Static method in class org.deeplearning4j.util.SummaryStatistics
-
- sumOfMeanDifferences(double[], double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
Used for calculating top part of simple regression for
beta 1
- sumOfMeanDifferencesOnePoint(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
Used for calculating top part of simple regression for
beta 1
- sumOfProducts(double[]...) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the sum of products for the given
numbers.
- sumOfSquares(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the sum of squares for the given vector.
- swap(int, int) - Method in class org.deeplearning4j.util.StringGrid
-
- symbol - Variable in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
-
- synchronize(int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- synchronize(int, boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- synchronize(int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- tags() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- take() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- taskByModel(Model) - Static method in class org.deeplearning4j.util.ModelSerializer
-
- tbpttBackLength - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- tbpttBackLength - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- tbpttBackLength - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- tbpttBackLength - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- tbpttBackLength - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- tbpttBackpropGradient(INDArray, int) - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Truncated BPTT equivalent of Layer.backpropGradient().
- tbpttBackpropGradient(INDArray, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- tbpttBackpropGradient(INDArray, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- tbpttBackpropGradient(INDArray, int) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- tBPTTBackwardLength(int) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
When doing truncated BPTT: how many steps of backward should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT)
This is the k2 parameter on pg23 of
http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
- tBPTTBackwardLength(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
When doing truncated BPTT: how many steps of backward should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT)
This is the k2 parameter on pg23 of
http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
- tBPTTForwardLength(int) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
When doing truncated BPTT: how many steps of forward pass should we do
before doing (truncated) backprop?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT)
Typically tBPTTForwardLength parameter is same as the tBPTTBackwardLength parameter,
but may be larger than it in some circumstances (but never smaller)
Ideally your training data time series length should be divisible by this
This is the k1 parameter on pg23 of
http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
- tBPTTForwardLength(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
When doing truncated BPTT: how many steps of forward pass should we do
before doing (truncated) backprop?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT)
Typically tBPTTForwardLength parameter is same as the tBPTTBackwardLength parameter,
but may be larger than it in some circumstances (but never smaller)
Ideally your training data time series length should be divisible by this
This is the k1 parameter on pg23 of
http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
- tbpttFwdLength - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- tbpttFwdLength - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- tbpttFwdLength - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- tbpttFwdLength - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- tbpttFwdLength - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- tBPTTLength(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
When doing truncated BPTT: how many steps should we do?
Only applicable when doing backpropType(BackpropType.TruncatedBPTT)
See: http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
- tBpttStateMap - Variable in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
State map for use specifically in truncated BPTT training.
- template - Variable in class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
- terminate(int, double) - Method in class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
-
- terminate(int, double) - Method in interface org.deeplearning4j.earlystopping.termination.EpochTerminationCondition
-
Should the early stopping training terminate at this epoch, based on the calculated score and the epoch number?
Returns true if training should terminated, or false otherwise
- terminate(double) - Method in class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
-
- terminate(double) - Method in interface org.deeplearning4j.earlystopping.termination.IterationTerminationCondition
-
Should early stopping training terminate at this iteration, based on the score for the last iteration?
return true if training should be terminated immediately, or false otherwise
- terminate(int, double) - Method in class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
-
- terminate(double) - Method in class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
-
- terminate(double) - Method in class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
-
- terminate(int, double) - Method in class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
-
- terminate(double, double, Object[]) - Method in interface org.deeplearning4j.optimize.api.TerminationCondition
-
Whether to terminate based on the given metadata
- terminate(double, double, Object[]) - Method in class org.deeplearning4j.optimize.terminations.EpsTermination
-
- terminate(double, double, Object[]) - Method in class org.deeplearning4j.optimize.terminations.Norm2Termination
-
- terminate(double, double, Object[]) - Method in class org.deeplearning4j.optimize.terminations.ZeroDirection
-
- TerminationCondition - Interface in org.deeplearning4j.optimize.api
-
Created by agibsonccc on 12/24/14.
- terminationConditions - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- TerminationConditions - Class in org.deeplearning4j.optimize.terminations
-
Created by agibsonccc on 12/24/14.
- TerminationConditions() - Constructor for class org.deeplearning4j.optimize.terminations.TerminationConditions
-
- terminator - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- terminator - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- TestDataSetConsumer - Class in org.deeplearning4j.util
-
Class that consumes DataSets with specified delays, suitable for testing
- TestDataSetConsumer(long) - Constructor for class org.deeplearning4j.util.TestDataSetConsumer
-
- TestDataSetConsumer(DataSetIterator, long) - Constructor for class org.deeplearning4j.util.TestDataSetConsumer
-
- tf(int, int) - Static method in class org.deeplearning4j.util.MathUtils
-
Term frequency: 1+ log10(count)
- tfidf(double, double) - Static method in class org.deeplearning4j.util.MathUtils
-
Return td * idf
- thread - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- thread - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- threshold - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- threshold - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- thresholdStep - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- throwable - Variable in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
- throwable - Variable in class org.deeplearning4j.datasets.iterator.AsyncMultiDataSetIterator
-
- throwable - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- TimeIterationListener - Class in org.deeplearning4j.optimize.listeners
-
Time Iteration Listener.
- TimeIterationListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.TimeIterationListener
-
Constructor
- timeMode - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- timerBP - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- timerEE - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- timerES - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- timerFF - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- timerIteration - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- times(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
This returns the product of all numbers in the given array.
- TimeSeriesUtils - Class in org.deeplearning4j.util
-
Basic time series utils
- toArray() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- toArray(T[]) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- toArray() - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- toArray(T[]) - Method in class org.deeplearning4j.util.DiskBasedQueue
-
- toArray() - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Returns an array containing all of the elements in this applyTransformToDestination.
- toArray(T[]) - Method in class org.deeplearning4j.util.MultiDimensionalSet
-
Returns an array containing all of the elements in this applyTransformToDestination; the
runtime type of the returned array is that of the specified array.
- toByteArray(Serializable) - Static method in class org.deeplearning4j.util.SerializationUtils
-
Converts the given object to a byte array
- toCSV() - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
Outputs the ConfusionMatrix as comma-separated values for easy import into spreadsheets
- toDecimal(String) - Static method in class org.deeplearning4j.util.MathUtils
-
This will convert the given binary string to a decimal based
integer
- toHTML() - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
Outputs Confusion Matrix in an HTML table.
- toJson() - Method in class org.deeplearning4j.eval.BaseEvaluation
-
- toJson() - Method in class org.deeplearning4j.eval.curves.BaseCurve
-
- toJson() - Method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- toJson() - Method in interface org.deeplearning4j.eval.IEvaluation
-
- toJson() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- toJson() - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- toJson() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- toJson() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Return this configuration as json
- toJson() - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- toLines() - Method in class org.deeplearning4j.util.StringGrid
-
- toMultiDataSet(DataSet) - Static method in class org.deeplearning4j.nn.graph.util.ComputationGraphUtil
-
Convert a DataSet to the equivalent MultiDataSet
- toMultiDataSetIterator(DataSetIterator) - Static method in class org.deeplearning4j.nn.graph.util.ComputationGraphUtil
-
Convert a DataSetIterator to a MultiDataSetIterator, via an adaptor class
- topN - Variable in class org.deeplearning4j.eval.Evaluation
-
- topNAccuracy() - Method in class org.deeplearning4j.eval.Evaluation
-
Top N accuracy of the predictions so far.
- topNCorrectCount - Variable in class org.deeplearning4j.eval.Evaluation
-
- topNTotalCount - Variable in class org.deeplearning4j.eval.Evaluation
-
- topologicalOrder - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
Indexes of graph vertices, in topological order.
- topologicalSortOrder() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate a topological sort order for the vertices in the graph.
- toPoolingType() - Method in enum org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType
-
- toString() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingResult
-
- toString() - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- toString() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- toString() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- toString() - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
- toString() - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
-
- toString() - Method in class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
-
- toString() - Method in class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
-
- toString() - Method in class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
-
- toString() - Method in class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
-
- toString() - Method in class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
-
- toString() - Method in class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
-
- toString() - Method in class org.deeplearning4j.eval.BaseEvaluation
-
- toString() - Method in class org.deeplearning4j.eval.ConfusionMatrix
-
- toString() - Method in class org.deeplearning4j.eval.meta.Prediction
-
- toString() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- toString() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- toString() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- toString() - Method in class org.deeplearning4j.nn.conf.distribution.UniformDistribution
-
- toString() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- toString() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- toString() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- toString() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
- toString() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- toString() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
-
- toString() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
-
- toString() - Method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- toString() - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- toString() - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- toString() - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- toString() - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- toString() - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- toString() - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- toString() - Method in class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- toString() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- toString() - Method in class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
-
- toString() - Method in class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
-
- toString() - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
-
- toString() - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
-
- toString() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- toString() - Method in class org.deeplearning4j.nn.graph.vertex.VertexIndices
-
- toString() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- toString() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- toString() - Method in class org.deeplearning4j.util.Index
-
- toString() - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
- toString() - Method in class org.deeplearning4j.util.SummaryStatistics
-
- totalCount(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the total number of values for the specified column, accounting for any masking
- totalExamples - Variable in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- totalExamples() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
Total examples in the iterator
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
Total examples in the iterator
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
Total examples in the iterator
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- totalExamples() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
-
Deprecated.
The total number of examples
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
Total examples in the iterator
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
Total examples in the iterator
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- totalExamples() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- totalIterations - Variable in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.fetchers.BaseDataFetcher
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.AbstractDataSetIterator
-
The number of labels for the dataset
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.AsyncDataSetIterator
-
The number of labels for the dataset
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.AsyncShieldDataSetIterator
-
The number of labels for the dataset
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.BaseDatasetIterator
-
- totalOutcomes() - Method in interface org.deeplearning4j.datasets.iterator.DataSetFetcher
-
Deprecated.
The number of labels for a dataset
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.EarlyTerminationDataSetIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.ExistingDataSetIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.FileSplitDataSetIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.impl.BenchmarkDataSetIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.impl.ListDataSetIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.IteratorDataSetIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.MultiDataSetWrapperIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
The number of labels for the dataset
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.parallel.BaseParallelDataSetIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.ReconstructionDataSetIterator
-
The number of labels for the dataset
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.SamplingDataSetIterator
-
- totalOutcomes() - Method in class org.deeplearning4j.datasets.iterator.WorkspacesShieldDataSetIterator
-
- touch() - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method does initialization of given worker wrt Thread-Device Affinity
- touch() - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method does initialization of given worker wrt Thread-Device Affinity
- touch() - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method does initialization of given worker wrt Thread-Device Affinity
- toYaml() - Method in class org.deeplearning4j.eval.BaseEvaluation
-
- toYaml() - Method in class org.deeplearning4j.eval.curves.BaseCurve
-
- toYaml() - Method in class org.deeplearning4j.eval.curves.BaseHistogram
-
- toYaml() - Method in interface org.deeplearning4j.eval.IEvaluation
-
- toYaml() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- toYaml() - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- toYaml() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- toYaml() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Return this configuration as json
- toYaml() - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- trackEpochs() - Method in class org.deeplearning4j.datasets.iterator.MultipleEpochsIterator
-
- TrainingListener - Interface in org.deeplearning4j.optimize.api
-
TrainingListener: an extension of
IterationListener
that adds onEpochStart, onEpochEnd, onForwardPass and
onBackwardPass methods
- trainingListeners - Variable in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- trainingListeners - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- trainingWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- trainingWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- trainingWorkspaceMode(WorkspaceMode) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
This method defines Workspace mode being used during training:
NONE: workspace won't be used
SINGLE: one workspace will be used during whole iteration loop
SEPARATE: separate workspaces will be used for feedforward and backprop iteration loops
- trainingWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- trainingWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- trainingWorkspaceMode(WorkspaceMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
This method defines Workspace mode being used during training:
NONE: workspace won't be used
SINGLE: one workspace will be used during whole iteration loop
SEPARATE: separate workspaces will be used for feedforward and backprop iteration loops
- TransferLearning - Class in org.deeplearning4j.nn.transferlearning
-
The transfer learning API can be used to modify the architecture or the learning parameters of an existing multilayernetwork or computation graph.
- TransferLearning() - Constructor for class org.deeplearning4j.nn.transferlearning.TransferLearning
-
- TransferLearning.Builder - Class in org.deeplearning4j.nn.transferlearning
-
- TransferLearning.GraphBuilder - Class in org.deeplearning4j.nn.transferlearning
-
- TransferLearningHelper - Class in org.deeplearning4j.nn.transferlearning
-
This class is intended for use with the transfer learning API.
- TransferLearningHelper(ComputationGraph, String...) - Constructor for class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Will modify the given comp graph (in place!) to freeze vertices from input to the vertex specified.
- TransferLearningHelper(ComputationGraph) - Constructor for class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Expects a computation graph where some vertices are frozen
- TransferLearningHelper(MultiLayerNetwork, int) - Constructor for class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Will modify the given MLN (in place!) to freeze layers (hold params constant during training) specified and below
- TransferLearningHelper(MultiLayerNetwork) - Constructor for class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Expects a MLN where some layers are frozen
- transpose() - Method in interface org.deeplearning4j.nn.api.Layer
-
Return a transposed copy of the weights/bias
(this means reverse the number of inputs and outputs on the weights)
- transpose() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- transpose() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- transpose() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- transpose() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- transpose() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- transpose() - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- transpose() - Method in class org.deeplearning4j.nn.layers.feedforward.rbm.RBM
-
Deprecated.
- transpose() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- transpose() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- transpose() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- transpose() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- transpose() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- transpose() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- transpose() - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- transpose() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- transpose() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- Tree - Class in org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive
-
Tree for a recursive neural tensor network
based on Socher et al's work.
- Tree(Tree) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Clone constructor (all but the children)
- Tree(Tree, List<String>) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- Tree(List<String>) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- treeSet() - Static method in class org.deeplearning4j.util.MultiDimensionalSet
-
- trueNegatives - Variable in class org.deeplearning4j.eval.Evaluation
-
- trueNegatives() - Method in class org.deeplearning4j.eval.Evaluation
-
True negatives: correctly rejected
- trueNegatives(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the true negatives count for the specified output
- truePositives - Variable in class org.deeplearning4j.eval.Evaluation
-
- truePositives() - Method in class org.deeplearning4j.eval.Evaluation
-
True positives: correctly rejected
- truePositives(int) - Method in class org.deeplearning4j.eval.EvaluationBinary
-
Get the true positives count for the specified output
- truncatedBPTTGradient() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Equivalent to backprop(), but calculates gradient for truncated BPTT instead.
- type() - Method in interface org.deeplearning4j.nn.api.Layer
-
Returns the layer type
- type() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- type() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- type() - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- type() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
- type() - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- type() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- type() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- type() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- validate() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Check the configuration, make sure it is valid
- validateCnnKernelStridePadding(int[], int[], int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Perform validation on the CNN layer kernel/stride/padding.
- validateInput() - Method in interface org.deeplearning4j.nn.api.Model
-
- validateInput() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- validateInput() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- validateInput() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- validateInput() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- validateInput() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- validateShapes(int, int, int, int, int, int, int, int) - Static method in class org.deeplearning4j.nn.layers.convolution.KernelValidationUtil
-
- value() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- value - Variable in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
-
- valueOf(String) - Static method in enum org.deeplearning4j.earlystopping.EarlyStoppingResult.TerminationReason
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.eval.EvaluationAveraging
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.api.Layer.TrainingMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.api.Layer.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.api.MaskState
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.api.OptimizationAlgorithm
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.BackpropType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.CacheMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.ConvolutionMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.GradientNormalization
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.graph.ElementWiseVertex.Op
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.inputs.InputType.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.AlgoMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdDataAlgo
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdFilterAlgo
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.FwdAlgo
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.PoolingType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.RBM.HiddenUnit
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.RBM.VisibleUnit
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.LearningRatePolicy
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.memory.MemoryType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.memory.MemoryUseMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.Updater
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.WorkspaceMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.weights.WeightInit
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.optimize.api.InvocationType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.optimize.listeners.SleepyTrainingListener.SleepMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.optimize.listeners.SleepyTrainingListener.TimeMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
-
Returns the enum constant of this type with the specified name.
- valueOf(char) - Static method in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
-
- values() - Static method in enum org.deeplearning4j.earlystopping.EarlyStoppingResult.TerminationReason
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.eval.EvaluationAveraging
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.api.Layer.TrainingMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.api.Layer.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.api.MaskState
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.api.OptimizationAlgorithm
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.BackpropType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.CacheMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.ConvolutionMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.GradientNormalization
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.graph.ElementWiseVertex.Op
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.inputs.InputType.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.AlgoMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdDataAlgo
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdFilterAlgo
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.FwdAlgo
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.PoolingType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.RBM.HiddenUnit
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.RBM.VisibleUnit
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.LearningRatePolicy
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.memory.MemoryType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.memory.MemoryUseMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.Updater
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.WorkspaceMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.weights.WeightInit
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.optimize.api.InvocationType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.optimize.listeners.SleepyTrainingListener.SleepMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.optimize.listeners.SleepyTrainingListener.TimeMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Method in class org.deeplearning4j.util.MultiDimensionalMap
-
Returns a
Collection
view of the values contained in this map.
- values() - Static method in enum org.deeplearning4j.util.StringUtils.TraditionalBinaryPrefix
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- variables - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- variables() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- variables(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- variance(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
- VariationalAutoencoder - Class in org.deeplearning4j.nn.conf.layers.variational
-
Variational Autoencoder layer
- VariationalAutoencoder - Class in org.deeplearning4j.nn.layers.variational
-
Variational Autoencoder layer
- VariationalAutoencoder(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- VariationalAutoencoder.Builder - Class in org.deeplearning4j.nn.conf.layers.variational
-
- VariationalAutoencoderParamInitializer - Class in org.deeplearning4j.nn.params
-
Parameter initializer for the Variational Autoencoder model.
- VariationalAutoencoderParamInitializer() - Constructor for class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- vector() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- vectorLength(double[]) - Static method in class org.deeplearning4j.util.MathUtils
-
Returns the vector length (sqrt(sum(x_i))
- vertexIndex - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
The index of this vertex
- VertexIndices - Class in org.deeplearning4j.nn.graph.vertex
-
VertexIndices defines a pair of integers: the index of a vertex, and the edge number of that vertex.
- VertexIndices() - Constructor for class org.deeplearning4j.nn.graph.vertex.VertexIndices
-
- vertexInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Key: graph node.
- vertexInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- vertexName - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- vertices - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- vertices - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- vertices - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
All GraphVertex objects in the network.
- verticesMap - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
Map of vertices by name
- VISIBLE_BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- visibleBiasInit - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- visibleBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- visibleBiasInit - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- visibleUnit(RBM.VisibleUnit) - Method in class org.deeplearning4j.nn.conf.layers.RBM.Builder
-
- visibleUnit - Variable in class org.deeplearning4j.nn.conf.layers.RBM
-
- Viterbi - Class in org.deeplearning4j.util
-
Based on the impl from:
https://gist.github.com/rmcgibbo/3915977
- Viterbi(INDArray) - Constructor for class org.deeplearning4j.util.Viterbi
-
The possible outcomes for the chain.