public class DenseLayer extends BaseLayer<DenseLayer>
Layer.TrainingMode, Layer.Type
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver
cacheMode, conf, dropoutApplied, dropoutMask, index, input, iterationListeners, maskArray, maskState, preOutput
Constructor and Description |
---|
DenseLayer(NeuralNetConfiguration conf) |
DenseLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
Modifier and Type | Method and Description |
---|---|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray input)
Fit the model to the given data
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (VAE, RBMs etc)
|
accumulateScore, activate, activate, activate, activationMean, applyLearningRateScoreDecay, backpropGradient, calcGradient, calcL1, calcL2, clone, computeGradientAndScore, error, fit, getGradientsViewArray, getOptimizer, getParam, gradient, initParams, iterate, layerConf, merge, numParams, params, paramTable, paramTable, preOutput, preOutput, score, setBackpropGradientsViewArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, transpose, update, update
activate, activate, activate, addListeners, applyDropOutIfNecessary, applyMask, batchSize, clear, conf, derivativeActivation, feedForwardMaskArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, preOutput, preOutput, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, type, validateInput
public DenseLayer(NeuralNetConfiguration conf)
public DenseLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public void fit(org.nd4j.linalg.api.ndarray.INDArray input)
Model
fit
in interface Model
fit
in class BaseLayer<DenseLayer>
input
- the data to fit the model topublic boolean isPretrainLayer()
Layer
Copyright © 2017. All rights reserved.