public abstract class BaseLayer<LayerConfT extends BaseLayer> extends AbstractLayer<LayerConfT>
Layer.TrainingMode, Layer.Type| Modifier and Type | Field and Description |
|---|---|
protected Gradient |
gradient |
protected org.nd4j.linalg.api.ndarray.INDArray |
gradientsFlattened |
protected Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
gradientViews |
protected ConvexOptimizer |
optimizer |
protected Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
params |
protected org.nd4j.linalg.api.ndarray.INDArray |
paramsFlattened |
protected double |
score |
protected Solver |
solver |
cacheMode, conf, dropoutApplied, dropoutMask, index, input, iterationListeners, maskArray, maskState, preOutput| Constructor and Description |
|---|
BaseLayer(NeuralNetConfiguration conf) |
BaseLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
| Modifier and Type | Method and Description |
|---|---|
void |
accumulateScore(double accum)
Sets a rolling tally for the score.
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training)
Trigger an activation with the last specified input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input,
Layer.TrainingMode training)
Initialize the layer with the given input
and return the activation for this layer
given this input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(Layer.TrainingMode training)
Trigger an activation with the last specified input
|
org.nd4j.linalg.api.ndarray.INDArray |
activationMean()
Calculate the mean representation
for the activation for this layer
|
void |
applyLearningRateScoreDecay()
Update learningRate using for this model.
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Calculate the gradient relative to the error in the next layer
|
Gradient |
calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation)
Calculate the gradient
|
double |
calcL1(boolean backpropParamsOnly)
Calculate the l1 regularization term
0.0 if regularization is not used. |
double |
calcL2(boolean backpropParamsOnly)
Calculate the l2 regularization term
0.0 if regularization is not used. |
Layer |
clone()
Clone the layer
|
void |
computeGradientAndScore()
Update the score
|
Gradient |
error(org.nd4j.linalg.api.ndarray.INDArray errorSignal)
Calculate error with respect to the
current layer.
|
void |
fit()
All models have a fit method
|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray input)
Fit the model to the given data
|
org.nd4j.linalg.api.ndarray.INDArray |
getGradientsViewArray() |
ConvexOptimizer |
getOptimizer()
Returns this models optimizer
|
org.nd4j.linalg.api.ndarray.INDArray |
getParam(String param)
Get the parameter
|
Gradient |
gradient()
Calculate a gradient
|
void |
initParams()
Initialize the parameters
|
void |
iterate(org.nd4j.linalg.api.ndarray.INDArray input)
iterate one iteration of the network
|
LayerConfT |
layerConf() |
void |
merge(Layer l,
int batchSize)
Averages the given logistic regression from a mini batch into this layer
|
int |
numParams()
The number of parameters for the model
|
org.nd4j.linalg.api.ndarray.INDArray |
params()
Returns the parameters of the neural network as a flattened row vector
|
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable()
The param table
|
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable(boolean backpropParamsOnly)
Table of parameters by key, for backprop
For many models (dense layers, etc) - all parameters are backprop parameters
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training) |
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(org.nd4j.linalg.api.ndarray.INDArray x,
Layer.TrainingMode training)
Raw activations
|
double |
score()
Objective function: the specified objective
|
void |
setBackpropGradientsViewArray(org.nd4j.linalg.api.ndarray.INDArray gradients)
Set the gradients array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setParam(String key,
org.nd4j.linalg.api.ndarray.INDArray val)
Set the parameter with a new ndarray
|
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Set the parameters for this model.
|
protected void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params,
char order) |
void |
setParamsViewArray(org.nd4j.linalg.api.ndarray.INDArray params)
Set the initial parameters array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
Setter for the param table
|
protected void |
setScoreWithZ(org.nd4j.linalg.api.ndarray.INDArray z) |
String |
toString() |
Layer |
transpose()
Return a transposed copy of the weights/bias
(this means reverse the number of inputs and outputs on the weights)
|
void |
update(Gradient gradient)
Update layer weights and biases with gradient change
|
void |
update(org.nd4j.linalg.api.ndarray.INDArray gradient,
String paramType)
Perform one update applying the gradient
|
activate, activate, activate, addListeners, applyDropOutIfNecessary, applyMask, batchSize, clear, conf, derivativeActivation, feedForwardMaskArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, preOutput, preOutput, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, type, validateInputequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitisPretrainLayerprotected org.nd4j.linalg.api.ndarray.INDArray paramsFlattened
protected org.nd4j.linalg.api.ndarray.INDArray gradientsFlattened
protected double score
protected ConvexOptimizer optimizer
protected Gradient gradient
protected Solver solver
public BaseLayer(NeuralNetConfiguration conf)
public BaseLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public LayerConfT layerConf()
layerConf in class AbstractLayer<LayerConfT extends BaseLayer>public Gradient error(org.nd4j.linalg.api.ndarray.INDArray errorSignal)
Layererror in interface Layererror in class AbstractLayer<LayerConfT extends BaseLayer>errorSignal - the gradient for the forward layer
If this is the final layer, it will start
with the error from the output.
This is on the user to initialize.public Gradient calcGradient(Gradient layerError, org.nd4j.linalg.api.ndarray.INDArray activation)
LayercalcGradient in interface LayercalcGradient in class AbstractLayer<LayerConfT extends BaseLayer>layerError - the layer errorpublic org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Layerepsilon - w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.public void fit()
Modelfit in interface Modelfit in class AbstractLayer<LayerConfT extends BaseLayer>public void computeGradientAndScore()
ModelcomputeGradientAndScore in interface ModelcomputeGradientAndScore in class AbstractLayer<LayerConfT extends BaseLayer>protected void setScoreWithZ(org.nd4j.linalg.api.ndarray.INDArray z)
public org.nd4j.linalg.api.ndarray.INDArray preOutput(org.nd4j.linalg.api.ndarray.INDArray x,
Layer.TrainingMode training)
LayerpreOutput in interface LayerpreOutput in class AbstractLayer<LayerConfT extends BaseLayer>x - the input to transformpublic org.nd4j.linalg.api.ndarray.INDArray activate(Layer.TrainingMode training)
Layeractivate in interface Layeractivate in class AbstractLayer<LayerConfT extends BaseLayer>training - training or test modepublic org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input,
Layer.TrainingMode training)
Layeractivate in interface Layeractivate in class AbstractLayer<LayerConfT extends BaseLayer>input - the input to usetraining - train or test modepublic double score()
score in interface Modelscore in class AbstractLayer<LayerConfT extends BaseLayer>public Gradient gradient()
Modelgradient in interface Modelgradient in class AbstractLayer<LayerConfT extends BaseLayer>public void iterate(org.nd4j.linalg.api.ndarray.INDArray input)
iterate in interface Modeliterate in class AbstractLayer<LayerConfT extends BaseLayer>input - the input to iterate onpublic void update(Gradient gradient)
Modelupdate in interface Modelupdate in class AbstractLayer<LayerConfT extends BaseLayer>public void update(org.nd4j.linalg.api.ndarray.INDArray gradient,
String paramType)
Modelupdate in interface Modelupdate in class AbstractLayer<LayerConfT extends BaseLayer>gradient - the gradient to applypublic ConvexOptimizer getOptimizer()
ModelgetOptimizer in interface ModelgetOptimizer in class AbstractLayer<LayerConfT extends BaseLayer>public org.nd4j.linalg.api.ndarray.INDArray params()
params in interface Modelparams in class AbstractLayer<LayerConfT extends BaseLayer>public org.nd4j.linalg.api.ndarray.INDArray getParam(String param)
ModelgetParam in interface ModelgetParam in class AbstractLayer<LayerConfT extends BaseLayer>param - the key of the parameterpublic void setParam(String key, org.nd4j.linalg.api.ndarray.INDArray val)
ModelsetParam in interface ModelsetParam in class AbstractLayer<LayerConfT extends BaseLayer>key - the key to se tval - the new ndarraypublic void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
ModelsetParams in interface ModelsetParams in class AbstractLayer<LayerConfT extends BaseLayer>params - the parameters for the modelprotected void setParams(org.nd4j.linalg.api.ndarray.INDArray params,
char order)
setParams in class AbstractLayer<LayerConfT extends BaseLayer>public void setParamsViewArray(org.nd4j.linalg.api.ndarray.INDArray params)
ModelsetParamsViewArray in interface ModelsetParamsViewArray in class AbstractLayer<LayerConfT extends BaseLayer>params - a 1 x nParams row vector that is a view of the larger (MLN/CG) parameters arraypublic org.nd4j.linalg.api.ndarray.INDArray getGradientsViewArray()
getGradientsViewArray in interface ModelgetGradientsViewArray in class AbstractLayer<LayerConfT extends BaseLayer>public void setBackpropGradientsViewArray(org.nd4j.linalg.api.ndarray.INDArray gradients)
ModelsetBackpropGradientsViewArray in interface ModelsetBackpropGradientsViewArray in class AbstractLayer<LayerConfT extends BaseLayer>gradients - a 1 x nParams row vector that is a view of the larger (MLN/CG) gradients arraypublic void setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
ModelsetParamTable in interface ModelsetParamTable in class AbstractLayer<LayerConfT extends BaseLayer>public void initParams()
ModelinitParams in interface ModelinitParams in class AbstractLayer<LayerConfT extends BaseLayer>public Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable()
ModelparamTable in interface ModelparamTable in class AbstractLayer<LayerConfT extends BaseLayer>public Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable(boolean backpropParamsOnly)
ModelparamTable in interface ModelparamTable in class AbstractLayer<LayerConfT extends BaseLayer>backpropParamsOnly - If true, return backprop params only. If false: return all params (equivalent to
paramsTable())public org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training)
preOutput in class AbstractLayer<LayerConfT extends BaseLayer>public org.nd4j.linalg.api.ndarray.INDArray activate(boolean training)
Layertraining - training or test modepublic double calcL2(boolean backpropParamsOnly)
LayercalcL2 in interface LayercalcL2 in class AbstractLayer<LayerConfT extends BaseLayer>backpropParamsOnly - If true: calculate L2 based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)public double calcL1(boolean backpropParamsOnly)
LayercalcL1 in interface LayercalcL1 in class AbstractLayer<LayerConfT extends BaseLayer>backpropParamsOnly - If true: calculate L1 based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)public org.nd4j.linalg.api.ndarray.INDArray activationMean()
Layerpublic void merge(Layer l, int batchSize)
merge in interface Layermerge in class AbstractLayer<LayerConfT extends BaseLayer>l - the logistic regression layer to average into this layerbatchSize - the batch sizepublic Layer clone()
Layerclone in interface Layerclone in class AbstractLayer<LayerConfT extends BaseLayer>public int numParams()
numParams in interface ModelnumParams in class AbstractLayer<LayerConfT extends BaseLayer>public void fit(org.nd4j.linalg.api.ndarray.INDArray input)
Modelfit in interface Modelfit in class AbstractLayer<LayerConfT extends BaseLayer>input - the data to fit the model topublic Layer transpose()
Layertranspose in interface Layertranspose in class AbstractLayer<LayerConfT extends BaseLayer>public void accumulateScore(double accum)
ModelaccumulateScore in interface ModelaccumulateScore in class AbstractLayer<LayerConfT extends BaseLayer>accum - the amount to accumpublic void applyLearningRateScoreDecay()
ModelapplyLearningRateScoreDecay in interface ModelapplyLearningRateScoreDecay in class AbstractLayer<LayerConfT extends BaseLayer>Copyright © 2017. All rights reserved.