public abstract class AbstractLayer<LayerConfT extends Layer> extends Object implements Layer
Layer.TrainingMode, Layer.Type| Modifier and Type | Field and Description |
|---|---|
protected CacheMode |
cacheMode |
protected NeuralNetConfiguration |
conf |
protected boolean |
dropoutApplied |
protected org.nd4j.linalg.api.ndarray.INDArray |
dropoutMask |
protected int |
index |
protected org.nd4j.linalg.api.ndarray.INDArray |
input |
protected Collection<IterationListener> |
iterationListeners |
protected org.nd4j.linalg.api.ndarray.INDArray |
maskArray |
protected MaskState |
maskState |
protected org.nd4j.linalg.api.ndarray.INDArray |
preOutput |
| Constructor and Description |
|---|
AbstractLayer(NeuralNetConfiguration conf) |
AbstractLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
| Modifier and Type | Method and Description |
|---|---|
void |
accumulateScore(double accum)
Sets a rolling tally for the score.
|
org.nd4j.linalg.api.ndarray.INDArray |
activate()
Trigger an activation with the last specified input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input)
Initialize the layer with the given input
and return the activation for this layer
given this input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input,
boolean training)
Initialize the layer with the given input
and return the activation for this layer
given this input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input,
Layer.TrainingMode training)
Initialize the layer with the given input
and return the activation for this layer
given this input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(Layer.TrainingMode training)
Trigger an activation with the last specified input
|
void |
addListeners(IterationListener... listeners)
This method ADDS additional IterationListener to existing listeners
|
protected void |
applyDropOutIfNecessary(boolean training) |
void |
applyLearningRateScoreDecay()
Update learningRate using for this model.
|
protected void |
applyMask(org.nd4j.linalg.api.ndarray.INDArray to) |
int |
batchSize()
The current inputs batch size
|
Gradient |
calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation)
Calculate the gradient
|
double |
calcL1(boolean backpropParamsOnly)
Calculate the l1 regularization term
0.0 if regularization is not used. |
double |
calcL2(boolean backpropParamsOnly)
Calculate the l2 regularization term
0.0 if regularization is not used. |
void |
clear()
Clear input
|
abstract Layer |
clone()
Clone the layer
|
void |
computeGradientAndScore()
Update the score
|
NeuralNetConfiguration |
conf()
The configuration for the neural network
|
org.nd4j.linalg.api.ndarray.INDArray |
derivativeActivation(org.nd4j.linalg.api.ndarray.INDArray input)
Deprecated.
|
Gradient |
error(org.nd4j.linalg.api.ndarray.INDArray errorSignal)
Calculate error with respect to the
current layer.
|
org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize)
Feed forward the input mask array, setting in in the layer as appropriate.
|
void |
fit()
All models have a fit method
|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray input)
Fit the model to the given data
|
org.nd4j.linalg.api.ndarray.INDArray |
getGradientsViewArray() |
int |
getIndex()
Get the layer index.
|
org.nd4j.linalg.api.ndarray.INDArray |
getInput() |
int |
getInputMiniBatchSize()
Get current/last input mini-batch size, as set by setInputMiniBatchSize(int)
|
Collection<IterationListener> |
getListeners()
Get the iteration listeners for this layer.
|
org.nd4j.linalg.api.ndarray.INDArray |
getMaskArray() |
ConvexOptimizer |
getOptimizer()
Returns this models optimizer
|
org.nd4j.linalg.api.ndarray.INDArray |
getParam(String param)
Get the parameter
|
Gradient |
gradient()
Calculate a gradient
|
org.nd4j.linalg.primitives.Pair<Gradient,Double> |
gradientAndScore()
Get the gradient and score
|
void |
init()
Init the model
|
void |
initParams()
Initialize the parameters
|
org.nd4j.linalg.api.ndarray.INDArray |
input()
The input/feature matrix for the model
|
void |
iterate(org.nd4j.linalg.api.ndarray.INDArray input)
iterate one iteration of the network
|
protected LayerConfT |
layerConf() |
protected String |
layerId() |
void |
merge(Layer l,
int batchSize)
Averages the given logistic regression from a mini batch into this layer
|
int |
numParams()
The number of parameters for the model
|
int |
numParams(boolean backwards)
the number of parameters for the model
|
org.nd4j.linalg.api.ndarray.INDArray |
params()
Returns the parameters of the neural network as a flattened row vector
|
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable()
The param table
|
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable(boolean backpropParamsOnly)
Table of parameters by key, for backprop
For many models (dense layers, etc) - all parameters are backprop parameters
|
abstract org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training) |
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(org.nd4j.linalg.api.ndarray.INDArray x)
Classify input
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(org.nd4j.linalg.api.ndarray.INDArray x,
boolean training)
Raw activations
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(org.nd4j.linalg.api.ndarray.INDArray x,
Layer.TrainingMode training)
Raw activations
|
double |
score()
The score for the model
|
void |
setBackpropGradientsViewArray(org.nd4j.linalg.api.ndarray.INDArray gradients)
Set the gradients array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setCacheMode(CacheMode mode)
This method sets given CacheMode for current layer
|
void |
setConf(NeuralNetConfiguration conf)
Setter for the configuration
|
void |
setIndex(int index)
Set the layer index.
|
void |
setInput(org.nd4j.linalg.api.ndarray.INDArray input)
Get the layer input.
|
void |
setInputMiniBatchSize(int size)
Set current/last input mini-batch size.
Used for score and gradient calculations. |
void |
setListeners(Collection<IterationListener> listeners)
Set the iteration listeners for this layer.
|
void |
setListeners(IterationListener... listeners)
Set the iteration listeners for this layer.
|
void |
setMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray)
Set the mask array.
|
void |
setParam(String key,
org.nd4j.linalg.api.ndarray.INDArray val)
Set the parameter with a new ndarray
|
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Set the parameters for this model.
|
protected void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params,
char order) |
void |
setParamsViewArray(org.nd4j.linalg.api.ndarray.INDArray params)
Set the initial parameters array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
Setter for the param table
|
Layer |
transpose()
Return a transposed copy of the weights/bias
(this means reverse the number of inputs and outputs on the weights)
|
Layer.Type |
type()
Returns the layer type
|
void |
update(Gradient gradient)
Update layer weights and biases with gradient change
|
void |
update(org.nd4j.linalg.api.ndarray.INDArray gradient,
String paramType)
Perform one update applying the gradient
|
void |
validateInput()
Validate the input
|
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitactivate, activationMean, backpropGradient, isPretrainLayerprotected org.nd4j.linalg.api.ndarray.INDArray input
protected org.nd4j.linalg.api.ndarray.INDArray preOutput
protected NeuralNetConfiguration conf
protected org.nd4j.linalg.api.ndarray.INDArray dropoutMask
protected boolean dropoutApplied
protected Collection<IterationListener> iterationListeners
protected int index
protected org.nd4j.linalg.api.ndarray.INDArray maskArray
protected MaskState maskState
protected CacheMode cacheMode
public AbstractLayer(NeuralNetConfiguration conf)
public AbstractLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public void setCacheMode(CacheMode mode)
LayersetCacheMode in interface Layerprotected LayerConfT layerConf()
protected String layerId()
public org.nd4j.linalg.api.ndarray.INDArray getInput()
public void setInput(org.nd4j.linalg.api.ndarray.INDArray input)
Layerpublic int getIndex()
Layerpublic void setIndex(int index)
Layerpublic Collection<IterationListener> getListeners()
LayergetListeners in interface Layerpublic void setListeners(Collection<IterationListener> listeners)
LayersetListeners in interface LayersetListeners in interface Modelpublic void addListeners(IterationListener... listeners)
addListeners in interface Modellisteners - public void setListeners(IterationListener... listeners)
LayersetListeners in interface LayersetListeners in interface Modelpublic Gradient error(org.nd4j.linalg.api.ndarray.INDArray errorSignal)
Layer@Deprecated public org.nd4j.linalg.api.ndarray.INDArray derivativeActivation(org.nd4j.linalg.api.ndarray.INDArray input)
LayerderivativeActivation in interface Layerinput - the input to take the derivative ofpublic Gradient calcGradient(Gradient layerError, org.nd4j.linalg.api.ndarray.INDArray activation)
LayercalcGradient in interface LayerlayerError - the layer errorpublic void computeGradientAndScore()
ModelcomputeGradientAndScore in interface Modelpublic org.nd4j.linalg.api.ndarray.INDArray preOutput(org.nd4j.linalg.api.ndarray.INDArray x,
Layer.TrainingMode training)
Layerpublic org.nd4j.linalg.api.ndarray.INDArray activate(Layer.TrainingMode training)
Layerpublic org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input,
Layer.TrainingMode training)
Layerpublic void iterate(org.nd4j.linalg.api.ndarray.INDArray input)
public void update(Gradient gradient)
Modelpublic void update(org.nd4j.linalg.api.ndarray.INDArray gradient,
String paramType)
Modelpublic ConvexOptimizer getOptimizer()
ModelgetOptimizer in interface Modelpublic void setConf(NeuralNetConfiguration conf)
Modelpublic org.nd4j.linalg.api.ndarray.INDArray params()
public org.nd4j.linalg.api.ndarray.INDArray getParam(String param)
Modelpublic void setParam(String key, org.nd4j.linalg.api.ndarray.INDArray val)
Modelpublic void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Modelprotected void setParams(org.nd4j.linalg.api.ndarray.INDArray params,
char order)
public void setParamsViewArray(org.nd4j.linalg.api.ndarray.INDArray params)
ModelsetParamsViewArray in interface Modelparams - a 1 x nParams row vector that is a view of the larger (MLN/CG) parameters arraypublic org.nd4j.linalg.api.ndarray.INDArray getGradientsViewArray()
getGradientsViewArray in interface Modelpublic void setBackpropGradientsViewArray(org.nd4j.linalg.api.ndarray.INDArray gradients)
ModelsetBackpropGradientsViewArray in interface Modelgradients - a 1 x nParams row vector that is a view of the larger (MLN/CG) gradients arraypublic void setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
ModelsetParamTable in interface Modelpublic void initParams()
ModelinitParams in interface Modelpublic Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable()
ModelparamTable in interface Modelpublic Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable(boolean backpropParamsOnly)
ModelparamTable in interface ModelbackpropParamsOnly - If true, return backprop params only. If false: return all params (equivalent to
paramsTable())public org.nd4j.linalg.api.ndarray.INDArray preOutput(org.nd4j.linalg.api.ndarray.INDArray x,
boolean training)
Layerpublic abstract org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training)
protected void applyMask(org.nd4j.linalg.api.ndarray.INDArray to)
public org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input)
Layerpublic org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input,
boolean training)
Layerpublic org.nd4j.linalg.api.ndarray.INDArray activate()
Layerpublic org.nd4j.linalg.api.ndarray.INDArray preOutput(org.nd4j.linalg.api.ndarray.INDArray x)
preOutput in interface Layerx - the input (can either be a matrix or vector)
If it's a matrix, each row is considered an example
and associated rows are classified accordingly.
Each row will be the likelihood of a label given that examplepublic double calcL2(boolean backpropParamsOnly)
Layerpublic double calcL1(boolean backpropParamsOnly)
Layerpublic int batchSize()
Modelpublic NeuralNetConfiguration conf()
Modelpublic void clear()
Modelprotected void applyDropOutIfNecessary(boolean training)
public void merge(Layer l, int batchSize)
public Layer.Type type()
Layerpublic int numParams()
public int numParams(boolean backwards)
Modelpublic void fit(org.nd4j.linalg.api.ndarray.INDArray input)
Modelpublic org.nd4j.linalg.primitives.Pair<Gradient,Double> gradientAndScore()
ModelgradientAndScore in interface Modelpublic org.nd4j.linalg.api.ndarray.INDArray input()
Modelpublic void validateInput()
ModelvalidateInput in interface Modelpublic Layer transpose()
Layerpublic void setInputMiniBatchSize(int size)
LayersetInputMiniBatchSize in interface Layerpublic int getInputMiniBatchSize()
LayergetInputMiniBatchSize in interface LayerLayer.setInputMiniBatchSize(int)public void applyLearningRateScoreDecay()
ModelapplyLearningRateScoreDecay in interface Modelpublic void setMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray)
LayerLayer.feedForwardMaskArray(INDArray, MaskState, int) should be used in
preference to this.setMaskArray in interface LayermaskArray - Mask array to setpublic org.nd4j.linalg.api.ndarray.INDArray getMaskArray()
getMaskArray in interface Layerpublic org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray, MaskState currentMaskState, int minibatchSize)
LayerfeedForwardMaskArray in interface LayermaskArray - Mask array to setcurrentMaskState - Current state of the mask - see MaskStateminibatchSize - Current minibatch size. Needs to be known as it cannot always be inferred from the activations
array due to reshaping (such as a DenseLayer within a recurrent neural network)public void fit()
Modelpublic double score()
Modelpublic void accumulateScore(double accum)
ModelaccumulateScore in interface Modelaccum - the amount to accumCopyright © 2017. All rights reserved.