public abstract class AbstractLayer<LayerConfT extends Layer> extends Object implements Layer
Layer.TrainingMode, Layer.Type
Modifier and Type | Field and Description |
---|---|
protected CacheMode |
cacheMode |
protected NeuralNetConfiguration |
conf |
protected boolean |
dropoutApplied |
protected org.nd4j.linalg.api.ndarray.INDArray |
dropoutMask |
protected int |
index |
protected org.nd4j.linalg.api.ndarray.INDArray |
input |
protected Collection<IterationListener> |
iterationListeners |
protected org.nd4j.linalg.api.ndarray.INDArray |
maskArray |
protected MaskState |
maskState |
protected org.nd4j.linalg.api.ndarray.INDArray |
preOutput |
Constructor and Description |
---|
AbstractLayer(NeuralNetConfiguration conf) |
AbstractLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
Modifier and Type | Method and Description |
---|---|
void |
accumulateScore(double accum)
Sets a rolling tally for the score.
|
org.nd4j.linalg.api.ndarray.INDArray |
activate()
Trigger an activation with the last specified input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input)
Initialize the layer with the given input
and return the activation for this layer
given this input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input,
boolean training)
Initialize the layer with the given input
and return the activation for this layer
given this input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input,
Layer.TrainingMode training)
Initialize the layer with the given input
and return the activation for this layer
given this input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(Layer.TrainingMode training)
Trigger an activation with the last specified input
|
void |
addListeners(IterationListener... listeners)
This method ADDS additional IterationListener to existing listeners
|
protected void |
applyDropOutIfNecessary(boolean training) |
void |
applyLearningRateScoreDecay()
Update learningRate using for this model.
|
protected void |
applyMask(org.nd4j.linalg.api.ndarray.INDArray to) |
int |
batchSize()
The current inputs batch size
|
Gradient |
calcGradient(Gradient layerError,
org.nd4j.linalg.api.ndarray.INDArray activation)
Calculate the gradient
|
double |
calcL1(boolean backpropParamsOnly)
Calculate the l1 regularization term
0.0 if regularization is not used. |
double |
calcL2(boolean backpropParamsOnly)
Calculate the l2 regularization term
0.0 if regularization is not used. |
void |
clear()
Clear input
|
abstract Layer |
clone()
Clone the layer
|
void |
computeGradientAndScore()
Update the score
|
NeuralNetConfiguration |
conf()
The configuration for the neural network
|
org.nd4j.linalg.api.ndarray.INDArray |
derivativeActivation(org.nd4j.linalg.api.ndarray.INDArray input)
Deprecated.
|
Gradient |
error(org.nd4j.linalg.api.ndarray.INDArray errorSignal)
Calculate error with respect to the
current layer.
|
org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize)
Feed forward the input mask array, setting in in the layer as appropriate.
|
void |
fit()
All models have a fit method
|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray input)
Fit the model to the given data
|
org.nd4j.linalg.api.ndarray.INDArray |
getGradientsViewArray() |
int |
getIndex()
Get the layer index.
|
org.nd4j.linalg.api.ndarray.INDArray |
getInput() |
int |
getInputMiniBatchSize()
Get current/last input mini-batch size, as set by setInputMiniBatchSize(int)
|
Collection<IterationListener> |
getListeners()
Get the iteration listeners for this layer.
|
org.nd4j.linalg.api.ndarray.INDArray |
getMaskArray() |
ConvexOptimizer |
getOptimizer()
Returns this models optimizer
|
org.nd4j.linalg.api.ndarray.INDArray |
getParam(String param)
Get the parameter
|
Gradient |
gradient()
Calculate a gradient
|
org.nd4j.linalg.primitives.Pair<Gradient,Double> |
gradientAndScore()
Get the gradient and score
|
void |
init()
Init the model
|
void |
initParams()
Initialize the parameters
|
org.nd4j.linalg.api.ndarray.INDArray |
input()
The input/feature matrix for the model
|
void |
iterate(org.nd4j.linalg.api.ndarray.INDArray input)
iterate one iteration of the network
|
protected LayerConfT |
layerConf() |
protected String |
layerId() |
void |
merge(Layer l,
int batchSize)
Averages the given logistic regression from a mini batch into this layer
|
int |
numParams()
The number of parameters for the model
|
int |
numParams(boolean backwards)
the number of parameters for the model
|
org.nd4j.linalg.api.ndarray.INDArray |
params()
Returns the parameters of the neural network as a flattened row vector
|
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable()
The param table
|
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable(boolean backpropParamsOnly)
Table of parameters by key, for backprop
For many models (dense layers, etc) - all parameters are backprop parameters
|
abstract org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training) |
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(org.nd4j.linalg.api.ndarray.INDArray x)
Classify input
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(org.nd4j.linalg.api.ndarray.INDArray x,
boolean training)
Raw activations
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(org.nd4j.linalg.api.ndarray.INDArray x,
Layer.TrainingMode training)
Raw activations
|
double |
score()
The score for the model
|
void |
setBackpropGradientsViewArray(org.nd4j.linalg.api.ndarray.INDArray gradients)
Set the gradients array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setCacheMode(CacheMode mode)
This method sets given CacheMode for current layer
|
void |
setConf(NeuralNetConfiguration conf)
Setter for the configuration
|
void |
setIndex(int index)
Set the layer index.
|
void |
setInput(org.nd4j.linalg.api.ndarray.INDArray input)
Get the layer input.
|
void |
setInputMiniBatchSize(int size)
Set current/last input mini-batch size.
Used for score and gradient calculations. |
void |
setListeners(Collection<IterationListener> listeners)
Set the iteration listeners for this layer.
|
void |
setListeners(IterationListener... listeners)
Set the iteration listeners for this layer.
|
void |
setMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray)
Set the mask array.
|
void |
setParam(String key,
org.nd4j.linalg.api.ndarray.INDArray val)
Set the parameter with a new ndarray
|
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Set the parameters for this model.
|
protected void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params,
char order) |
void |
setParamsViewArray(org.nd4j.linalg.api.ndarray.INDArray params)
Set the initial parameters array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
Setter for the param table
|
Layer |
transpose()
Return a transposed copy of the weights/bias
(this means reverse the number of inputs and outputs on the weights)
|
Layer.Type |
type()
Returns the layer type
|
void |
update(Gradient gradient)
Update layer weights and biases with gradient change
|
void |
update(org.nd4j.linalg.api.ndarray.INDArray gradient,
String paramType)
Perform one update applying the gradient
|
void |
validateInput()
Validate the input
|
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
activate, activationMean, backpropGradient, isPretrainLayer
protected org.nd4j.linalg.api.ndarray.INDArray input
protected org.nd4j.linalg.api.ndarray.INDArray preOutput
protected NeuralNetConfiguration conf
protected org.nd4j.linalg.api.ndarray.INDArray dropoutMask
protected boolean dropoutApplied
protected Collection<IterationListener> iterationListeners
protected int index
protected org.nd4j.linalg.api.ndarray.INDArray maskArray
protected MaskState maskState
protected CacheMode cacheMode
public AbstractLayer(NeuralNetConfiguration conf)
public AbstractLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public void setCacheMode(CacheMode mode)
Layer
setCacheMode
in interface Layer
protected LayerConfT layerConf()
protected String layerId()
public org.nd4j.linalg.api.ndarray.INDArray getInput()
public void setInput(org.nd4j.linalg.api.ndarray.INDArray input)
Layer
public int getIndex()
Layer
public void setIndex(int index)
Layer
public Collection<IterationListener> getListeners()
Layer
getListeners
in interface Layer
public void setListeners(Collection<IterationListener> listeners)
Layer
setListeners
in interface Layer
setListeners
in interface Model
public void addListeners(IterationListener... listeners)
addListeners
in interface Model
listeners
- public void setListeners(IterationListener... listeners)
Layer
setListeners
in interface Layer
setListeners
in interface Model
public Gradient error(org.nd4j.linalg.api.ndarray.INDArray errorSignal)
Layer
@Deprecated public org.nd4j.linalg.api.ndarray.INDArray derivativeActivation(org.nd4j.linalg.api.ndarray.INDArray input)
Layer
derivativeActivation
in interface Layer
input
- the input to take the derivative ofpublic Gradient calcGradient(Gradient layerError, org.nd4j.linalg.api.ndarray.INDArray activation)
Layer
calcGradient
in interface Layer
layerError
- the layer errorpublic void computeGradientAndScore()
Model
computeGradientAndScore
in interface Model
public org.nd4j.linalg.api.ndarray.INDArray preOutput(org.nd4j.linalg.api.ndarray.INDArray x, Layer.TrainingMode training)
Layer
public org.nd4j.linalg.api.ndarray.INDArray activate(Layer.TrainingMode training)
Layer
public org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input, Layer.TrainingMode training)
Layer
public void iterate(org.nd4j.linalg.api.ndarray.INDArray input)
public void update(Gradient gradient)
Model
public void update(org.nd4j.linalg.api.ndarray.INDArray gradient, String paramType)
Model
public ConvexOptimizer getOptimizer()
Model
getOptimizer
in interface Model
public void setConf(NeuralNetConfiguration conf)
Model
public org.nd4j.linalg.api.ndarray.INDArray params()
public org.nd4j.linalg.api.ndarray.INDArray getParam(String param)
Model
public void setParam(String key, org.nd4j.linalg.api.ndarray.INDArray val)
Model
public void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Model
protected void setParams(org.nd4j.linalg.api.ndarray.INDArray params, char order)
public void setParamsViewArray(org.nd4j.linalg.api.ndarray.INDArray params)
Model
setParamsViewArray
in interface Model
params
- a 1 x nParams row vector that is a view of the larger (MLN/CG) parameters arraypublic org.nd4j.linalg.api.ndarray.INDArray getGradientsViewArray()
getGradientsViewArray
in interface Model
public void setBackpropGradientsViewArray(org.nd4j.linalg.api.ndarray.INDArray gradients)
Model
setBackpropGradientsViewArray
in interface Model
gradients
- a 1 x nParams row vector that is a view of the larger (MLN/CG) gradients arraypublic void setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
Model
setParamTable
in interface Model
public void initParams()
Model
initParams
in interface Model
public Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable()
Model
paramTable
in interface Model
public Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable(boolean backpropParamsOnly)
Model
paramTable
in interface Model
backpropParamsOnly
- If true, return backprop params only. If false: return all params (equivalent to
paramsTable())public org.nd4j.linalg.api.ndarray.INDArray preOutput(org.nd4j.linalg.api.ndarray.INDArray x, boolean training)
Layer
public abstract org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training)
protected void applyMask(org.nd4j.linalg.api.ndarray.INDArray to)
public org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input)
Layer
public org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input, boolean training)
Layer
public org.nd4j.linalg.api.ndarray.INDArray activate()
Layer
public org.nd4j.linalg.api.ndarray.INDArray preOutput(org.nd4j.linalg.api.ndarray.INDArray x)
preOutput
in interface Layer
x
- the input (can either be a matrix or vector)
If it's a matrix, each row is considered an example
and associated rows are classified accordingly.
Each row will be the likelihood of a label given that examplepublic double calcL2(boolean backpropParamsOnly)
Layer
public double calcL1(boolean backpropParamsOnly)
Layer
public int batchSize()
Model
public NeuralNetConfiguration conf()
Model
public void clear()
Model
protected void applyDropOutIfNecessary(boolean training)
public void merge(Layer l, int batchSize)
public Layer.Type type()
Layer
public int numParams()
public int numParams(boolean backwards)
Model
public void fit(org.nd4j.linalg.api.ndarray.INDArray input)
Model
public org.nd4j.linalg.primitives.Pair<Gradient,Double> gradientAndScore()
Model
gradientAndScore
in interface Model
public org.nd4j.linalg.api.ndarray.INDArray input()
Model
public void validateInput()
Model
validateInput
in interface Model
public Layer transpose()
Layer
public void setInputMiniBatchSize(int size)
Layer
setInputMiniBatchSize
in interface Layer
public int getInputMiniBatchSize()
Layer
getInputMiniBatchSize
in interface Layer
Layer.setInputMiniBatchSize(int)
public void applyLearningRateScoreDecay()
Model
applyLearningRateScoreDecay
in interface Model
public void setMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray)
Layer
Layer.feedForwardMaskArray(INDArray, MaskState, int)
should be used in
preference to this.setMaskArray
in interface Layer
maskArray
- Mask array to setpublic org.nd4j.linalg.api.ndarray.INDArray getMaskArray()
getMaskArray
in interface Layer
public org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray, MaskState currentMaskState, int minibatchSize)
Layer
feedForwardMaskArray
in interface Layer
maskArray
- Mask array to setcurrentMaskState
- Current state of the mask - see MaskState
minibatchSize
- Current minibatch size. Needs to be known as it cannot always be inferred from the activations
array due to reshaping (such as a DenseLayer within a recurrent neural network)public void fit()
Model
public double score()
Model
public void accumulateScore(double accum)
Model
accumulateScore
in interface Model
accum
- the amount to accumCopyright © 2017. All rights reserved.