public interface IOutputLayer extends Layer, Classifier
Layer.TrainingMode, Layer.Type| Modifier and Type | Method and Description |
|---|---|
double |
computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training)
Compute score after labels and input have been set.
|
org.nd4j.linalg.api.ndarray.INDArray |
computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2)
Compute the score for each example individually, after labels and input have been set.
|
org.nd4j.linalg.api.ndarray.INDArray |
getLabels()
Get the labels array previously set with
setLabels(INDArray) |
void |
setLabels(org.nd4j.linalg.api.ndarray.INDArray labels)
Set the labels array for this output layer
|
activate, activate, activate, activate, activate, activate, activationMean, backpropGradient, calcGradient, calcL1, calcL2, clone, derivativeActivation, error, feedForwardMaskArray, getIndex, getInputMiniBatchSize, getListeners, getMaskArray, isPretrainLayer, merge, preOutput, preOutput, preOutput, setCacheMode, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, transpose, typef1Score, f1Score, fit, fit, fit, fit, labelProbabilities, numLabels, predict, predictaccumulateScore, addListeners, applyLearningRateScoreDecay, batchSize, clear, computeGradientAndScore, conf, fit, fit, getGradientsViewArray, getOptimizer, getParam, gradient, gradientAndScore, init, initParams, input, iterate, numParams, numParams, params, paramTable, paramTable, score, setBackpropGradientsViewArray, setConf, setParam, setParams, setParamsViewArray, setParamTable, update, update, validateInputvoid setLabels(org.nd4j.linalg.api.ndarray.INDArray labels)
labels - Labels array to setorg.nd4j.linalg.api.ndarray.INDArray getLabels()
setLabels(INDArray)double computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training)
fullNetworkL1 - L1 regularization term for the entire networkfullNetworkL2 - L2 regularization term for the entire networktraining - whether score should be calculated at train or test time (this affects things like application of
dropout, etc)org.nd4j.linalg.api.ndarray.INDArray computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2)
fullNetworkL1 - L1 regularization term for the entire network (or, 0.0 to not include regularization)fullNetworkL2 - L2 regularization term for the entire network (or, 0.0 to not include regularization)Copyright © 2017. All rights reserved.