public class Subsampling1DLayer extends SubsamplingLayer
Layer.TrainingMode, Layer.TypeconvolutionMode, helpercacheMode, conf, dropoutApplied, dropoutMask, index, input, iterationListeners, maskArray, maskState, preOutput| Constructor and Description |
|---|
Subsampling1DLayer(NeuralNetConfiguration conf) |
Subsampling1DLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
| Modifier and Type | Method and Description |
|---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training)
Trigger an activation with the last specified input
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
Calculate the gradient relative to the error in the next layer
|
accumulateScore, activationMean, calcGradient, calcL1, calcL2, clone, computeGradientAndScore, error, fit, fit, getParam, gradient, isPretrainLayer, iterate, merge, numParams, params, preOutput, score, setParams, transpose, type, updateactivate, activate, activate, activate, activate, addListeners, applyDropOutIfNecessary, applyLearningRateScoreDecay, applyMask, batchSize, clear, conf, derivativeActivation, feedForwardMaskArray, getGradientsViewArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, gradientAndScore, init, initParams, input, layerConf, layerId, numParams, paramTable, paramTable, preOutput, preOutput, preOutput, setBackpropGradientsViewArray, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, update, validateInputpublic Subsampling1DLayer(NeuralNetConfiguration conf)
public Subsampling1DLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon)
LayerbackpropGradient in interface LayerbackpropGradient in class SubsamplingLayerepsilon - w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.public org.nd4j.linalg.api.ndarray.INDArray activate(boolean training)
Layeractivate in interface Layeractivate in class SubsamplingLayertraining - training or test modeCopyright © 2017. All rights reserved.