public class LocalResponseNormalization extends Layer
Modifier and Type | Class and Description |
---|---|
static class |
LocalResponseNormalization.Builder |
Modifier and Type | Field and Description |
---|---|
protected double |
alpha |
protected double |
beta |
protected double |
k |
protected double |
n |
Modifier and Type | Method and Description |
---|---|
LocalResponseNormalization |
clone() |
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
double |
getLearningRateByParam(String paramName)
Get the (initial) learning rate coefficient for the given parameter.
|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessor |
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<IterationListener> iterationListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input depth for CNNs) based on the given input type
|
getIUpdaterByParam, getUpdaterByParam, resetLayerDefaultConfig
protected double n
protected double k
protected double beta
protected double alpha
public LocalResponseNormalization clone()
public Layer instantiate(NeuralNetConfiguration conf, Collection<IterationListener> iterationListeners, int layerIndex, org.nd4j.linalg.api.ndarray.INDArray layerParamsView, boolean initializeParams)
instantiate
in class Layer
public ParamInitializer initializer()
initializer
in class Layer
public InputType getOutputType(int layerIndex, InputType inputType)
Layer
getOutputType
in class Layer
layerIndex
- Index of the layerinputType
- Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layer
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Layer
InputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessor
getPreProcessorForInputType
in class Layer
inputType
- InputType to this layerpublic double getL1ByParam(String paramName)
Layer
getL1ByParam
in class Layer
paramName
- Parameter namepublic double getL2ByParam(String paramName)
Layer
getL2ByParam
in class Layer
paramName
- Parameter namepublic double getLearningRateByParam(String paramName)
Layer
getLearningRateByParam
in class Layer
paramName
- Parameter namepublic boolean isPretrainParam(String paramName)
Layer
isPretrainParam
in class Layer
paramName
- Parameter name/keypublic LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input typeCopyright © 2017. All rights reserved.