Package | Description |
---|---|
org.deeplearning4j.eval | |
org.deeplearning4j.eval.serde | |
org.deeplearning4j.nn.graph | |
org.deeplearning4j.nn.multilayer |
Modifier and Type | Method and Description |
---|---|
void |
ROC.merge(ROC other)
Merge this ROC instance with another.
|
Modifier and Type | Method and Description |
---|---|
void |
ROCArraySerializer.serialize(ROC[] rocs,
org.nd4j.shade.jackson.core.JsonGenerator jsonGenerator,
org.nd4j.shade.jackson.databind.SerializerProvider serializerProvider) |
void |
ROCSerializer.serialize(ROC roc,
org.nd4j.shade.jackson.core.JsonGenerator jsonGenerator,
org.nd4j.shade.jackson.databind.SerializerProvider serializerProvider) |
void |
ROCSerializer.serializeWithType(ROC value,
org.nd4j.shade.jackson.core.JsonGenerator gen,
org.nd4j.shade.jackson.databind.SerializerProvider serializers,
org.nd4j.shade.jackson.databind.jsontype.TypeSerializer typeSer) |
Modifier and Type | Method and Description |
---|---|
ROC |
ComputationGraph.evaluateROC(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
int rocThresholdSteps)
Evaluate the network (must be a binary classifier) on the specified data, using the
ROC class |
ROC |
ComputationGraph.evaluateROC(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
int rocThresholdSteps)
Evaluate the network (must be a binary classifier) on the specified data, using the
ROC class |
Modifier and Type | Method and Description |
---|---|
ROC |
MultiLayerNetwork.evaluateROC(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
int rocThresholdSteps)
Evaluate the network (must be a binary classifier) on the specified data, using the
ROC class |
Copyright © 2017. All rights reserved.