public class RegressionEvaluation extends BaseEvaluation<RegressionEvaluation>
Evaluation
Modifier and Type | Class and Description |
---|---|
static class |
RegressionEvaluation.Metric |
Modifier and Type | Field and Description |
---|---|
static int |
DEFAULT_PRECISION |
Constructor and Description |
---|
RegressionEvaluation() |
RegressionEvaluation(int nColumns)
Create a regression evaluation object with the specified number of columns, and default precision
for the stats() method.
|
RegressionEvaluation(int nColumns,
int precision)
Create a regression evaluation object with the specified number of columns, and specified precision
for the stats() method.
|
RegressionEvaluation(List<String> columnNames)
Create a regression evaluation object with default precision for the stats() method
|
RegressionEvaluation(List<String> columnNames,
int precision)
Create a regression evaluation object with specified precision for the stats() method
|
RegressionEvaluation(String... columnNames)
Create a regression evaluation object with default precision for the stats() method
|
Modifier and Type | Method and Description |
---|---|
double |
averagecorrelationR2()
Deprecated.
Use
averagePearsonCorrelation() instead.
For the R2 score use averageRSquared() . |
double |
averageMeanAbsoluteError()
Average MAE across all columns
|
double |
averageMeanSquaredError()
Average MSE across all columns
|
double |
averagePearsonCorrelation()
Average Pearson Correlation Coefficient across all columns
|
double |
averagerelativeSquaredError()
Average RSE across all columns
|
double |
averagerootMeanSquaredError()
Average RMSE across all columns
|
double |
averageRSquared()
Average R2 across all columns
|
double |
correlationR2(int column)
Deprecated.
Use
pearsonCorrelation(int) instead.
For the R2 score use rSquared(int) . |
void |
eval(org.nd4j.linalg.api.ndarray.INDArray labels,
org.nd4j.linalg.api.ndarray.INDArray predictions) |
void |
eval(org.nd4j.linalg.api.ndarray.INDArray labels,
org.nd4j.linalg.api.ndarray.INDArray predictions,
org.nd4j.linalg.api.ndarray.INDArray maskArray) |
double |
meanAbsoluteError(int column) |
double |
meanSquaredError(int column) |
void |
merge(RegressionEvaluation other) |
int |
numColumns() |
double |
pearsonCorrelation(int column)
Pearson Correlation Coefficient for samples
|
double |
relativeSquaredError(int column) |
void |
reset() |
double |
rootMeanSquaredError(int column) |
double |
rSquared(int column)
Coefficient of Determination (R^2 Score)
|
double |
scoreForMetric(RegressionEvaluation.Metric metric) |
String |
stats() |
eval, evalTimeSeries, evalTimeSeries, fromJson, fromYaml, toJson, toString, toYaml
public static final int DEFAULT_PRECISION
public RegressionEvaluation()
public RegressionEvaluation(int nColumns)
nColumns
- Number of columnspublic RegressionEvaluation(int nColumns, int precision)
nColumns
- Number of columnspublic RegressionEvaluation(String... columnNames)
columnNames
- Names of the columnspublic RegressionEvaluation(List<String> columnNames)
columnNames
- Names of the columnspublic void reset()
public void eval(org.nd4j.linalg.api.ndarray.INDArray labels, org.nd4j.linalg.api.ndarray.INDArray predictions)
public void eval(org.nd4j.linalg.api.ndarray.INDArray labels, org.nd4j.linalg.api.ndarray.INDArray predictions, org.nd4j.linalg.api.ndarray.INDArray maskArray)
eval
in interface IEvaluation<RegressionEvaluation>
eval
in class BaseEvaluation<RegressionEvaluation>
public void merge(RegressionEvaluation other)
public String stats()
public int numColumns()
public double meanSquaredError(int column)
public double meanAbsoluteError(int column)
public double rootMeanSquaredError(int column)
@Deprecated public double correlationR2(int column)
pearsonCorrelation(int)
instead.
For the R2 score use rSquared(int)
.column
- Column to evaluate#pearsonCorrelation(int)}
public double pearsonCorrelation(int column)
column
- Column to evaluatecolumn
public double rSquared(int column)
column
- Column to evaluatecolumn
public double relativeSquaredError(int column)
public double averageMeanSquaredError()
public double averageMeanAbsoluteError()
public double averagerootMeanSquaredError()
public double averagerelativeSquaredError()
@Deprecated public double averagecorrelationR2()
averagePearsonCorrelation()
instead.
For the R2 score use averageRSquared()
.#averagePearsonCorrelation()}
public double averagePearsonCorrelation()
public double averageRSquared()
public double scoreForMetric(RegressionEvaluation.Metric metric)
Copyright © 2018. All rights reserved.