org.nd4j.linalg.api.ndarray.INDArray baseFeatures
org.nd4j.linalg.api.ndarray.INDArray baseLabels
long limit
AtomicLong counter
org.nd4j.linalg.api.ndarray.INDArray[] baseFeatures
org.nd4j.linalg.api.ndarray.INDArray[] baseLabels
long limit
AtomicLong counter
org.datavec.image.loader.CifarLoader loader
int numExamples
boolean useSpecialPreProcessCifar
boolean train
org.datavec.image.transform.ImageTransform imageTransform
int exampleCount
boolean overshot
EmnistDataSetIterator.Set dataSet
int batch
int numExamples
org.nd4j.linalg.dataset.api.DataSetPreProcessor preProcessor
org.nd4j.linalg.dataset.DataSet data
int windowRows
int windowColumns
int cursor
org.nd4j.linalg.dataset.api.iterator.DataSetIterator iter
org.nd4j.linalg.dataset.api.MultiDataSetPreProcessor preProcessor
org.nd4j.linalg.dataset.api.MultiDataSet multiDataSet
boolean hasNext
boolean preprocessed
org.nd4j.linalg.dataset.api.MultiDataSetPreProcessor preProcessor
org.nd4j.linalg.dataset.api.DataSetPreProcessor preProcessor
org.nd4j.linalg.dataset.api.DataSetPreProcessor preProcessor
EarlyStoppingModelSaver<T extends Model> modelSaver
List<E> epochTerminationConditions
List<E> iterationTerminationConditions
boolean saveLastModel
int evaluateEveryNEpochs
ScoreCalculator<T extends Model> scoreCalculator
org.nd4j.linalg.function.Supplier<T> scoreCalculatorSupplier
RegressionEvaluation.Metric metric
RegressionEvaluation evaluation
Evaluation.Metric metric
boolean average
org.nd4j.linalg.dataset.api.iterator.DataSetIterator dataSetIterator
org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator multiDataSetIterator
boolean average
RegressionEvaluation.Metric metric
ROCScoreCalculator.ROCType type
ROCScoreCalculator.Metric metric
RegressionEvaluation.Metric metric
RegressionEvaluation evaluation
int reconstructionProbNumSamples
boolean logProb
boolean average
org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator
org.nd4j.linalg.dataset.api.iterator.DataSetIterator iter
org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator mdsIterator
org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator
double scoreSum
int minibatchCount
int exampleCount
double bestExpectedScore
boolean lesserBetter
int maxEpochs
double maxScore
long maxTimeAmount
TimeUnit maxTimeUnit
long initializationTime
long endTime
int maxEpochsWithNoImprovement
int bestEpoch
double bestScore
double minImprovement
Integer binaryPositiveClass
int topN
int topNCorrectCount
int topNTotalCount
org.nd4j.linalg.primitives.Counter<T> truePositives
org.nd4j.linalg.primitives.Counter<T> falsePositives
org.nd4j.linalg.primitives.Counter<T> trueNegatives
org.nd4j.linalg.primitives.Counter<T> falseNegatives
ConfusionMatrix<T extends Comparable<? super T>> confusion
int numRowCounter
List<E> labelsList
Double binaryDecisionThreshold
org.nd4j.linalg.api.ndarray.INDArray costArray
Map<K,V> confusionMatrixMetaData
int reliabilityDiagNumBins
int histogramNumBins
boolean excludeEmptyBins
org.nd4j.linalg.api.ndarray.INDArray rDiagBinPosCount
org.nd4j.linalg.api.ndarray.INDArray rDiagBinTotalCount
org.nd4j.linalg.api.ndarray.INDArray rDiagBinSumPredictions
org.nd4j.linalg.api.ndarray.INDArray labelCountsEachClass
org.nd4j.linalg.api.ndarray.INDArray predictionCountsEachClass
org.nd4j.linalg.api.ndarray.INDArray residualPlotOverall
org.nd4j.linalg.api.ndarray.INDArray residualPlotByLabelClass
org.nd4j.linalg.api.ndarray.INDArray probHistogramOverall
org.nd4j.linalg.api.ndarray.INDArray probHistogramByLabelClass
boolean initialized
List<E> columnNames
int precision
org.nd4j.linalg.api.ndarray.INDArray exampleCountPerColumn
org.nd4j.linalg.api.ndarray.INDArray labelsSumPerColumn
org.nd4j.linalg.api.ndarray.INDArray sumSquaredErrorsPerColumn
org.nd4j.linalg.api.ndarray.INDArray sumAbsErrorsPerColumn
org.nd4j.linalg.api.ndarray.INDArray currentMean
org.nd4j.linalg.api.ndarray.INDArray currentPredictionMean
org.nd4j.linalg.api.ndarray.INDArray sumOfProducts
org.nd4j.linalg.api.ndarray.INDArray sumSquaredLabels
org.nd4j.linalg.api.ndarray.INDArray sumSquaredPredicted
org.nd4j.linalg.api.ndarray.INDArray sumLabels
int thresholdSteps
long countActualPositive
long countActualNegative
Map<K,V> counts
Double auc
Double auprc
RocCurve rocCurve
PrecisionRecallCurve prCurve
boolean isExact
org.nd4j.linalg.api.ndarray.INDArray probAndLabel
int exampleCount
boolean rocRemoveRedundantPts
int exactAllocBlockSize
double threshold
long countTruePositive
long countFalsePositive
Map<K,V> vertices
Map<K,V> vertexInputs
WorkspaceMode trainingWorkspaceMode
WorkspaceMode inferenceWorkspaceMode
CacheMode cacheMode
List<E> networkInputs
List<E> networkOutputs
boolean pretrain
boolean backprop
BackpropType backpropType
int tbpttFwdLength
int tbpttBackLength
NeuralNetConfiguration defaultConfiguration
int iterationCount
int epochCount
int[] topologicalOrder
List<E> topologicalOrderStr
List<E> confs
Map<K,V> inputPreProcessors
boolean pretrain
boolean backprop
BackpropType backpropType
int tbpttFwdLength
int tbpttBackLength
WorkspaceMode trainingWorkspaceMode
WorkspaceMode inferenceWorkspaceMode
CacheMode cacheMode
int iterationCount
int epochCount
Layer layer
boolean miniBatch
int maxNumLineSearchIterations
long seed
OptimizationAlgorithm optimizationAlgo
List<E> variables
StepFunction stepFunction
boolean minimize
Map<K,V> l1ByParam
Map<K,V> l2ByParam
boolean pretrain
CacheMode cacheMode
int iterationCount
int epochCount
double maxNorm
double min
double max
double rate
int numberOfTrials
double probabilityOfSuccess
double value
double mean
double std
double mean
double std
double gain
double mean
double std
double upper
double lower
double p
org.nd4j.linalg.schedule.ISchedule pSchedule
double alpha
double lambda
double lastPValue
double alphaPrime
double a
double b
double p
org.nd4j.linalg.schedule.ISchedule pSchedule
double rate
org.nd4j.linalg.schedule.ISchedule rateSchedule
double stddev
org.nd4j.linalg.schedule.ISchedule stddevSchedule
double p
org.nd4j.linalg.schedule.ISchedule pSchedule
ElementWiseVertex.Op op
GraphVertex underlying
int[] dimension
double eps
double eps
NeuralNetConfiguration layerConf
InputPreProcessor preProcessor
boolean outputVertex
InputPreProcessor preProcessor
char reshapeOrder
int[] newShape
int[] maskShape
double scaleFactor
double shiftFactor
int from
int to
int from
int stackSize
String inputName
String maskArrayInputName
String maskArrayInputName
int height
int width
int channels
int depth
int height
int width
int channels
int height
int width
int depth
int size
int size
int timeSeriesLength
double forgetGateBiasInit
org.nd4j.linalg.activations.IActivation gateActivationFn
org.nd4j.linalg.activations.IActivation activationFn
double corruptionLevel
double sparsity
org.nd4j.linalg.activations.IActivation activationFn
WeightInit weightInit
double biasInit
Distribution dist
double l1
double l2
double l1Bias
double l2Bias
org.nd4j.linalg.learning.config.IUpdater iUpdater
org.nd4j.linalg.learning.config.IUpdater biasUpdater
IWeightNoise weightNoise
GradientNormalization gradientNormalization
double gradientNormalizationThreshold
org.nd4j.linalg.lossfunctions.ILossFunction lossFn
boolean hasBias
org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction lossFunction
double visibleBiasInit
WeightInit weightInitRecurrent
Distribution distRecurrent
int[] size
double decay
double eps
boolean isMinibatch
double gamma
double beta
boolean lockGammaBeta
double alpha
double lambda
boolean gradientCheck
org.nd4j.linalg.lossfunctions.ILossFunction lossFn
ConvolutionMode mode
Convolution3D.DataFormat dataFormat
boolean hasBias
ConvolutionMode convolutionMode
int[] dilation
int[] kernelSize
int[] stride
int[] padding
boolean cudnnAllowFallback
ConvolutionLayer.AlgoMode cudnnAlgoMode
ConvolutionLayer.FwdAlgo cudnnFwdAlgo
ConvolutionLayer.BwdFilterAlgo cudnnBwdFilterAlgo
ConvolutionLayer.BwdDataAlgo cudnnBwdDataAlgo
boolean hasBias
int depthMultiplier
boolean hasBias
int inputLength
boolean hasBias
boolean inferInputLength
int nIn
int nOut
PoolingType poolingType
int[] poolingDimensions
int pnorm
boolean collapseDimensions
double forgetGateBiasInit
org.nd4j.linalg.activations.IActivation gateActivationFn
double forgetGateBiasInit
org.nd4j.linalg.activations.IActivation gateActivationFn
double n
double k
double beta
double alpha
org.nd4j.linalg.lossfunctions.ILossFunction lossFn
double forgetGateBiasInit
org.nd4j.linalg.activations.IActivation gateActivationFn
org.nd4j.linalg.lossfunctions.ILossFunction lossFn
int depthMultiplier
int[] blocks
int[][] padding
int blockSize
SpaceToDepthLayer.DataFormat dataFormat
ConvolutionMode convolutionMode
PoolingType poolingType
int[] kernelSize
int[] stride
int[] padding
boolean cudnnAllowFallback
ConvolutionMode convolutionMode
PoolingType poolingType
int[] kernelSize
int[] stride
int[] padding
int[] dilation
int pnorm
double eps
boolean cudnnAllowFallback
int[] size
int[] size
int[] size
int[] padding
int[] padding
int[] padding
int[] cropping
int[] cropping
int[] cropping
Layer layer
double lambdaCoord
double lambdaNoObj
org.nd4j.linalg.lossfunctions.ILossFunction lossPositionScale
org.nd4j.linalg.lossfunctions.ILossFunction lossClassPredictions
org.nd4j.linalg.api.ndarray.INDArray boundingBoxes
Layer fwd
Layer bwd
Bidirectional.Mode mode
double l1
double l2
double l1Bias
double l2Bias
org.nd4j.linalg.learning.config.IUpdater updater
org.nd4j.linalg.learning.config.IUpdater biasUpdater
SDLayerParams layerParams
WeightInit weightInit
org.nd4j.linalg.activations.IActivation activationFn
int[] distributionSizes
ReconstructionDistribution[] reconstructionDistributions
int totalSize
org.nd4j.linalg.activations.IActivation activationFn
org.nd4j.linalg.activations.IActivation activationFn
org.nd4j.linalg.activations.IActivation activationFn
org.nd4j.linalg.lossfunctions.ILossFunction lossFunction
int[] encoderLayerSizes
int[] decoderLayerSizes
ReconstructionDistribution outputDistribution
org.nd4j.linalg.activations.IActivation pzxActivationFn
int numSamples
Layer underlying
int hiddenSize
double nu
org.nd4j.linalg.activations.IActivation activation
int lastEpochSinceRUpdated
int inputDepth
int inputHeight
int inputWidth
int numChannels
boolean isNCDHW
int inputHeight
int inputWidth
int numChannels
int inputHeight
int inputWidth
int numChannels
int product
InputPreProcessor[] inputPreProcessors
int inputDepth
int inputHeight
int inputWidth
int numChannels
boolean isNCDHW
int[] shape
int inputHeight
int inputWidth
int numChannels
int[] shape
int inputHeight
int inputWidth
int numChannels
int product
org.nd4j.linalg.api.ndarray.INDArray columnStds
org.nd4j.shade.jackson.databind.JsonDeserializer<T> defaultDeserializer
double weightRetainProb
org.nd4j.linalg.schedule.ISchedule weightRetainProbSchedule
boolean applyToBiases
Distribution distribution
boolean applyToBias
boolean additive
ComputationGraphConfiguration configuration
boolean initCalled
org.nd4j.linalg.api.ndarray.INDArray flattenedParams
Gradient gradient
double score
boolean initDone
boolean clearTbpttState
org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration WS_LAYER_WORKING_MEM_CONFIG
org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration WS_LAYER_ACT_X_CONFIG
GraphVertex[] vertices
Map<K,V> verticesMap
int[] topologicalOrder
GraphIndices graphIndices
Layer[] layers
int numInputArrays
int numOutputArrays
NeuralNetConfiguration defaultConfiguration
Collection<E> trainingListeners
ComputationGraph graph
String vertexName
int vertexIndex
VertexIndices[] inputVertices
VertexIndices[] outputVertices
org.nd4j.linalg.api.ndarray.INDArray[] inputs
org.nd4j.linalg.api.ndarray.INDArray epsilon
boolean outputVertex
GraphVertex underlying
int vertexIndex
int vertexEdgeNumber
ElementWiseVertex.Op op
int nInForwardPass
int[] dimension
double eps
double eps
Layer layer
InputPreProcessor layerPreProcessor
boolean setLayerInput
int[][] forwardPassShapes
int fwdPassRank
InputPreProcessor preProcessor
char order
int[] newShape
int[] maskShape
double scaleFactor
double shiftFactor
int[][] lastInputShapes
int from
int to
int[] forwardShape
int from
int stackSize
int[] forwardShape
int step
String inputName
int inputVertexIndex
String inputName
int inputIdx
int[] fwdPassShape
int[] fwdPassTimeSteps
String inputName
int inputIdx
org.nd4j.linalg.api.ndarray.INDArray input
org.nd4j.linalg.api.ndarray.INDArray preOutput
NeuralNetConfiguration conf
org.nd4j.linalg.api.ndarray.INDArray dropoutMask
boolean dropoutApplied
Collection<E> trainingListeners
int index
org.nd4j.linalg.api.ndarray.INDArray maskArray
MaskState maskState
CacheMode cacheMode
int iterationCount
int epochCount
org.nd4j.linalg.api.ndarray.INDArray paramsFlattened
org.nd4j.linalg.api.ndarray.INDArray gradientsFlattened
Map<K,V> params
double score
ConvexOptimizer optimizer
Gradient gradient
Solver solver
Map<K,V> weightNoiseParams
org.nd4j.linalg.api.ndarray.INDArray labels
double fullNetworkL1
double fullNetworkL2
org.nd4j.linalg.api.ndarray.INDArray inputMaskArray
MaskState inputMaskArrayState
boolean logUpdate
boolean logFit
boolean logTestMode
boolean logGradient
Gradient zeroGradient
boolean logUpdate
boolean logFit
boolean logTestMode
boolean logGradient
Gradient zeroGradient
org.nd4j.linalg.api.ndarray.INDArray labels
double fullNetworkL1
double fullNetworkL2
org.nd4j.linalg.api.ndarray.INDArray labels
org.nd4j.linalg.api.ndarray.INDArray i2d
ConvolutionHelper helper
int helperCountFail
ConvolutionMode convolutionMode
int[] cropping
int[] cropping
int[] cropping
int[] padding
int[] padding
int[] padding
ConvolutionMode convolutionMode
SubsamplingHelper helper
int helperCountFail
ConvolutionMode convolutionMode
org.nd4j.linalg.api.ndarray.INDArray vector
org.nd4j.linalg.api.ndarray.INDArray prediction
List<E> children
double error
Tree parent
String headWord
String value
String label
String type
int goldLabel
List<E> tokens
List<E> tags
String parse
int begin
int end
BatchNormalizationHelper helper
int index
List<E> listeners
org.nd4j.linalg.api.ndarray.INDArray std
org.nd4j.linalg.api.ndarray.INDArray xMu
org.nd4j.linalg.api.ndarray.INDArray xHat
LocalResponseNormalizationHelper helper
org.nd4j.linalg.api.ndarray.INDArray labels
double fullNetworkL1
double fullNetworkL2
double score
org.nd4j.linalg.activations.IActivation activation
org.nd4j.linalg.lossfunctions.ILossFunction lossFunction
int[] poolingDimensions
boolean collapseDimensions
PoolingType poolingType
int pNorm
Map<K,V> stateMap
Map<K,V> tBpttStateMap
NeuralNetConfiguration conf
RecurrentLayer fwd
RecurrentLayer bwd
Bidirectional layerConf
org.nd4j.linalg.api.ndarray.INDArray paramsView
org.nd4j.linalg.api.ndarray.INDArray gradientView
org.nd4j.linalg.api.ndarray.INDArray input
org.nd4j.linalg.api.ndarray.INDArray outFwd
org.nd4j.linalg.api.ndarray.INDArray outBwd
FwdPassReturn cachedPassForward
FwdPassReturn cachedPassBackward
FwdPassReturn cachedFwdPass
int[] lastTimeStepIdxs
int[] origOutputShape
LSTMHelper helper
FwdPassReturn cachedFwdPass
org.nd4j.linalg.api.ndarray.INDArray labels
double fullNetworkL1
double fullNetworkL2
Gradient emptyGradient
org.nd4j.linalg.api.ndarray.INDArray input
org.nd4j.linalg.api.ndarray.INDArray paramsFlattened
org.nd4j.linalg.api.ndarray.INDArray gradientsFlattened
Map<K,V> params
NeuralNetConfiguration conf
double score
ConvexOptimizer optimizer
Gradient gradient
Collection<E> trainingListeners
int index
org.nd4j.linalg.api.ndarray.INDArray maskArray
Solver solver
int[] encoderLayerSizes
int[] decoderLayerSizes
ReconstructionDistribution reconstructionDistribution
org.nd4j.linalg.activations.IActivation pzxActivationFn
int numSamples
CacheMode cacheMode
boolean zeroedPretrainParamGradients
Map<K,V> weightNoiseParams
int iterationCount
int epochCount
Layer underlying
Layer[] layers
LinkedHashMap<K,V> layerMap
org.nd4j.linalg.api.ndarray.INDArray input
org.nd4j.linalg.api.ndarray.INDArray labels
boolean initCalled
Collection<E> trainingListeners
NeuralNetConfiguration defaultConfiguration
MultiLayerConfiguration layerWiseConfigurations
Gradient gradient
double score
boolean initDone
org.nd4j.linalg.api.ndarray.INDArray flattenedParams
boolean clearTbpttState
org.nd4j.linalg.api.ndarray.INDArray mask
int layerIndex
org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration WS_LAYER_WORKING_MEM_CONFIG
org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration WS_LAYER_ACT_X_CONFIG
Layer[] orderedLayers
int frequency
boolean logScore
it.unimi.dsi.fastutil.ints.IntArrayList listIteration
it.unimi.dsi.fastutil.doubles.DoubleArrayList listScore
Collection<E> listeners
private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException
IOException
ClassNotFoundException
int frequency
boolean reportScore
boolean reportSample
boolean reportBatch
boolean reportIteration
boolean reportEtl
boolean reportTime
int printIterations
long timerEE
long timerES
long timerFF
long timerBP
long timerIteration
SleepyTrainingListener.SleepMode sleepMode
SleepyTrainingListener.TimeMode timeMode
long start
int iterationCount
AtomicLong iterationCounter
File rootDir
org.deeplearning4j.optimize.listeners.checkpoint.CheckpointListener.KeepMode keepMode
int keepLast
int keepEvery
boolean logSaving
Integer saveEveryNEpochs
Integer saveEveryNIterations
boolean saveEveryNIterSinceLast
Long saveEveryAmount
TimeUnit saveEveryUnit
Long saveEveryMs
boolean saveEverySinceLast
int lastCheckpointNum
File checkpointRecordFile
Checkpoint lastCheckpoint
long startTime
int startIter
Long lastSaveEveryMsNoSinceLast
Model layer
StepFunction stepFunction
ConvexOptimizer optimizer
int maxIterations
double stepMax
boolean minObjectiveFunction
double relTolx
double absTolx
double ALF
NeuralNetConfiguration conf
StepFunction stepFunction
Collection<E> trainingListeners
Collection<E> terminationConditions
Model model
BackTrackLineSearch lineMaximizer
Updater updater
ComputationGraphUpdater computationGraphUpdater
double step
int batchSize
double score
double oldScore
double stepMax
Map<K,V> searchState
GradientsAccumulator accumulator
int m
MessageHandler handler
int[] shape
char ordering
int parties
CyclicBarrier barrier
AtomicLong firstOne
List<E> candidates
ReentrantReadWriteLock updatesLock
AtomicBoolean hasSomething
ThreadLocal<T> accumulator
int parties
MessageHandler handler
List<E> messages
List<E> workspaces
List<E> locks
AtomicInteger workersCounter
ThreadLocal<T> index
long initialMemory
int queueSize
Double boundary
Queue<E> externalSource
AtomicBoolean isFirst
AtomicBoolean isDone
AtomicInteger barrier
AtomicInteger secondary
AtomicBoolean registered
AtomicBoolean bypassMode
AtomicInteger currentConsumers
org.nd4j.linalg.util.AtomicThrowable throwable
boolean isDebug
boolean relocatable
org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration appliedConfiguration
double threshold
double minThreshold
double thresholdStep
double stepTrigger
int shakeFrequency
int stepDelay
Double boundary
org.nd4j.linalg.compression.NDArrayCompressor compressor
AtomicInteger atomicBoundary
ThreadLocal<T> iterations
ThreadLocal<T> lastStep
ThreadLocal<T> currentThreshold
ThreadLocal<T> bitmapMode
double eps
double tolerance
double gradientTolerance
Copyright © 2018. All rights reserved.