public class SeparableConvolution2D extends ConvolutionLayer
| Modifier and Type | Class and Description |
|---|---|
static class |
SeparableConvolution2D.Builder |
ConvolutionLayer.AlgoMode, ConvolutionLayer.BaseConvBuilder<T extends ConvolutionLayer.BaseConvBuilder<T>>, ConvolutionLayer.BwdDataAlgo, ConvolutionLayer.BwdFilterAlgo, ConvolutionLayer.FwdAlgoconvolutionMode, cudnnAlgoMode, cudnnAllowFallback, cudnnBwdDataAlgo, cudnnBwdFilterAlgo, cudnnFwdAlgo, dilation, hasBias, kernelSize, padding, stridenIn, nOutactivationFn, biasInit, biasUpdater, dist, gradientNormalization, gradientNormalizationThreshold, iUpdater, l1, l1Bias, l2, l2Bias, weightInit, weightNoiseconstraints, iDropout, layerName| Modifier | Constructor and Description |
|---|---|
protected |
SeparableConvolution2D(SeparableConvolution2D.Builder builder)
SeparableConvolution2D layer
nIn in the input layer is the number of channels
nOut is the number of filters to be used in the net or in other words the channels
The builder specifies the filter/kernel size, the stride and padding
The pooling layer takes the kernel size
|
| Modifier and Type | Method and Description |
|---|---|
SeparableConvolution2D |
clone() |
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
boolean |
hasBias() |
protected void |
initializeConstraints(Layer.Builder<?> builder)
Initialize the weight constraints.
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
getMemoryReport, getPreProcessorForInputType, setNInisPretrainParamgetUpdaterByParam, resetLayerDefaultConfigprotected SeparableConvolution2D(SeparableConvolution2D.Builder builder)
protected void initializeConstraints(Layer.Builder<?> builder)
LayerinitializeConstraints in class Layerpublic boolean hasBias()
hasBias in class ConvolutionLayerpublic SeparableConvolution2D clone()
clone in class ConvolutionLayerpublic double getL1ByParam(String paramName)
LayergetL1ByParam in class ConvolutionLayerparamName - Parameter namepublic double getL2ByParam(String paramName)
LayergetL2ByParam in class ConvolutionLayerparamName - Parameter namepublic Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, org.nd4j.linalg.api.ndarray.INDArray layerParamsView, boolean initializeParams)
instantiate in class ConvolutionLayerpublic ParamInitializer initializer()
initializer in class ConvolutionLayerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class ConvolutionLayerlayerIndex - Index of the layerinputType - Type of input for the layerCopyright © 2018. All rights reserved.