public class SeparableConvolution2D extends ConvolutionLayer
Modifier and Type | Class and Description |
---|---|
static class |
SeparableConvolution2D.Builder |
ConvolutionLayer.AlgoMode, ConvolutionLayer.BaseConvBuilder<T extends ConvolutionLayer.BaseConvBuilder<T>>, ConvolutionLayer.BwdDataAlgo, ConvolutionLayer.BwdFilterAlgo, ConvolutionLayer.FwdAlgo
convolutionMode, cudnnAlgoMode, cudnnAllowFallback, cudnnBwdDataAlgo, cudnnBwdFilterAlgo, cudnnFwdAlgo, dilation, hasBias, kernelSize, padding, stride
nIn, nOut
activationFn, biasInit, biasUpdater, dist, gradientNormalization, gradientNormalizationThreshold, iUpdater, l1, l1Bias, l2, l2Bias, weightInit, weightNoise
constraints, iDropout, layerName
Modifier | Constructor and Description |
---|---|
protected |
SeparableConvolution2D(SeparableConvolution2D.Builder builder)
SeparableConvolution2D layer
nIn in the input layer is the number of channels
nOut is the number of filters to be used in the net or in other words the channels
The builder specifies the filter/kernel size, the stride and padding
The pooling layer takes the kernel size
|
Modifier and Type | Method and Description |
---|---|
SeparableConvolution2D |
clone() |
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
boolean |
hasBias() |
protected void |
initializeConstraints(Layer.Builder<?> builder)
Initialize the weight constraints.
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
getMemoryReport, getPreProcessorForInputType, setNIn
isPretrainParam
getUpdaterByParam, resetLayerDefaultConfig
protected SeparableConvolution2D(SeparableConvolution2D.Builder builder)
protected void initializeConstraints(Layer.Builder<?> builder)
Layer
initializeConstraints
in class Layer
public boolean hasBias()
hasBias
in class ConvolutionLayer
public SeparableConvolution2D clone()
clone
in class ConvolutionLayer
public double getL1ByParam(String paramName)
Layer
getL1ByParam
in class ConvolutionLayer
paramName
- Parameter namepublic double getL2ByParam(String paramName)
Layer
getL2ByParam
in class ConvolutionLayer
paramName
- Parameter namepublic Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, org.nd4j.linalg.api.ndarray.INDArray layerParamsView, boolean initializeParams)
instantiate
in class ConvolutionLayer
public ParamInitializer initializer()
initializer
in class ConvolutionLayer
public InputType getOutputType(int layerIndex, InputType inputType)
Layer
getOutputType
in class ConvolutionLayer
layerIndex
- Index of the layerinputType
- Type of input for the layerCopyright © 2018. All rights reserved.