public interface Layer extends Serializable, Cloneable, Model
Modifier and Type | Interface and Description |
---|---|
static class |
Layer.TrainingMode |
static class |
Layer.Type |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input,
boolean training,
LayerWorkspaceMgr mgr)
Perform forward pass and return the activations array with the specified input
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
double |
calcL1(boolean backpropOnlyParams)
Calculate the l1 regularization term
0.0 if regularization is not used. |
double |
calcL2(boolean backpropOnlyParams)
Calculate the l2 regularization term
0.0 if regularization is not used. |
void |
clearNoiseWeightParams() |
Layer |
clone()
Deprecated.
|
org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize)
Feed forward the input mask array, setting in in the layer as appropriate.
|
int |
getEpochCount() |
int |
getIndex()
Get the layer index.
|
int |
getInputMiniBatchSize()
Get current/last input mini-batch size, as set by setInputMiniBatchSize(int)
|
int |
getIterationCount() |
Collection<TrainingListener> |
getListeners()
Get the iteration listeners for this layer.
|
org.nd4j.linalg.api.ndarray.INDArray |
getMaskArray() |
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
void |
setCacheMode(CacheMode mode)
This method sets given CacheMode for current layer
|
void |
setEpochCount(int epochCount)
Set the current epoch count (number of epochs passed ) for the layer/network
|
void |
setIndex(int index)
Set the layer index.
|
void |
setInput(org.nd4j.linalg.api.ndarray.INDArray input,
LayerWorkspaceMgr workspaceMgr)
Set the layer input.
|
void |
setInputMiniBatchSize(int size)
Set current/last input mini-batch size.
Used for score and gradient calculations. |
void |
setIterationCount(int iterationCount)
Set the current iteration count (number of parameter updates) for the layer/network
|
void |
setListeners(Collection<TrainingListener> listeners)
Set the iteration listeners for this layer.
|
void |
setListeners(TrainingListener... listeners)
Set the iteration listeners for this layer.
|
void |
setMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray)
Set the mask array.
|
Layer |
transpose()
Deprecated.
|
Layer.Type |
type()
Returns the layer type
|
accumulateScore, addListeners, applyConstraints, batchSize, clear, computeGradientAndScore, conf, fit, fit, getGradientsViewArray, getOptimizer, getParam, gradient, gradientAndScore, init, initParams, input, numParams, numParams, params, paramTable, paramTable, score, setBackpropGradientsViewArray, setConf, setParam, setParams, setParamsViewArray, setParamTable, update, update, validateInput
void setCacheMode(CacheMode mode)
mode
- double calcL2(boolean backpropOnlyParams)
backpropOnlyParams
- If true: calculate L2 based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)double calcL1(boolean backpropOnlyParams)
backpropOnlyParams
- If true: calculate L1 based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)Layer.Type type()
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr
- Workspace managerArrayType.ACTIVATION_GRAD
workspace via the workspace managerorg.nd4j.linalg.api.ndarray.INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
training
- training or test modeworkspaceMgr
- Workspace managerArrayType.ACTIVATIONS
workspace via the workspace managerorg.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input, boolean training, LayerWorkspaceMgr mgr)
input
- the input to usetraining
- train or test modemgr
- Workspace manager.ArrayType.ACTIVATIONS
workspace via the workspace manager@Deprecated Layer transpose()
@Deprecated Layer clone()
Collection<TrainingListener> getListeners()
void setListeners(TrainingListener... listeners)
setListeners
in interface Model
void setListeners(Collection<TrainingListener> listeners)
setListeners
in interface Model
void setIndex(int index)
int getIndex()
int getIterationCount()
int getEpochCount()
void setIterationCount(int iterationCount)
void setEpochCount(int epochCount)
void setInput(org.nd4j.linalg.api.ndarray.INDArray input, LayerWorkspaceMgr workspaceMgr)
void setInputMiniBatchSize(int size)
int getInputMiniBatchSize()
setInputMiniBatchSize(int)
void setMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray)
feedForwardMaskArray(INDArray, MaskState, int)
should be used in
preference to this.maskArray
- Mask array to setorg.nd4j.linalg.api.ndarray.INDArray getMaskArray()
boolean isPretrainLayer()
void clearNoiseWeightParams()
org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray, MaskState currentMaskState, int minibatchSize)
maskArray
- Mask array to setcurrentMaskState
- Current state of the mask - see MaskState
minibatchSize
- Current minibatch size. Needs to be known as it cannot always be inferred from the activations
array due to reshaping (such as a DenseLayer within a recurrent neural network)Copyright © 2018. All rights reserved.