public class Convolution3DLayer extends ConvolutionLayer
Layer.TrainingMode, Layer.Type
convolutionMode, dummyBias, dummyBiasGrad, helper, helperCountFail, i2d, log
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, solver, weightNoiseParams
cacheMode, conf, dropoutApplied, dropoutMask, epochCount, index, input, iterationCount, maskArray, maskState, preOutput, trainingListeners
Constructor and Description |
---|
Convolution3DLayer(NeuralNetConfiguration conf) |
Convolution3DLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
protected org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> |
preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr)
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
instead of being calculated again.
|
org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training,
LayerWorkspaceMgr workspaceMgr) |
activate, fit, hasBias, isPretrainLayer, params, preOutput4d, setParams, transpose, type
accumulateScore, calcL1, calcL2, clear, clearNoiseWeightParams, clone, computeGradientAndScore, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, gradient, initParams, layerConf, numParams, paramTable, paramTable, score, setBackpropGradientsViewArray, setParam, setParams, setParamsViewArray, setParamTable, setScoreWithZ, toString, update, update
activate, addListeners, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, batchSize, conf, feedForwardMaskArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, gradientAndScore, init, input, layerId, numParams, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, validateInput
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getEpochCount, getIterationCount, setEpochCount, setIterationCount
public Convolution3DLayer(NeuralNetConfiguration conf)
public Convolution3DLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layer
backpropGradient
in interface Layer
backpropGradient
in class ConvolutionLayer
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr
- Workspace managerArrayType.ACTIVATION_GRAD
workspace via the workspace managerpublic org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training, LayerWorkspaceMgr workspaceMgr)
preOutput
in class BaseLayer<ConvolutionLayer>
protected org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,org.nd4j.linalg.api.ndarray.INDArray> preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
ConvolutionLayer
preOutput
in class ConvolutionLayer
training
- Train or test time (impacts dropout)forBackprop
- If true: return the im2col2d array for re-use during backprop. False: return null for second
pair entry. Note that it may still be null in the case of CuDNN and the like.Copyright © 2018. All rights reserved.