public class Upsampling1D extends Upsampling2D
Used for upsampling a 1D convolution. Currently derived from 2D version. For forward and backward pass we add a dummy dimension, apply the 2D version and strip the extra dimension again. Eventually, we will want to migrate to a proper 1D version without this overhead.
Layer.TrainingMode, Layer.Type
cacheMode, conf, dropoutApplied, dropoutMask, epochCount, index, input, iterationCount, maskArray, maskState, preOutput, trainingListeners
Constructor and Description |
---|
Upsampling1D(NeuralNetConfiguration conf) |
Upsampling1D(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
protected int[] |
getSize() |
protected org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
accumulateScore, calcL1, calcL2, clearNoiseWeightParams, clone, fit, fit, getParam, gradient, isPretrainLayer, numParams, params, score, setParams, transpose, type, update
activate, addListeners, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, batchSize, clear, computeGradientAndScore, conf, feedForwardMaskArray, getGradientsViewArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, gradientAndScore, init, initParams, input, layerConf, layerId, numParams, paramTable, paramTable, setBackpropGradientsViewArray, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, update, validateInput
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getEpochCount, getIterationCount, setEpochCount, setIterationCount
public Upsampling1D(NeuralNetConfiguration conf)
public Upsampling1D(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layer
backpropGradient
in interface Layer
backpropGradient
in class Upsampling2D
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr
- Workspace managerArrayType.ACTIVATION_GRAD
workspace via the workspace managerprotected int[] getSize()
getSize
in class Upsampling2D
public org.nd4j.linalg.api.ndarray.INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Layer
activate
in interface Layer
activate
in class Upsampling2D
training
- training or test modeworkspaceMgr
- Workspace managerArrayType.ACTIVATIONS
workspace via the workspace managerprotected org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr)
preOutput
in class Upsampling2D
Copyright © 2018. All rights reserved.