public class Upsampling1D extends Upsampling2D
Used for upsampling a 1D convolution. Currently derived from 2D version. For forward and backward pass we add a dummy dimension, apply the 2D version and strip the extra dimension again. Eventually, we will want to migrate to a proper 1D version without this overhead.
Layer.TrainingMode, Layer.TypecacheMode, conf, dropoutApplied, dropoutMask, epochCount, index, input, iterationCount, maskArray, maskState, preOutput, trainingListeners| Constructor and Description |
|---|
Upsampling1D(NeuralNetConfiguration conf) |
Upsampling1D(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
| Modifier and Type | Method and Description |
|---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
protected int[] |
getSize() |
protected org.nd4j.linalg.api.ndarray.INDArray |
preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
accumulateScore, calcL1, calcL2, clearNoiseWeightParams, clone, fit, fit, getParam, gradient, isPretrainLayer, numParams, params, score, setParams, transpose, type, updateactivate, addListeners, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, batchSize, clear, computeGradientAndScore, conf, feedForwardMaskArray, getGradientsViewArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, gradientAndScore, init, initParams, input, layerConf, layerId, numParams, paramTable, paramTable, setBackpropGradientsViewArray, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, update, validateInputequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetEpochCount, getIterationCount, setEpochCount, setIterationCountpublic Upsampling1D(NeuralNetConfiguration conf)
public Upsampling1D(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
LayerbackpropGradient in interface LayerbackpropGradient in class Upsampling2Depsilon - w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr - Workspace managerArrayType.ACTIVATION_GRAD workspace via the workspace managerprotected int[] getSize()
getSize in class Upsampling2Dpublic org.nd4j.linalg.api.ndarray.INDArray activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Layeractivate in interface Layeractivate in class Upsampling2Dtraining - training or test modeworkspaceMgr - Workspace managerArrayType.ACTIVATIONS workspace via the workspace managerprotected org.nd4j.linalg.api.ndarray.INDArray preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr)
preOutput in class Upsampling2DCopyright © 2018. All rights reserved.