public abstract class BaseWrapperLayer extends Object implements Layer
Layer.TrainingMode, Layer.Type
Modifier and Type | Field and Description |
---|---|
protected Layer |
underlying |
Constructor and Description |
---|
BaseWrapperLayer(Layer underlying) |
Modifier and Type | Method and Description |
---|---|
void |
accumulateScore(double accum)
Sets a rolling tally for the score.
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
org.nd4j.linalg.api.ndarray.INDArray |
activate(org.nd4j.linalg.api.ndarray.INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the specified input
|
void |
addListeners(TrainingListener... listener)
This method ADDS additional TrainingListener to existing listeners
|
void |
applyConstraints(int iteration,
int epoch)
Apply any constraints to the model
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
int |
batchSize()
The current inputs batch size
|
double |
calcL1(boolean backpropOnlyParams)
Calculate the l1 regularization term
0.0 if regularization is not used. |
double |
calcL2(boolean backpropOnlyParams)
Calculate the l2 regularization term
0.0 if regularization is not used. |
void |
clear()
Clear input
|
void |
clearNoiseWeightParams() |
Layer |
clone()
Clone the layer
|
void |
computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
Update the score
|
NeuralNetConfiguration |
conf()
The configuration for the neural network
|
org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> |
feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray,
MaskState currentMaskState,
int minibatchSize)
Feed forward the input mask array, setting in in the layer as appropriate.
|
void |
fit()
All models have a fit method
|
void |
fit(org.nd4j.linalg.api.ndarray.INDArray data,
LayerWorkspaceMgr workspaceMgr)
Fit the model to the given data
|
int |
getEpochCount() |
org.nd4j.linalg.api.ndarray.INDArray |
getGradientsViewArray() |
int |
getIndex()
Get the layer index.
|
int |
getInputMiniBatchSize()
Get current/last input mini-batch size, as set by setInputMiniBatchSize(int)
|
int |
getIterationCount() |
Collection<TrainingListener> |
getListeners()
Get the iteration listeners for this layer.
|
org.nd4j.linalg.api.ndarray.INDArray |
getMaskArray() |
ConvexOptimizer |
getOptimizer()
Returns this models optimizer
|
org.nd4j.linalg.api.ndarray.INDArray |
getParam(String param)
Get the parameter
|
Gradient |
gradient()
Get the gradient.
|
org.nd4j.linalg.primitives.Pair<Gradient,Double> |
gradientAndScore()
Get the gradient and score
|
void |
init()
Init the model
|
void |
initParams()
Initialize the parameters
|
org.nd4j.linalg.api.ndarray.INDArray |
input()
The input/feature matrix for the model
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
int |
numParams()
the number of parameters for the model
|
int |
numParams(boolean backwards)
the number of parameters for the model
|
org.nd4j.linalg.api.ndarray.INDArray |
params()
Parameters of the model (if any)
|
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable()
The param table
|
Map<String,org.nd4j.linalg.api.ndarray.INDArray> |
paramTable(boolean backpropParamsOnly)
Table of parameters by key, for backprop
For many models (dense layers, etc) - all parameters are backprop parameters
|
double |
score()
The score for the model
|
void |
setBackpropGradientsViewArray(org.nd4j.linalg.api.ndarray.INDArray gradients)
Set the gradients array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setCacheMode(CacheMode mode)
This method sets given CacheMode for current layer
|
void |
setConf(NeuralNetConfiguration conf)
Setter for the configuration
|
void |
setEpochCount(int epochCount)
Set the current epoch count (number of epochs passed ) for the layer/network
|
void |
setIndex(int index)
Set the layer index.
|
void |
setInput(org.nd4j.linalg.api.ndarray.INDArray input,
LayerWorkspaceMgr workspaceMgr)
Set the layer input.
|
void |
setInputMiniBatchSize(int size)
Set current/last input mini-batch size.
Used for score and gradient calculations. |
void |
setIterationCount(int iterationCount)
Set the current iteration count (number of parameter updates) for the layer/network
|
void |
setListeners(Collection<TrainingListener> listeners)
Set the iteration listeners for this layer.
|
void |
setListeners(TrainingListener... listeners)
Set the iteration listeners for this layer.
|
void |
setMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray)
Set the mask array.
|
void |
setParam(String key,
org.nd4j.linalg.api.ndarray.INDArray val)
Set the parameter with a new ndarray
|
void |
setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Set the parameters for this model.
|
void |
setParamsViewArray(org.nd4j.linalg.api.ndarray.INDArray params)
Set the initial parameters array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
|
void |
setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
Setter for the param table
|
Layer |
transpose()
Return a transposed copy of the weights/bias
(this means reverse the number of inputs and outputs on the weights)
|
Layer.Type |
type()
Returns the layer type
|
void |
update(Gradient gradient)
Update layer weights and biases with gradient change
|
void |
update(org.nd4j.linalg.api.ndarray.INDArray gradient,
String paramType)
Perform one update applying the gradient
|
void |
validateInput()
Validate the input
|
protected Layer underlying
public BaseWrapperLayer(@NonNull Layer underlying)
public void setCacheMode(CacheMode mode)
Layer
setCacheMode
in interface Layer
public double calcL2(boolean backpropOnlyParams)
Layer
public double calcL1(boolean backpropOnlyParams)
Layer
public Layer.Type type()
Layer
public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layer
backpropGradient
in interface Layer
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr
- Workspace managerArrayType.ACTIVATION_GRAD
workspace via the workspace managerpublic org.nd4j.linalg.api.ndarray.INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Layer
activate
in interface Layer
training
- training or test modeworkspaceMgr
- Workspace managerArrayType.ACTIVATIONS
workspace via the workspace managerpublic org.nd4j.linalg.api.ndarray.INDArray activate(org.nd4j.linalg.api.ndarray.INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
Layer
activate
in interface Layer
input
- the input to usetraining
- train or test modeworkspaceMgr
- Workspace manager.ArrayType.ACTIVATIONS
workspace via the workspace managerpublic Layer transpose()
Layer
public Collection<TrainingListener> getListeners()
Layer
getListeners
in interface Layer
public void setListeners(TrainingListener... listeners)
Layer
setListeners
in interface Layer
setListeners
in interface Model
public void addListeners(TrainingListener... listener)
Model
addListeners
in interface Model
public void fit()
Model
public void update(Gradient gradient)
Model
public void update(org.nd4j.linalg.api.ndarray.INDArray gradient, String paramType)
Model
public double score()
Model
public void computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
Model
computeGradientAndScore
in interface Model
public void accumulateScore(double accum)
Model
accumulateScore
in interface Model
accum
- the amount to accumpublic org.nd4j.linalg.api.ndarray.INDArray params()
Model
public int numParams()
Model
public int numParams(boolean backwards)
Model
public void setParams(org.nd4j.linalg.api.ndarray.INDArray params)
Model
public void setParamsViewArray(org.nd4j.linalg.api.ndarray.INDArray params)
Model
setParamsViewArray
in interface Model
params
- a 1 x nParams row vector that is a view of the larger (MLN/CG) parameters arraypublic org.nd4j.linalg.api.ndarray.INDArray getGradientsViewArray()
getGradientsViewArray
in interface Model
public void setBackpropGradientsViewArray(org.nd4j.linalg.api.ndarray.INDArray gradients)
Model
setBackpropGradientsViewArray
in interface Model
gradients
- a 1 x nParams row vector that is a view of the larger (MLN/CG) gradients arraypublic void fit(org.nd4j.linalg.api.ndarray.INDArray data, LayerWorkspaceMgr workspaceMgr)
Model
public Gradient gradient()
Model
Model#computeGradientAndScore()
.public org.nd4j.linalg.primitives.Pair<Gradient,Double> gradientAndScore()
Model
gradientAndScore
in interface Model
public int batchSize()
Model
public NeuralNetConfiguration conf()
Model
public void setConf(NeuralNetConfiguration conf)
Model
public org.nd4j.linalg.api.ndarray.INDArray input()
Model
public void validateInput()
Model
validateInput
in interface Model
public ConvexOptimizer getOptimizer()
Model
getOptimizer
in interface Model
public org.nd4j.linalg.api.ndarray.INDArray getParam(String param)
Model
public void initParams()
Model
initParams
in interface Model
public Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable()
Model
paramTable
in interface Model
public Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable(boolean backpropParamsOnly)
Model
paramTable
in interface Model
backpropParamsOnly
- If true, return backprop params only. If false: return all params (equivalent to
paramsTable())public void setParamTable(Map<String,org.nd4j.linalg.api.ndarray.INDArray> paramTable)
Model
setParamTable
in interface Model
public void setParam(String key, org.nd4j.linalg.api.ndarray.INDArray val)
Model
public void clear()
Model
public void applyConstraints(int iteration, int epoch)
Model
applyConstraints
in interface Model
public void init()
Model
public void setListeners(Collection<TrainingListener> listeners)
Layer
setListeners
in interface Layer
setListeners
in interface Model
public void setIndex(int index)
Layer
public int getIndex()
Layer
public int getIterationCount()
getIterationCount
in interface Layer
public int getEpochCount()
getEpochCount
in interface Layer
public void setIterationCount(int iterationCount)
Layer
setIterationCount
in interface Layer
public void setEpochCount(int epochCount)
Layer
setEpochCount
in interface Layer
public void setInput(org.nd4j.linalg.api.ndarray.INDArray input, LayerWorkspaceMgr workspaceMgr)
Layer
public void setInputMiniBatchSize(int size)
Layer
setInputMiniBatchSize
in interface Layer
public int getInputMiniBatchSize()
Layer
getInputMiniBatchSize
in interface Layer
Layer.setInputMiniBatchSize(int)
public void setMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray)
Layer
Layer.feedForwardMaskArray(INDArray, MaskState, int)
should be used in
preference to this.setMaskArray
in interface Layer
maskArray
- Mask array to setpublic org.nd4j.linalg.api.ndarray.INDArray getMaskArray()
getMaskArray
in interface Layer
public boolean isPretrainLayer()
Layer
isPretrainLayer
in interface Layer
public void clearNoiseWeightParams()
clearNoiseWeightParams
in interface Layer
public org.nd4j.linalg.primitives.Pair<org.nd4j.linalg.api.ndarray.INDArray,MaskState> feedForwardMaskArray(org.nd4j.linalg.api.ndarray.INDArray maskArray, MaskState currentMaskState, int minibatchSize)
Layer
feedForwardMaskArray
in interface Layer
maskArray
- Mask array to setcurrentMaskState
- Current state of the mask - see MaskState
minibatchSize
- Current minibatch size. Needs to be known as it cannot always be inferred from the activations
array due to reshaping (such as a DenseLayer within a recurrent neural network)Copyright © 2018. All rights reserved.