Modifier and Type | Method and Description |
---|---|
static boolean |
GradientCheckUtil.checkGradientsPretrainLayer(Layer layer,
double epsilon,
double maxRelError,
double minAbsoluteError,
boolean print,
boolean exitOnFirstError,
org.nd4j.linalg.api.ndarray.INDArray input,
int rngSeed)
Check backprop gradients for a pretrain layer
NOTE: gradient checking pretrain layers can be difficult...
|
Modifier and Type | Method and Description |
---|---|
Layer |
Layer.clone()
Deprecated.
|
Layer |
Layer.transpose()
Deprecated.
|
Modifier and Type | Method and Description |
---|---|
void |
Updater.setStateViewArray(Layer layer,
org.nd4j.linalg.api.ndarray.INDArray viewArray,
boolean initialize)
Set the internal (historical) state view array for this updater
|
void |
Updater.update(Layer layer,
Gradient gradient,
int iteration,
int epoch,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr)
Updater: updates the model
|
Modifier and Type | Interface and Description |
---|---|
interface |
IOutputLayer
Interface for output layers (those that calculate gradients with respect to a labels array)
|
interface |
RecurrentLayer
Created by Alex on 28/08/2016.
|
Modifier and Type | Method and Description |
---|---|
void |
LayerConstraint.applyConstraint(Layer layer,
int iteration,
int epoch)
Apply a given constraint to a layer at each iteration
in the provided epoch, after parameters have been updated.
|
Modifier and Type | Method and Description |
---|---|
void |
BaseConstraint.applyConstraint(Layer layer,
int iteration,
int epoch) |
Modifier and Type | Method and Description |
---|---|
Layer |
SeparableConvolution2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
AutoEncoder.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
ZeroPadding3DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Upsampling1D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
LSTM.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
CnnLossLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
OutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Upsampling3D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
ZeroPaddingLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Subsampling1DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Subsampling3DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
DenseLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
DropoutLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
SpaceToBatchLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Convolution3D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
CenterLossOutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
GravesLSTM.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
ConvolutionLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
GravesBidirectionalLSTM.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams)
Deprecated.
|
Layer |
ZeroPadding1DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
RnnOutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
EmbeddingLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
ActivationLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
BatchNormalization.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
GlobalPoolingLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Convolution1DLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
LossLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Deconvolution2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
LocalResponseNormalization.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
SubsamplingLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Upsampling2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
abstract Layer |
Layer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
RnnLossLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
DepthwiseConvolution2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
EmbeddingSequenceLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
SpaceToDepthLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Modifier and Type | Method and Description |
---|---|
Layer |
Cropping3D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> iterationListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Cropping1D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Cropping2D.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Modifier and Type | Method and Description |
---|---|
Layer |
FrozenLayerWithBackprop.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
FrozenLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
ElementWiseMultiplicationLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Modifier and Type | Method and Description |
---|---|
Layer |
Yolo2OutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Modifier and Type | Method and Description |
---|---|
Layer |
LastTimeStep.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
Bidirectional.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
SimpleRnn.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Modifier and Type | Method and Description |
---|---|
abstract Layer |
AbstractSameDiffLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
BaseSameDiffLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Modifier and Type | Method and Description |
---|---|
Layer |
MaskLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Layer |
MaskZeroLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Modifier and Type | Method and Description |
---|---|
Layer |
VariationalAutoencoder.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Modifier and Type | Method and Description |
---|---|
Layer |
OCNNOutputLayer.instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
Modifier and Type | Method and Description |
---|---|
org.nd4j.linalg.api.ndarray.INDArray |
IWeightNoise.getParameter(Layer layer,
String paramKey,
int iteration,
int epoch,
boolean train,
LayerWorkspaceMgr workspaceMgr)
Get the parameter, after applying weight noise
|
org.nd4j.linalg.api.ndarray.INDArray |
WeightNoise.getParameter(Layer layer,
String paramKey,
int iteration,
int epoch,
boolean train,
LayerWorkspaceMgr workspaceMgr) |
org.nd4j.linalg.api.ndarray.INDArray |
DropConnect.getParameter(Layer layer,
String paramKey,
int iteration,
int epoch,
boolean train,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Field and Description |
---|---|
protected Layer[] |
ComputationGraph.layers
A list of layers.
|
Modifier and Type | Method and Description |
---|---|
Layer |
ComputationGraph.getLayer(int idx)
Get the layer by the number of that layer, in range 0 to getNumLayers()-1
NOTE: This is different from the internal GraphVertex index for the layer
|
Layer |
ComputationGraph.getLayer(String name)
Get a given layer by name.
|
Layer[] |
ComputationGraph.getLayers()
Get all layers in the ComputationGraph
|
Layer |
ComputationGraph.getOutputLayer(int outputLayerIdx)
Get the specified output layer, by index.
|
Modifier and Type | Method and Description |
---|---|
Layer |
BaseWrapperVertex.getLayer() |
Layer |
GraphVertex.getLayer()
Get the Layer (if any).
|
Modifier and Type | Method and Description |
---|---|
Layer |
SubsetVertex.getLayer() |
Layer |
ElementWiseVertex.getLayer() |
Layer |
ReshapeVertex.getLayer() |
Layer |
L2Vertex.getLayer() |
Layer |
ShiftVertex.getLayer() |
Layer |
LayerVertex.getLayer() |
Layer |
MergeVertex.getLayer() |
Layer |
PreprocessorVertex.getLayer() |
Layer |
InputVertex.getLayer() |
Layer |
L2NormalizeVertex.getLayer() |
Layer |
ScaleVertex.getLayer() |
Layer |
PoolHelperVertex.getLayer() |
Layer |
UnstackVertex.getLayer() |
Layer |
StackVertex.getLayer() |
Constructor and Description |
---|
LayerVertex(ComputationGraph graph,
String name,
int vertexIndex,
Layer layer,
InputPreProcessor layerPreProcessor,
boolean outputVertex)
Create a network input vertex:
|
LayerVertex(ComputationGraph graph,
String name,
int vertexIndex,
VertexIndices[] inputVertices,
VertexIndices[] outputVertices,
Layer layer,
InputPreProcessor layerPreProcessor,
boolean outputVertex) |
Modifier and Type | Method and Description |
---|---|
Layer |
ReverseTimeSeriesVertex.getLayer() |
Layer |
DuplicateToTimeSeriesVertex.getLayer() |
Layer |
LastTimeStepVertex.getLayer() |
Modifier and Type | Class and Description |
---|---|
class |
AbstractLayer<LayerConfT extends Layer>
A layer with input and output, no parameters or gradients
|
class |
ActivationLayer
Activation Layer
Used to apply activation on input and corresponding derivative on epsilon.
|
class |
BaseLayer<LayerConfT extends BaseLayer>
A layer with parameters
|
class |
BaseOutputLayer<LayerConfT extends BaseOutputLayer>
Output layer with different objective
in co-occurrences for different objectives.
|
class |
BasePretrainNetwork<LayerConfT extends BasePretrainNetwork>
Baseline class for any Neural Network used
as a layer in a deep network *
|
class |
DropoutLayer
Created by davekale on 12/7/16.
|
class |
FrozenLayer
For purposes of transfer learning
A frozen layers wraps another dl4j layer within it.
|
class |
FrozenLayerWithBackprop
Frozen layer freezes parameters of the layer it wraps, but allows the backpropagation to continue.
|
class |
LossLayer
LossLayer is a flexible output "layer" that performs a loss function on
an input without MLP logic.
|
class |
OutputLayer
Output layer with different objective
incooccurrences for different objectives.
|
Modifier and Type | Method and Description |
---|---|
abstract Layer |
AbstractLayer.clone() |
Layer |
BaseLayer.clone() |
Layer |
FrozenLayerWithBackprop.clone() |
Layer |
FrozenLayer.clone() |
Layer |
ActivationLayer.clone() |
Layer |
FrozenLayerWithBackprop.getInsideLayer() |
Layer |
FrozenLayer.getInsideLayer() |
Layer |
AbstractLayer.transpose() |
Layer |
BaseLayer.transpose() |
Layer |
DropoutLayer.transpose() |
Layer |
ActivationLayer.transpose() |
Layer |
LossLayer.transpose() |
Constructor and Description |
---|
FrozenLayer(Layer insideLayer) |
FrozenLayerWithBackprop(Layer insideLayer) |
Modifier and Type | Class and Description |
---|---|
class |
CnnLossLayer
Convolutional Neural Network Loss Layer.
Handles calculation of gradients etc for various objective functions. NOTE: CnnLossLayer does not have any parameters. |
class |
Convolution1DLayer
1D (temporal) convolutional layer.
|
class |
Convolution3DLayer
3D convolution layer implementation.
|
class |
ConvolutionLayer
Convolution layer
|
class |
Cropping1DLayer
Zero cropping layer for 1D convolutional neural networks.
|
class |
Cropping2DLayer
Zero cropping layer for convolutional neural networks.
|
class |
Cropping3DLayer
Cropping layer for 3D convolutional neural networks.
|
class |
Deconvolution2DLayer
2D deconvolution layer implementation.
|
class |
DepthwiseConvolution2DLayer
2D depth-wise convolution layer configuration.
|
class |
SeparableConvolution2DLayer
2D Separable convolution layer implementation
Separable convolutions split a regular convolution operation into two
simpler operations, which are usually computationally more efficient.
|
class |
SpaceToBatch
Space to batch utility layer for convolutional input types.
|
class |
SpaceToDepth
Space to channels utility layer for convolutional input types.
|
class |
ZeroPadding1DLayer
Zero padding 1D layer for convolutional neural networks.
|
class |
ZeroPadding3DLayer
Zero padding 3D layer for convolutional neural networks.
|
class |
ZeroPaddingLayer
Zero padding layer for convolutional neural networks.
|
Modifier and Type | Method and Description |
---|---|
Layer |
ZeroPadding3DLayer.clone() |
Layer |
SpaceToDepth.clone() |
Layer |
ZeroPaddingLayer.clone() |
Layer |
Cropping1DLayer.clone() |
Layer |
SpaceToBatch.clone() |
Layer |
Cropping2DLayer.clone() |
Layer |
ZeroPadding1DLayer.clone() |
Layer |
Cropping3DLayer.clone() |
Layer |
SpaceToDepth.transpose() |
Layer |
SpaceToBatch.transpose() |
Layer |
ConvolutionLayer.transpose() |
Modifier and Type | Class and Description |
---|---|
class |
Subsampling1DLayer
1D (temporal) subsampling layer.
|
class |
Subsampling3DLayer
Subsampling 3D layer, used for downsampling a 3D convolution
|
class |
SubsamplingLayer
Subsampling layer.
|
Modifier and Type | Method and Description |
---|---|
Layer |
Subsampling3DLayer.clone() |
Layer |
SubsamplingLayer.clone() |
Layer |
Subsampling3DLayer.transpose() |
Layer |
SubsamplingLayer.transpose() |
Modifier and Type | Class and Description |
---|---|
class |
Upsampling1D
1D Upsampling layer.
|
class |
Upsampling2D
2D Upsampling layer.
|
class |
Upsampling3D
3D Upsampling layer.
|
Modifier and Type | Method and Description |
---|---|
Layer |
Upsampling3D.clone() |
Layer |
Upsampling2D.clone() |
Layer |
Upsampling3D.transpose() |
Layer |
Upsampling2D.transpose() |
Modifier and Type | Class and Description |
---|---|
class |
AutoEncoder
Autoencoder.
|
Modifier and Type | Class and Description |
---|---|
class |
DenseLayer |
Modifier and Type | Class and Description |
---|---|
class |
ElementWiseMultiplicationLayer
Elementwise multiplication layer with weights: implements out = activationFn(input .* w + b) where:
- w is a learnable weight vector of length nOut - ".*" is element-wise multiplication - b is a bias vector Note that the input and output sizes of the element-wise layer are the same for this layer |
Modifier and Type | Class and Description |
---|---|
class |
EmbeddingLayer
Embedding layer: feed-forward layer that expects single integers per example as input (class numbers, in range 0 to numClass-1)
as input.
|
class |
EmbeddingSequenceLayer
Embedding layer for sequences: feed-forward layer that expects fixed-length number (inputLength) of integers/indices
per example as input, ranged from 0 to numClasses - 1.
|
Modifier and Type | Class and Description |
---|---|
class |
BatchNormalization
Batch normalization layer.
|
class |
LocalResponseNormalization
Deep neural net normalization approach normalizes activations between layers
"brightness normalization"
Used for nets like AlexNet
|
Modifier and Type | Method and Description |
---|---|
Layer |
BatchNormalization.clone() |
Layer |
LocalResponseNormalization.clone() |
Layer |
BatchNormalization.transpose() |
Layer |
LocalResponseNormalization.transpose() |
Modifier and Type | Class and Description |
---|---|
class |
Yolo2OutputLayer
Output (loss) layer for YOLOv2 object detection model, based on the papers:
YOLO9000: Better, Faster, Stronger - Redmon & Farhadi (2016) - https://arxiv.org/abs/1612.08242
and You Only Look Once: Unified, Real-Time Object Detection - Redmon et al. |
Modifier and Type | Method and Description |
---|---|
Layer |
Yolo2OutputLayer.clone() |
Modifier and Type | Class and Description |
---|---|
class |
OCNNOutputLayer
Layer implementation for
OCNNOutputLayer
See OCNNOutputLayer
for details. |
Modifier and Type | Class and Description |
---|---|
class |
GlobalPoolingLayer
Global pooling layer - used to do pooling over time for RNNs, and 2d pooling for CNNs.
Supports the following PoolingType s: SUM, AVG, MAX, PNORMGlobal pooling layer can also handle mask arrays when dealing with variable length inputs. |
Modifier and Type | Method and Description |
---|---|
Layer |
GlobalPoolingLayer.clone() |
Modifier and Type | Class and Description |
---|---|
class |
BaseRecurrentLayer<LayerConfT extends BaseLayer> |
class |
BidirectionalLayer
Bidirectional is a "wrapper" layer: it wraps any uni-directional RNN layer to make it bidirectional.
Note that multiple different modes are supported - these specify how the activations should be combined from the forward and backward RNN networks. |
class |
GravesBidirectionalLSTM
RNN tutorial: http://deeplearning4j.org/usingrnns.html
READ THIS FIRST
Bdirectional LSTM layer implementation.
|
class |
GravesLSTM
LSTM layer implementation.
|
class |
LastTimeStepLayer
LastTimeStep is a "wrapper" layer: it wraps any RNN layer, and extracts out the last time step during forward pass,
and returns it as a row vector (per example).
|
class |
LSTM
LSTM layer implementation.
|
class |
MaskZeroLayer
Masks timesteps with 0 activation.
|
class |
RnnLossLayer
Recurrent Neural Network Loss Layer.
Handles calculation of gradients etc for various objective functions. NOTE: Unlike RnnOutputLayer this RnnLossLayer does not have any parameters - i.e., there is no time
distributed dense component here. |
class |
RnnOutputLayer
Recurrent Neural Network Output Layer.
Handles calculation of gradients etc for various objective functions. Functionally the same as OutputLayer, but handles output and label reshaping automatically. Input and output activations are same as other RNN layers: 3 dimensions with shape [miniBatchSize,nIn,timeSeriesLength] and [miniBatchSize,nOut,timeSeriesLength] respectively. |
class |
SimpleRnn
Simple RNN - aka "vanilla" RNN is the simplest type of recurrent neural network layer.
|
Modifier and Type | Method and Description |
---|---|
Layer |
BidirectionalLayer.clone() |
Layer |
LSTM.transpose() |
Layer |
BidirectionalLayer.transpose() |
Layer |
GravesLSTM.transpose() |
Layer |
GravesBidirectionalLSTM.transpose() |
Modifier and Type | Method and Description |
---|---|
FwdPassReturn |
LSTMHelper.activate(Layer layer,
NeuralNetConfiguration conf,
org.nd4j.linalg.activations.IActivation gateActivationFn,
org.nd4j.linalg.api.ndarray.INDArray input,
org.nd4j.linalg.api.ndarray.INDArray recurrentWeights,
org.nd4j.linalg.api.ndarray.INDArray inputWeights,
org.nd4j.linalg.api.ndarray.INDArray biases,
boolean training,
org.nd4j.linalg.api.ndarray.INDArray prevOutputActivations,
org.nd4j.linalg.api.ndarray.INDArray prevMemCellState,
boolean forBackprop,
boolean forwards,
String inputWeightKey,
org.nd4j.linalg.api.ndarray.INDArray maskArray,
boolean hasPeepholeConnections,
LayerWorkspaceMgr workspaceMgr) |
Constructor and Description |
---|
LastTimeStepLayer(Layer underlying) |
MaskZeroLayer(Layer underlying) |
Modifier and Type | Class and Description |
---|---|
class |
SameDiffLayer |
Modifier and Type | Method and Description |
---|---|
Layer |
SameDiffLayer.clone() |
Modifier and Type | Class and Description |
---|---|
class |
CenterLossOutputLayer
Center loss is similar to triplet loss except that it enforces
intraclass consistency and doesn't require feed forward of multiple
examples.
|
Modifier and Type | Class and Description |
---|---|
class |
MaskLayer
MaskLayer applies the mask array to the forward pass activations, and backward pass gradients, passing through
this layer.
|
Modifier and Type | Method and Description |
---|---|
Layer |
MaskLayer.clone() |
Modifier and Type | Class and Description |
---|---|
class |
VariationalAutoencoder
Variational Autoencoder layer
|
Modifier and Type | Method and Description |
---|---|
Layer |
VariationalAutoencoder.clone() |
Layer |
VariationalAutoencoder.transpose() |
Modifier and Type | Class and Description |
---|---|
class |
BaseWrapperLayer
Abstract wrapper layer.
|
Modifier and Type | Field and Description |
---|---|
protected Layer |
BaseWrapperLayer.underlying |
Modifier and Type | Method and Description |
---|---|
Layer |
BaseWrapperLayer.clone() |
Layer |
BaseWrapperLayer.transpose() |
Constructor and Description |
---|
BaseWrapperLayer(Layer underlying) |
Modifier and Type | Class and Description |
---|---|
class |
MultiLayerNetwork
MultiLayerNetwork is a neural network with multiple layers in a stack, and usually an output layer.
|
Modifier and Type | Field and Description |
---|---|
protected Layer[] |
MultiLayerNetwork.layers |
Modifier and Type | Field and Description |
---|---|
protected LinkedHashMap<String,Layer> |
MultiLayerNetwork.layerMap |
Modifier and Type | Method and Description |
---|---|
Layer |
MultiLayerNetwork.getLayer(int i) |
Layer |
MultiLayerNetwork.getLayer(String name) |
Layer[] |
MultiLayerNetwork.getLayers() |
Layer |
MultiLayerNetwork.getOutputLayer()
Get the output layer
|
Layer |
MultiLayerNetwork.transpose() |
Modifier and Type | Method and Description |
---|---|
void |
MultiLayerNetwork.setLayers(Layer[] layers) |
Modifier and Type | Field and Description |
---|---|
protected Map<String,Layer> |
BaseMultiLayerUpdater.layersByName |
Modifier and Type | Method and Description |
---|---|
protected abstract Layer[] |
BaseMultiLayerUpdater.getOrderedLayers() |
protected Layer[] |
MultiLayerUpdater.getOrderedLayers() |
protected Layer[] |
LayerUpdater.getOrderedLayers() |
Modifier and Type | Method and Description |
---|---|
void |
UpdaterBlock.postApply(Layer layer,
String paramName,
org.nd4j.linalg.api.ndarray.INDArray gradientView,
org.nd4j.linalg.api.ndarray.INDArray paramsView)
Apply L1 and L2 regularization, if necessary.
|
void |
BaseMultiLayerUpdater.preApply(Layer layer,
Gradient gradient,
int iteration)
Pre-apply: Apply gradient normalization/clipping
|
void |
BaseMultiLayerUpdater.setStateViewArray(Layer layer,
org.nd4j.linalg.api.ndarray.INDArray viewArray,
boolean initialize) |
void |
BaseMultiLayerUpdater.update(Layer layer,
Gradient gradient,
int iteration,
int epoch,
int batchSize,
LayerWorkspaceMgr workspaceMgr) |
static boolean |
UpdaterUtils.updaterConfigurationsEquals(Layer layer1,
String param1,
Layer layer2,
String param2) |
Constructor and Description |
---|
LayerUpdater(Layer layer) |
LayerUpdater(Layer layer,
org.nd4j.linalg.api.ndarray.INDArray updaterState) |
Modifier and Type | Field and Description |
---|---|
protected Layer[] |
ComputationGraphUpdater.orderedLayers |
Modifier and Type | Method and Description |
---|---|
protected Layer[] |
ComputationGraphUpdater.getOrderedLayers() |
Copyright © 2018. All rights reserved.