public class FrozenLayer extends Layer
| Modifier and Type | Class and Description |
|---|---|
static class |
FrozenLayer.Builder |
| Modifier and Type | Field and Description |
|---|---|
protected Layer |
layer |
constraints, iDropout, layerName| Constructor and Description |
|---|
FrozenLayer(Layer layer) |
| Modifier and Type | Method and Description |
|---|---|
Layer |
clone() |
NeuralNetConfiguration |
getInnerConf(NeuralNetConfiguration conf) |
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessor |
org.nd4j.linalg.learning.config.IUpdater |
getUpdaterByParam(String paramName)
Get the updater for the given parameter.
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setConstraints(List<LayerConstraint> constraints) |
void |
setLayerName(String layerName) |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input type
|
initializeConstraints, resetLayerDefaultConfigprotected Layer layer
public FrozenLayer(Layer layer)
public NeuralNetConfiguration getInnerConf(NeuralNetConfiguration conf)
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, org.nd4j.linalg.api.ndarray.INDArray layerParamsView, boolean initializeParams)
instantiate in class Layerpublic ParamInitializer initializer()
initializer in class Layerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class LayerlayerIndex - Index of the layerinputType - Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layerpublic InputPreProcessor getPreProcessorForInputType(InputType inputType)
LayerInputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessorgetPreProcessorForInputType in class LayerinputType - InputType to this layerpublic double getL1ByParam(String paramName)
LayergetL1ByParam in class LayerparamName - Parameter namepublic double getL2ByParam(String paramName)
LayergetL2ByParam in class LayerparamName - Parameter namepublic boolean isPretrainParam(String paramName)
LayerisPretrainParam in class LayerparamName - Parameter name/keypublic org.nd4j.linalg.learning.config.IUpdater getUpdaterByParam(String paramName)
LayergetUpdaterByParam in class LayerparamName - Parameter namepublic LayerMemoryReport getMemoryReport(InputType inputType)
LayergetMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input typepublic void setLayerName(String layerName)
public void setConstraints(List<LayerConstraint> constraints)
Copyright © 2018. All rights reserved.