public class SimpleRnn extends BaseRecurrentLayer
Modifier and Type | Class and Description |
---|---|
static class |
SimpleRnn.Builder |
distRecurrent, weightInitRecurrent
nIn, nOut
activationFn, biasInit, biasUpdater, dist, gradientNormalization, gradientNormalizationThreshold, iUpdater, l1, l1Bias, l2, l2Bias, weightInit, weightNoise
constraints, iDropout, layerName
Modifier | Constructor and Description |
---|---|
protected |
SimpleRnn(SimpleRnn.Builder builder) |
Modifier and Type | Method and Description |
---|---|
double |
getL1ByParam(String paramName)
Get the L1 coefficient for the given parameter.
|
double |
getL2ByParam(String paramName)
Get the L2 coefficient for the given parameter.
|
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
org.nd4j.linalg.api.ndarray.INDArray layerParamsView,
boolean initializeParams) |
getOutputType, getPreProcessorForInputType, setNIn
isPretrainParam
clone, getUpdaterByParam, resetLayerDefaultConfig
initializeConstraints
protected SimpleRnn(SimpleRnn.Builder builder)
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, org.nd4j.linalg.api.ndarray.INDArray layerParamsView, boolean initializeParams)
instantiate
in class Layer
public ParamInitializer initializer()
initializer
in class Layer
public double getL1ByParam(String paramName)
Layer
getL1ByParam
in class FeedForwardLayer
paramName
- Parameter namepublic double getL2ByParam(String paramName)
Layer
getL2ByParam
in class FeedForwardLayer
paramName
- Parameter namepublic LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input typeCopyright © 2018. All rights reserved.