public class Subsampling1DLayer extends SubsamplingLayer
Layer.TrainingMode, Layer.TypeconvolutionMode, helper, helperCountFailcacheMode, conf, dropoutApplied, dropoutMask, epochCount, index, input, iterationCount, maskArray, maskState, preOutput, trainingListeners| Constructor and Description |
|---|
Subsampling1DLayer(NeuralNetConfiguration conf) |
Subsampling1DLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.ndarray.INDArray input) |
| Modifier and Type | Method and Description |
|---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
accumulateScore, calcL1, calcL2, clearNoiseWeightParams, clone, fit, fit, getParam, gradient, isPretrainLayer, numParams, params, score, setParams, transpose, type, updateactivate, addListeners, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, batchSize, clear, computeGradientAndScore, conf, feedForwardMaskArray, getGradientsViewArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, gradientAndScore, init, initParams, input, layerConf, layerId, numParams, paramTable, paramTable, setBackpropGradientsViewArray, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParamsViewArray, setParamTable, update, validateInputequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetEpochCount, getIterationCount, setEpochCount, setIterationCountpublic Subsampling1DLayer(NeuralNetConfiguration conf)
public Subsampling1DLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.ndarray.INDArray input)
public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
LayerbackpropGradient in interface LayerbackpropGradient in class SubsamplingLayerepsilon - w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr - Workspace managerArrayType.ACTIVATION_GRAD workspace via the workspace managerpublic org.nd4j.linalg.api.ndarray.INDArray activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Layeractivate in interface Layeractivate in class SubsamplingLayertraining - training or test modeworkspaceMgr - Workspace managerArrayType.ACTIVATIONS workspace via the workspace managerCopyright © 2018. All rights reserved.