public class ZeroPadding3DLayer extends AbstractLayer<ZeroPadding3DLayer>
Layer.TrainingMode, Layer.TypecacheMode, conf, dropoutApplied, dropoutMask, epochCount, index, input, iterationCount, maskArray, maskState, preOutput, trainingListeners| Constructor and Description |
|---|
ZeroPadding3DLayer(NeuralNetConfiguration conf) |
| Modifier and Type | Method and Description |
|---|---|
org.nd4j.linalg.api.ndarray.INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> |
backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
double |
calcL1(boolean backpropParamsOnly)
Calculate the l1 regularization term
0.0 if regularization is not used. |
double |
calcL2(boolean backpropParamsOnly)
Calculate the l2 regularization term
0.0 if regularization is not used. |
void |
clearNoiseWeightParams() |
Layer |
clone()
Clone the layer
|
boolean |
isPretrainLayer()
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
|
Layer.Type |
type()
Returns the layer type
|
accumulateScore, activate, addListeners, applyConstraints, applyDropOutIfNecessary, applyMask, assertInputSet, batchSize, clear, computeGradientAndScore, conf, feedForwardMaskArray, fit, fit, getGradientsViewArray, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, getOptimizer, getParam, gradient, gradientAndScore, init, initParams, input, layerConf, layerId, numParams, numParams, params, paramTable, paramTable, score, setBackpropGradientsViewArray, setCacheMode, setConf, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, transpose, update, update, validateInputequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetEpochCount, getIterationCount, setEpochCount, setIterationCountpublic ZeroPadding3DLayer(NeuralNetConfiguration conf)
public boolean isPretrainLayer()
Layerpublic void clearNoiseWeightParams()
public Layer.Type type()
Layertype in interface Layertype in class AbstractLayer<ZeroPadding3DLayer>public org.nd4j.linalg.primitives.Pair<Gradient,org.nd4j.linalg.api.ndarray.INDArray> backpropGradient(org.nd4j.linalg.api.ndarray.INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layerepsilon - w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr - Workspace managerArrayType.ACTIVATION_GRAD workspace via the workspace managerpublic org.nd4j.linalg.api.ndarray.INDArray activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Layertraining - training or test modeworkspaceMgr - Workspace managerArrayType.ACTIVATIONS workspace via the workspace managerpublic Layer clone()
Layerclone in interface Layerclone in class AbstractLayer<ZeroPadding3DLayer>public double calcL1(boolean backpropParamsOnly)
LayercalcL1 in interface LayercalcL1 in class AbstractLayer<ZeroPadding3DLayer>backpropParamsOnly - If true: calculate L1 based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)public double calcL2(boolean backpropParamsOnly)
LayercalcL2 in interface LayercalcL2 in class AbstractLayer<ZeroPadding3DLayer>backpropParamsOnly - If true: calculate L2 based on backprop params only. If false: calculate
based on all params (including pretrain params, if any)Copyright © 2018. All rights reserved.