Modifier and Type | Method and Description |
---|---|
protected IEvaluation |
ROCScoreCalculator.newEval() |
Modifier and Type | Method and Description |
---|---|
protected double |
ROCScoreCalculator.finalScore(IEvaluation eval) |
Modifier and Type | Class and Description |
---|---|
class |
BaseIEvaluationScoreCalculator<T extends Model,U extends IEvaluation>
Base score function based on an IEvaluation instance.
|
Modifier and Type | Interface and Description |
---|---|
interface |
IEvaluation<T extends IEvaluation>
A general purpose interface for evaluating neural networks - methods are shared by implemetations such as
Evaluation , RegressionEvaluation , ROC , ROCMultiClass |
Modifier and Type | Class and Description |
---|---|
class |
BaseEvaluation<T extends BaseEvaluation>
BaseEvaluation implement common evaluation functionality (for time series, etc) for
Evaluation ,
RegressionEvaluation , ROC , ROCMultiClass etc. |
class |
Evaluation
Evaluation metrics:
- precision, recall, f1, fBeta, accuracy, Matthews correlation coefficient, gMeasure - Top N accuracy (if using constructor Evaluation.Evaluation(List, int) )- Custom binary evaluation decision threshold (use constructor Evaluation.Evaluation(double) (default if not set is
argmax / 0.5)- Custom cost array, using Evaluation.Evaluation(INDArray) or Evaluation.Evaluation(List, INDArray) for multi-class Note: Care should be taken when using the Evaluation class for binary classification metrics such as F1, precision, recall, etc. |
class |
EvaluationBinary
EvaluationBinary: used for evaluating networks with binary classification outputs.
|
class |
EvaluationCalibration
EvaluationCalibration is an evaluation class designed to analyze the calibration of a classifier.
It provides a number of tools for this purpose: - Counts of the number of labels and predictions for each class - Reliability diagram (or reliability curve) - Residual plot (histogram) - Histograms of probabilities, including probabilities for each class separately References: - Reliability diagram: see for example Niculescu-Mizil and Caruana 2005, Predicting Good Probabilities With Supervised Learning - Residual plot: see Wallace and Dahabreh 2012, Class Probability Estimates are Unreliable for Imbalanced Data (and How to Fix Them) |
class |
RegressionEvaluation
Evaluation method for the evaluation of regression algorithms.
Provides the following metrics, for each column: - MSE: mean squared error - MAE: mean absolute error - RMSE: root mean squared error - RSE: relative squared error - PC: pearson correlation coefficient - R^2: coefficient of determination See for example: http://www.saedsayad.com/model_evaluation_r.htm For classification, see Evaluation |
class |
ROC
ROC (Receiver Operating Characteristic) for binary classifiers.
ROC has 2 modes of operation: (a) Thresholded (less memory) (b) Exact (default; use numSteps == 0 to set. |
class |
ROCBinary
ROC (Receiver Operating Characteristic) for multi-task binary classifiers.
|
class |
ROCMultiClass
ROC (Receiver Operating Characteristic) for multi-class classifiers.
|
Modifier and Type | Method and Description |
---|---|
static <T extends IEvaluation> |
BaseEvaluation.fromJson(String json,
Class<T> clazz) |
static <T extends IEvaluation> |
BaseEvaluation.fromYaml(String yaml,
Class<T> clazz) |
Modifier and Type | Method and Description |
---|---|
<T extends IEvaluation> |
NeuralNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
T... evaluations)
This method executes evaluation of the model against given iterator and evaluation implementations
|
<T extends IEvaluation> |
NeuralNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
T... evaluations)
This method executes evaluation of the model against given iterator and evaluation implementations
|
Modifier and Type | Method and Description |
---|---|
<T extends IEvaluation> |
NeuralNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
T... evaluations)
This method executes evaluation of the model against given iterator and evaluation implementations
|
<T extends IEvaluation> |
NeuralNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
T... evaluations)
This method executes evaluation of the model against given iterator and evaluation implementations
|
Modifier and Type | Method and Description |
---|---|
<T extends IEvaluation> |
NeuralNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
T... evaluations)
This method executes evaluation of the model against given iterator and evaluation implementations
|
<T extends IEvaluation> |
NeuralNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
T... evaluations)
This method executes evaluation of the model against given iterator and evaluation implementations
|
Modifier and Type | Method and Description |
---|---|
<T extends IEvaluation> |
ComputationGraph.doEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
T... evaluations)
Perform evaluation on the given data (DataSetIterator) with the given
IEvaluation instance |
<T extends IEvaluation> |
ComputationGraph.doEvaluation(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
T... evaluations)
Perform evaluation on the given data (MultiDataSetIterator) with the given
IEvaluation instance |
Modifier and Type | Method and Description |
---|---|
<T extends IEvaluation> |
ComputationGraph.doEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
T... evaluations)
Perform evaluation on the given data (DataSetIterator) with the given
IEvaluation instance |
<T extends IEvaluation> |
ComputationGraph.doEvaluation(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
T... evaluations)
Perform evaluation on the given data (MultiDataSetIterator) with the given
IEvaluation instance |
Modifier and Type | Method and Description |
---|---|
<T extends IEvaluation> |
ComputationGraph.doEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
T... evaluations)
Perform evaluation on the given data (DataSetIterator) with the given
IEvaluation instance |
<T extends IEvaluation> |
ComputationGraph.doEvaluation(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
T... evaluations)
Perform evaluation on the given data (MultiDataSetIterator) with the given
IEvaluation instance |
Modifier and Type | Method and Description |
---|---|
<T extends IEvaluation> |
MultiLayerNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
T... evaluations)
Perform evaluation using an arbitrary IEvaluation instance.
|
<T extends IEvaluation> |
MultiLayerNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
T[] evaluations) |
Modifier and Type | Method and Description |
---|---|
<T extends IEvaluation> |
MultiLayerNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
T... evaluations)
Perform evaluation using an arbitrary IEvaluation instance.
|
<T extends IEvaluation> |
MultiLayerNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
T[] evaluations) |
Modifier and Type | Method and Description |
---|---|
<T extends IEvaluation> |
MultiLayerNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
T... evaluations)
Perform evaluation using an arbitrary IEvaluation instance.
|
<T extends IEvaluation> |
MultiLayerNetwork.doEvaluation(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
T[] evaluations) |
Modifier and Type | Field and Description |
---|---|
protected IEvaluation[] |
EvaluativeListener.evaluations |
Modifier and Type | Method and Description |
---|---|
protected void |
EvaluativeListener.evalAtIndex(IEvaluation evaluation,
org.nd4j.linalg.api.ndarray.INDArray[] labels,
org.nd4j.linalg.api.ndarray.INDArray[] predictions,
int index) |
Constructor and Description |
---|
EvaluativeListener(org.nd4j.linalg.dataset.DataSet dataSet,
int frequency,
InvocationType type,
IEvaluation... evaluations) |
EvaluativeListener(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
int frequency,
IEvaluation... evaluations)
Evaluation will be launched after each *frequency* iteration
|
EvaluativeListener(org.nd4j.linalg.dataset.api.iterator.DataSetIterator iterator,
int frequency,
InvocationType type,
IEvaluation... evaluations) |
EvaluativeListener(org.nd4j.linalg.dataset.MultiDataSet multiDataSet,
int frequency,
InvocationType type,
IEvaluation... evaluations) |
EvaluativeListener(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
int frequency,
IEvaluation... evaluations)
Evaluation will be launched after each *frequency* iteration
|
EvaluativeListener(org.nd4j.linalg.dataset.api.iterator.MultiDataSetIterator iterator,
int frequency,
InvocationType type,
IEvaluation... evaluations) |
Modifier and Type | Method and Description |
---|---|
void |
ModelSavingCallback.call(EvaluativeListener listener,
Model model,
long invocationsCount,
IEvaluation[] evaluations) |
void |
EvaluationCallback.call(EvaluativeListener listener,
Model model,
long invocationsCount,
IEvaluation[] evaluations) |
Copyright © 2018. All rights reserved.