Class and Description |
---|
MultiLayerConfiguration
Configuration for a multi layer network
|
Class and Description |
---|
CacheMode |
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
BackpropType
Defines the type of backpropagation.
|
CacheMode |
ComputationGraphConfiguration
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
|
ComputationGraphConfiguration.GraphBuilder |
ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
GradientNormalization
Gradient normalization strategies.
|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
MultiLayerConfiguration
Configuration for a multi layer network
|
MultiLayerConfiguration.Builder |
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
NeuralNetConfiguration.Builder
NeuralNetConfiguration builder, used as a starting point for creating a MultiLayerConfiguration or
ComputationGraphConfiguration.
Note that values set here on the layer will be applied to all relevant layers - unless the value is overridden on a layer's configuration |
NeuralNetConfiguration.ListBuilder
Fluent interface for building a list of configurations
|
NeuralNetConfiguration.ListBuilder.InputTypeBuilder
Helper class for setting input types
|
Updater
All the possible different updaters
|
WorkspaceMode
Workspace mode to use.
|
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
GradientNormalization
Gradient normalization strategies.
|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Updater
All the possible different updaters
|
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
NeuralNetConfiguration.Builder
NeuralNetConfiguration builder, used as a starting point for creating a MultiLayerConfiguration or
ComputationGraphConfiguration.
Note that values set here on the layer will be applied to all relevant layers - unless the value is overridden on a layer's configuration |
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
Class and Description |
---|
CacheMode |
Class and Description |
---|
ComputationGraphConfiguration.GraphBuilder |
Class and Description |
---|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
Class and Description |
---|
ComputationGraphConfiguration
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
|
MultiLayerConfiguration
Configuration for a multi layer network
|
Class and Description |
---|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
Class and Description |
---|
CacheMode |
ComputationGraphConfiguration
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
CacheMode |
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
Class and Description |
---|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
CacheMode |
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
CacheMode |
Class and Description |
---|
CacheMode |
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
CacheMode |
MultiLayerConfiguration
Configuration for a multi layer network
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
BackpropType
Defines the type of backpropagation.
|
ComputationGraphConfiguration
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
|
ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
GradientNormalization
Gradient normalization strategies.
|
InputPreProcessor
Input pre processor used
for pre processing input before passing it
to the neural network.
|
MultiLayerConfiguration
Configuration for a multi layer network
|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
NeuralNetConfiguration.Builder
NeuralNetConfiguration builder, used as a starting point for creating a MultiLayerConfiguration or
ComputationGraphConfiguration.
Note that values set here on the layer will be applied to all relevant layers - unless the value is overridden on a layer's configuration |
Updater
All the possible different updaters
|
WorkspaceMode
Workspace mode to use.
|
Class and Description |
---|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Class and Description |
---|
ConvolutionMode
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided: Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension: outputSize = (inputSize - kernelSize + 2*padding) / stride + 1. |
NeuralNetConfiguration
A Serializable configuration
for neural nets that covers per layer parameters
|
Copyright © 2018. All rights reserved.