Modifier and Type | Method and Description |
---|---|
INDArray |
Layer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
INDArray |
Layer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr mgr)
Perform forward pass and return the activations array with the specified input
|
Pair<Gradient,INDArray> |
Layer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
void |
Model.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr)
Update the score
|
void |
Model.fit(INDArray data,
LayerWorkspaceMgr workspaceMgr)
Fit the model to the given data
|
void |
Layer.setInput(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Set the layer input.
|
void |
Updater.update(Trainable layer,
Gradient gradient,
int iteration,
int epoch,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr)
Updater: updates the model
|
Modifier and Type | Method and Description |
---|---|
double |
IOutputLayer.computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.
|
INDArray |
IOutputLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.
|
INDArray |
RecurrentLayer.rnnActivateUsingStoredState(INDArray input,
boolean training,
boolean storeLastForTBPTT,
LayerWorkspaceMgr workspaceMg)
Similar to rnnTimeStep, this method is used for activations using the state
stored in the stateMap as the initialization.
|
INDArray |
RecurrentLayer.rnnTimeStep(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Do one or more time steps using the previous time step state stored in stateMap.
Can be used to efficiently do forward pass one or n-steps at a time (instead of doing forward pass always from t=0) If stateMap is empty, default initialization (usually zeros) is used Implementations also update stateMap at the end of this method |
Pair<Gradient,INDArray> |
RecurrentLayer.tbpttBackpropGradient(INDArray epsilon,
int tbpttBackLength,
LayerWorkspaceMgr workspaceMgr)
Truncated BPTT equivalent of Layer.backpropGradient().
|
Modifier and Type | Method and Description |
---|---|
INDArray |
InputPreProcessor.backprop(INDArray output,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr)
Reverse the preProcess during backprop.
|
INDArray |
InputPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr)
Pre preProcess input/activations for a multi layer network
|
Modifier and Type | Method and Description |
---|---|
INDArray |
GaussianDropout.applyDropout(INDArray inputActivations,
INDArray output,
int iteration,
int epoch,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Dropout.applyDropout(INDArray inputActivations,
INDArray output,
int iteration,
int epoch,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
IDropout.applyDropout(INDArray inputActivations,
INDArray resultArray,
int iteration,
int epoch,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
GaussianNoise.applyDropout(INDArray inputActivations,
INDArray output,
int iteration,
int epoch,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SpatialDropout.applyDropout(INDArray inputActivations,
INDArray output,
int iteration,
int epoch,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
AlphaDropout.applyDropout(INDArray inputActivations,
INDArray output,
int iteration,
int epoch,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
CnnToRnnPreProcessor.backprop(INDArray output,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
FeedForwardToCnnPreProcessor.backprop(INDArray epsilons,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
RnnToCnnPreProcessor.backprop(INDArray output,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
CnnToFeedForwardPreProcessor.backprop(INDArray epsilons,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
FeedForwardToCnn3DPreProcessor.backprop(INDArray epsilons,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
RnnToFeedForwardPreProcessor.backprop(INDArray output,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ComposableInputPreProcessor.backprop(INDArray output,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
FeedForwardToRnnPreProcessor.backprop(INDArray output,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Cnn3DToFeedForwardPreProcessor.backprop(INDArray epsilons,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
CnnToRnnPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
FeedForwardToCnnPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
RnnToCnnPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
CnnToFeedForwardPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
FeedForwardToCnn3DPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
RnnToFeedForwardPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ComposableInputPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
FeedForwardToRnnPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Cnn3DToFeedForwardPreProcessor.preProcess(INDArray input,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
WeightNoise.getParameter(Layer layer,
String paramKey,
int iteration,
int epoch,
boolean train,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
IWeightNoise.getParameter(Layer layer,
String paramKey,
int iteration,
int epoch,
boolean train,
LayerWorkspaceMgr workspaceMgr)
Get the parameter, after applying weight noise
|
INDArray |
DropConnect.getParameter(Layer layer,
String paramKey,
int iteration,
int epoch,
boolean train,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
void |
ComputationGraph.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
protected void |
ComputationGraph.doTruncatedBPTT(INDArray[] inputs,
INDArray[] labels,
INDArray[] featureMasks,
INDArray[] labelMasks,
LayerWorkspaceMgr workspaceMgr)
Fit the network using truncated BPTT
|
void |
ComputationGraph.fit(INDArray data,
LayerWorkspaceMgr workspaceMgr) |
protected void |
ComputationGraph.validateArrayWorkspaces(LayerWorkspaceMgr mgr,
INDArray array,
ArrayType arrayType,
String vertexName,
boolean isInputVertex,
String op) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,INDArray[]> |
BaseWrapperVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
GraphVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr)
Do backward pass
|
INDArray |
BaseWrapperVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
GraphVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr)
Do forward pass using the stored inputs
|
void |
BaseWrapperVertex.setInput(int inputNumber,
INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
BaseGraphVertex.setInput(int inputNumber,
INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
GraphVertex.setInput(int inputNumber,
INDArray input,
LayerWorkspaceMgr workspaceMgr)
Set the input activations.
|
Modifier and Type | Method and Description |
---|---|
protected void |
LayerVertex.applyPreprocessorAndSetInput(LayerWorkspaceMgr workspaceMgr) |
double |
LayerVertex.computeScore(double l1,
double l2,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LayerVertex.computeScoreForExamples(double l1,
double l2,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
SubsetVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
LayerVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
PreprocessorVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
StackVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
MergeVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
ElementWiseVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
L2NormalizeVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
ShiftVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
ReshapeVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
UnstackVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
ScaleVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
InputVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
PoolHelperVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
L2Vertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SubsetVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LayerVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
PreprocessorVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
StackVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
MergeVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ElementWiseVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
L2NormalizeVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ShiftVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ReshapeVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
UnstackVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ScaleVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
InputVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
PoolHelperVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
L2Vertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
void |
LayerVertex.setInput(int inputNumber,
INDArray input,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,INDArray[]> |
ReverseTimeSeriesVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
DuplicateToTimeSeriesVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
LastTimeStepVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ReverseTimeSeriesVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
DuplicateToTimeSeriesVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LastTimeStepVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
LossLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
DropoutLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BaseLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ActivationLayer.activate(boolean training,
LayerWorkspaceMgr mgr) |
INDArray |
FrozenLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
RepeatVector.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
FrozenLayerWithBackprop.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LossLayer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
FrozenLayer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
AbstractLayer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
FrozenLayerWithBackprop.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BaseOutputLayer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
protected void |
AbstractLayer.applyDropOutIfNecessary(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
LossLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
DropoutLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
BaseLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
BasePretrainNetwork.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
ActivationLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
FrozenLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
RepeatVector.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
FrozenLayerWithBackprop.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
BaseOutputLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
void |
LossLayer.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
void |
BaseLayer.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
void |
FrozenLayer.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
void |
AbstractLayer.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
void |
FrozenLayerWithBackprop.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
void |
BaseOutputLayer.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
double |
LossLayer.computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.
|
double |
BaseOutputLayer.computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.
|
INDArray |
LossLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.
|
INDArray |
BaseOutputLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.
|
void |
LossLayer.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
DropoutLayer.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
BaseLayer.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
FrozenLayer.fit(INDArray data,
LayerWorkspaceMgr workspaceMgr) |
void |
RepeatVector.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
AbstractLayer.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
FrozenLayerWithBackprop.fit(INDArray data,
LayerWorkspaceMgr workspaceMgr) |
void |
BaseOutputLayer.fit(INDArray data,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
OutputLayer.getLabels2d(LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
protected abstract INDArray |
BaseOutputLayer.getLabels2d(LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
protected INDArray |
BaseLayer.getParamWithNoise(String param,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Get the parameter, after applying any weight noise (such as DropConnect) if necessary.
|
protected INDArray |
RepeatVector.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
BaseLayer.preOutput(boolean training,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
BaseOutputLayer.preOutput2d(boolean training,
LayerWorkspaceMgr workspaceMgr) |
void |
AbstractLayer.setInput(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
SpaceToBatch.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Cropping3DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Cropping1DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
CnnLossLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SpaceToDepth.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SeparableConvolution2DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
DepthwiseConvolution2DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ZeroPaddingLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ConvolutionLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Deconvolution2DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Cropping2DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Convolution1DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ZeroPadding1DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ZeroPadding3DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
ConvolutionHelper.backpropGradient(INDArray input,
INDArray weights,
INDArray delta,
int[] kernel,
int[] strides,
int[] pad,
INDArray biasGradView,
INDArray weightGradView,
IActivation afn,
ConvolutionLayer.AlgoMode mode,
ConvolutionLayer.BwdFilterAlgo bwdFilterAlgo,
ConvolutionLayer.BwdDataAlgo bwdDataAlgo,
ConvolutionMode convolutionMode,
int[] dilation,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
SpaceToBatch.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Cropping3DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Cropping1DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
CnnLossLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
SpaceToDepth.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Convolution3DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
SeparableConvolution2DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
DepthwiseConvolution2DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
ZeroPaddingLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
ConvolutionLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Deconvolution2DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Cropping2DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Convolution1DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
ZeroPadding1DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
ZeroPadding3DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
double |
CnnLossLayer.computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
CnnLossLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.
|
void |
ConvolutionLayer.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
SpaceToBatch.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
SpaceToDepth.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
protected Pair<INDArray,INDArray> |
Convolution3DLayer.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
protected Pair<INDArray,INDArray> |
SeparableConvolution2DLayer.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
protected Pair<INDArray,INDArray> |
DepthwiseConvolution2DLayer.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
protected Pair<INDArray,INDArray> |
ConvolutionLayer.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr)
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
instead of being calculated again.
|
protected Pair<INDArray,INDArray> |
Deconvolution2DLayer.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
protected Pair<INDArray,INDArray> |
Convolution1DLayer.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Convolution3DLayer.preOutput(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ConvolutionHelper.preOutput(INDArray input,
INDArray weights,
INDArray bias,
int[] kernel,
int[] strides,
int[] pad,
ConvolutionLayer.AlgoMode mode,
ConvolutionLayer.FwdAlgo fwdAlgo,
ConvolutionMode convolutionMode,
int[] dilation,
LayerWorkspaceMgr workspaceMgr) |
protected Pair<INDArray,INDArray> |
ConvolutionLayer.preOutput4d(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr)
preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard
non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying
the public API
|
protected Pair<INDArray,INDArray> |
Convolution1DLayer.preOutput4d(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
Subsampling3DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Subsampling1DLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SubsamplingLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SubsamplingHelper.activate(INDArray input,
boolean training,
int[] kernel,
int[] strides,
int[] pad,
PoolingType poolingType,
ConvolutionMode convolutionMode,
int[] dilation,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
SubsamplingHelper.backpropGradient(INDArray input,
INDArray epsilon,
int[] kernel,
int[] strides,
int[] pad,
PoolingType poolingType,
ConvolutionMode convolutionMode,
int[] dilation,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Subsampling3DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Subsampling1DLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
SubsamplingLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
void |
Subsampling3DLayer.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
SubsamplingLayer.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
Upsampling1D.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Upsampling3D.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Upsampling2D.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Upsampling1D.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Upsampling3D.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
Upsampling2D.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
void |
Upsampling3D.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
Upsampling2D.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
Upsampling1D.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
Upsampling3D.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
Upsampling2D.preOutput(boolean training,
boolean forBackprop,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
PReLU.activate(boolean training,
LayerWorkspaceMgr mgr) |
Pair<Gradient,INDArray> |
PReLU.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
AutoEncoder.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
AutoEncoder.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
void |
AutoEncoder.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
INDArray |
AutoEncoder.decode(INDArray y,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
AutoEncoder.encode(INDArray v,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
void |
DenseLayer.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,INDArray> |
ElementWiseMultiplicationLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
ElementWiseMultiplicationLayer.preOutput(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
EmbeddingLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
EmbeddingSequenceLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
protected void |
EmbeddingLayer.applyDropOutIfNecessary(boolean training,
LayerWorkspaceMgr workspaceMgr) |
protected void |
EmbeddingSequenceLayer.applyDropOutIfNecessary(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
EmbeddingLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
EmbeddingSequenceLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
EmbeddingLayer.preOutput(boolean training,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
EmbeddingSequenceLayer.preOutput(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
LocalResponseNormalization.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BatchNormalization.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LocalResponseNormalizationHelper.activate(INDArray x,
boolean training,
double k,
double n,
double alpha,
double beta,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
LocalResponseNormalizationHelper.backpropGradient(INDArray input,
INDArray epsilon,
double k,
double n,
double alpha,
double beta,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
BatchNormalizationHelper.backpropGradient(INDArray input,
INDArray epsilon,
int[] shape,
INDArray gamma,
INDArray dGammaView,
INDArray dBetaView,
double eps,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
LocalResponseNormalization.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
BatchNormalization.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
void |
LocalResponseNormalization.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
BatchNormalization.fit(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BatchNormalizationHelper.preOutput(INDArray x,
boolean training,
int[] shape,
INDArray gamma,
INDArray beta,
INDArray mean,
INDArray var,
double decay,
double eps,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BatchNormalization.preOutput(INDArray x,
Layer.TrainingMode training,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
Yolo2OutputLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
static INDArray |
YoloUtils.activate(INDArray boundingBoxPriors,
INDArray input,
LayerWorkspaceMgr layerWorkspaceMgr) |
Pair<Gradient,INDArray> |
Yolo2OutputLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
void |
Yolo2OutputLayer.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
double |
Yolo2OutputLayer.computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
Yolo2OutputLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
OCNNOutputLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
OCNNOutputLayer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
OCNNOutputLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
double |
OCNNOutputLayer.computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.
|
INDArray |
OCNNOutputLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.
|
protected INDArray |
OCNNOutputLayer.getLabels2d(LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
protected INDArray |
OCNNOutputLayer.preOutput2d(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
GlobalPoolingLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
GlobalPoolingLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
RnnLossLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LSTM.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
MaskZeroLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
GravesLSTM.activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Deprecated.
|
INDArray |
RnnOutputLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
GravesBidirectionalLSTM.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BidirectionalLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LastTimeStepLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SimpleRnn.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LSTM.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
MaskZeroLayer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
GravesLSTM.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Deprecated.
|
INDArray |
GravesBidirectionalLSTM.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BidirectionalLayer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LastTimeStepLayer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
FwdPassReturn |
LSTMHelper.activate(Layer layer,
NeuralNetConfiguration conf,
IActivation gateActivationFn,
INDArray input,
INDArray recurrentWeights,
INDArray inputWeights,
INDArray biases,
boolean training,
INDArray prevOutputActivations,
INDArray prevMemCellState,
boolean forBackprop,
boolean forwards,
String inputWeightKey,
INDArray maskArray,
boolean hasPeepholeConnections,
LayerWorkspaceMgr workspaceMgr) |
static FwdPassReturn |
LSTMHelpers.activateHelper(BaseLayer layer,
NeuralNetConfiguration conf,
IActivation gateActivationFn,
INDArray input,
INDArray recurrentWeights,
INDArray originalInputWeights,
INDArray biases,
boolean training,
INDArray originalPrevOutputActivations,
INDArray originalPrevMemCellState,
boolean forBackprop,
boolean forwards,
String inputWeightKey,
INDArray maskArray,
boolean hasPeepholeConnections,
LSTMHelper helper,
CacheMode cacheMode,
LayerWorkspaceMgr workspaceMgr)
Returns FwdPassReturn object with activations/INDArrays.
|
Pair<Gradient,INDArray> |
RnnLossLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
LSTM.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
MaskZeroLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
GravesLSTM.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Deprecated.
|
Pair<Gradient,INDArray> |
RnnOutputLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
GravesBidirectionalLSTM.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
BidirectionalLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
LastTimeStepLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
SimpleRnn.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
LSTMHelper.backpropGradient(NeuralNetConfiguration conf,
IActivation gateActivationFn,
INDArray input,
INDArray recurrentWeights,
INDArray inputWeights,
INDArray epsilon,
boolean truncatedBPTT,
int tbpttBackwardLength,
FwdPassReturn fwdPass,
boolean forwards,
String inputWeightKey,
String recurrentWeightKey,
String biasWeightKey,
Map<String,INDArray> gradientViews,
INDArray maskArray,
boolean hasPeepholeConnections,
LayerWorkspaceMgr workspaceMgr) |
static Pair<Gradient,INDArray> |
LSTMHelpers.backpropGradientHelper(NeuralNetConfiguration conf,
IActivation gateActivationFn,
INDArray input,
INDArray recurrentWeights,
INDArray inputWeights,
INDArray epsilon,
boolean truncatedBPTT,
int tbpttBackwardLength,
FwdPassReturn fwdPass,
boolean forwards,
String inputWeightKey,
String recurrentWeightKey,
String biasWeightKey,
Map<String,INDArray> gradientViews,
INDArray maskArray,
boolean hasPeepholeConnections,
LSTMHelper helper,
LayerWorkspaceMgr workspaceMgr) |
void |
BidirectionalLayer.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
double |
RnnLossLayer.computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
RnnLossLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.
|
INDArray |
RnnOutputLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.
|
void |
BidirectionalLayer.fit(INDArray data,
LayerWorkspaceMgr workspaceMgr) |
protected INDArray |
RnnOutputLayer.getLabels2d(LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
protected INDArray |
RnnOutputLayer.preOutput2d(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LSTM.rnnActivateUsingStoredState(INDArray input,
boolean training,
boolean storeLastForTBPTT,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
GravesLSTM.rnnActivateUsingStoredState(INDArray input,
boolean training,
boolean storeLastForTBPTT,
LayerWorkspaceMgr workspaceMgr)
Deprecated.
|
INDArray |
GravesBidirectionalLSTM.rnnActivateUsingStoredState(INDArray input,
boolean training,
boolean storeLastForTBPTT,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BidirectionalLayer.rnnActivateUsingStoredState(INDArray input,
boolean training,
boolean storeLastForTBPTT,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SimpleRnn.rnnActivateUsingStoredState(INDArray input,
boolean training,
boolean storeLastForTBPTT,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
LSTM.rnnTimeStep(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
GravesLSTM.rnnTimeStep(INDArray input,
LayerWorkspaceMgr workspaceMgr)
Deprecated.
|
INDArray |
GravesBidirectionalLSTM.rnnTimeStep(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BidirectionalLayer.rnnTimeStep(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SimpleRnn.rnnTimeStep(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
void |
BidirectionalLayer.setInput(INDArray input,
LayerWorkspaceMgr layerWorkspaceMgr) |
Pair<Gradient,INDArray> |
LSTM.tbpttBackpropGradient(INDArray epsilon,
int tbpttBackwardLength,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
GravesLSTM.tbpttBackpropGradient(INDArray epsilon,
int tbpttBackwardLength,
LayerWorkspaceMgr workspaceMgr)
Deprecated.
|
Pair<Gradient,INDArray> |
GravesBidirectionalLSTM.tbpttBackpropGradient(INDArray epsilon,
int tbpttBackwardLength,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
BidirectionalLayer.tbpttBackpropGradient(INDArray epsilon,
int tbpttBackLength,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
SimpleRnn.tbpttBackpropGradient(INDArray epsilon,
int tbpttBackLength,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
SameDiffOutputLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SameDiffLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
SameDiffOutputLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
SameDiffLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
double |
SameDiffOutputLayer.computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SameDiffOutputLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray[]> |
SameDiffGraphVertex.doBackward(boolean tbptt,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
SameDiffGraphVertex.doForward(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,INDArray> |
CenterLossOutputLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
void |
CenterLossOutputLayer.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
double |
CenterLossOutputLayer.computeScore(double fullNetworkL1,
double fullNetworkL2,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.
|
INDArray |
CenterLossOutputLayer.computeScoreForExamples(double fullNetworkL1,
double fullNetworkL2,
LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.
|
protected INDArray |
CenterLossOutputLayer.getLabels2d(LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
Modifier and Type | Method and Description |
---|---|
INDArray |
MaskLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
MaskLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
VariationalAutoencoder.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
VariationalAutoencoder.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
VariationalAutoencoder.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
void |
VariationalAutoencoder.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
void |
VariationalAutoencoder.fit(INDArray data,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
VariationalAutoencoder.generateRandomGivenZ(INDArray latentSpaceValues,
LayerWorkspaceMgr workspaceMgr)
Given a specified values for the latent space as input (latent space being z in p(z|data)), randomly generate output
x, where x ~ P(x|z)
|
protected INDArray |
VariationalAutoencoder.getParamWithNoise(String param,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
VariationalAutoencoder.preOutput(boolean training,
LayerWorkspaceMgr workspaceMgr) |
void |
VariationalAutoencoder.setInput(INDArray input,
LayerWorkspaceMgr layerWorkspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
BaseWrapperLayer.activate(boolean training,
LayerWorkspaceMgr workspaceMgr) |
INDArray |
BaseWrapperLayer.activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr) |
Pair<Gradient,INDArray> |
BaseWrapperLayer.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
void |
BaseWrapperLayer.computeGradientAndScore(LayerWorkspaceMgr workspaceMgr) |
void |
BaseWrapperLayer.fit(INDArray data,
LayerWorkspaceMgr workspaceMgr) |
void |
BaseWrapperLayer.setInput(INDArray input,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
INDArray |
MultiLayerNetwork.activate(boolean training,
LayerWorkspaceMgr mgr) |
INDArray |
MultiLayerNetwork.activate(INDArray input,
boolean training,
LayerWorkspaceMgr mgr) |
INDArray |
MultiLayerNetwork.activationFromPrevLayer(int curr,
INDArray input,
boolean training,
LayerWorkspaceMgr mgr) |
Pair<Gradient,INDArray> |
MultiLayerNetwork.backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr) |
void |
MultiLayerNetwork.computeGradientAndScore(LayerWorkspaceMgr layerWorkspaceMgr) |
protected void |
MultiLayerNetwork.doTruncatedBPTT(INDArray input,
INDArray labels,
INDArray featuresMaskArray,
INDArray labelsMaskArray,
LayerWorkspaceMgr workspaceMgr) |
void |
MultiLayerNetwork.fit(INDArray data,
LayerWorkspaceMgr workspaceMgr) |
void |
MultiLayerNetwork.setInput(INDArray input,
LayerWorkspaceMgr mgr) |
protected void |
MultiLayerNetwork.validateArrayWorkspaces(LayerWorkspaceMgr mgr,
INDArray array,
ArrayType arrayType,
int layerIdx,
boolean isPreprocessor,
String op) |
Modifier and Type | Method and Description |
---|---|
void |
BaseMultiLayerUpdater.update(Gradient gradient,
int iteration,
int epoch,
int batchSize,
LayerWorkspaceMgr workspaceMgr)
Update the gradient for the model.
|
void |
BaseMultiLayerUpdater.update(Trainable layer,
Gradient gradient,
int iteration,
int epoch,
int batchSize,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
LayerWorkspaceMgr |
LayerWorkspaceMgr.Builder.build() |
static LayerWorkspaceMgr |
LayerWorkspaceMgr.noWorkspaces() |
static LayerWorkspaceMgr |
LayerWorkspaceMgr.noWorkspaces(Map<String,org.bytedeco.javacpp.Pointer> helperWorkspacePointers) |
static LayerWorkspaceMgr |
LayerWorkspaceMgr.noWorkspacesImmutable() |
Modifier and Type | Method and Description |
---|---|
void |
Solver.optimize(LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,Double> |
ConvexOptimizer.gradientAndScore(LayerWorkspaceMgr workspaceMgr)
The gradient and score for this optimizer
|
double |
LineOptimizer.optimize(INDArray parameters,
INDArray gradient,
INDArray searchDirection,
LayerWorkspaceMgr workspaceMgr)
Line optimizer
|
boolean |
ConvexOptimizer.optimize(LayerWorkspaceMgr workspaceMgr)
Calls optimize
|
void |
ConvexOptimizer.updateGradientAccordingToParams(Gradient gradient,
Model model,
int batchSize,
LayerWorkspaceMgr workspaceMgr)
Update the gradient according to the configuration such as adagrad, momentum, and sparsity
|
Modifier and Type | Method and Description |
---|---|
Pair<Gradient,Double> |
BaseOptimizer.gradientAndScore(LayerWorkspaceMgr workspaceMgr) |
double |
BackTrackLineSearch.optimize(INDArray parameters,
INDArray gradients,
INDArray searchDirection,
LayerWorkspaceMgr workspaceMgr) |
boolean |
StochasticGradientDescent.optimize(LayerWorkspaceMgr workspaceMgr) |
boolean |
BaseOptimizer.optimize(LayerWorkspaceMgr workspaceMgr)
Optimize call.
|
double |
BackTrackLineSearch.setScoreFor(INDArray parameters,
LayerWorkspaceMgr workspaceMgr) |
void |
BaseOptimizer.updateGradientAccordingToParams(Gradient gradient,
Model model,
int batchSize,
LayerWorkspaceMgr workspaceMgr) |
Modifier and Type | Method and Description |
---|---|
static INDArray |
ConvolutionUtils.adapt2dMask(INDArray mask,
INDArray output,
LayerWorkspaceMgr workspaceMgr,
ArrayType type) |
static Pair<INDArray,int[]> |
TimeSeriesUtils.pullLastTimeSteps(INDArray pullFrom,
INDArray mask,
LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType)
Extract out the last time steps (2d array from 3d array input) accounting for the mask layer, if present.
|
static INDArray |
TimeSeriesUtils.reshape2dTo3d(INDArray in,
int miniBatchSize,
LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
static INDArray |
ConvolutionUtils.reshape2dTo4d(INDArray in2d,
int[] toShape,
LayerWorkspaceMgr workspaceMgr,
ArrayType type) |
static INDArray |
ConvolutionUtils.reshape3dMask(INDArray mask,
LayerWorkspaceMgr workspaceMgr,
ArrayType type) |
static INDArray |
TimeSeriesUtils.reshape3dTo2d(INDArray in,
LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
static INDArray |
ConvolutionUtils.reshape4dMask(INDArray mask,
LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
static INDArray |
ConvolutionUtils.reshape4dTo2d(INDArray in,
LayerWorkspaceMgr workspaceMgr,
ArrayType type) |
static INDArray |
ConvolutionUtils.reshapeMaskIfRequired(INDArray mask,
INDArray output,
LayerWorkspaceMgr workspaceMgr,
ArrayType type) |
static INDArray |
TimeSeriesUtils.reshapePerOutputTimeSeriesMaskTo2d(INDArray perOutputTimeSeriesMask,
LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
static INDArray |
TimeSeriesUtils.reshapeTimeSeriesMaskToVector(INDArray timeSeriesMask,
LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType)
Reshape time series mask arrays.
|
static INDArray |
TimeSeriesUtils.reverseTimeSeries(INDArray in,
LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType)
Reverse an input time series along the time dimension
|
static INDArray |
TimeSeriesUtils.reverseTimeSeriesMask(INDArray mask,
LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType)
Reverse a (per time step) time series mask, with shape [minibatch, timeSeriesLength]
|
Copyright © 2018. All rights reserved.