public class BatchNormalization extends FeedForwardLayer
Modifier and Type | Class and Description |
---|---|
static class |
BatchNormalization.Builder |
Modifier and Type | Field and Description |
---|---|
protected double |
beta |
protected boolean |
cudnnAllowFallback |
protected double |
decay |
protected double |
eps |
protected double |
gamma |
protected boolean |
isMinibatch |
protected boolean |
lockGammaBeta |
protected boolean |
useLogStd |
nIn, nOut
activationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoise
constraints, iDropout, layerName
Constructor and Description |
---|
BatchNormalization() |
Modifier and Type | Method and Description |
---|---|
BatchNormalization |
clone() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
InputPreProcessor |
getPreProcessorForInputType(InputType inputType)
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate InputPreProcessor for this layer, such as a CnnToFeedForwardPreProcessor |
List<Regularization> |
getRegularizationByParam(String paramName)
Get the regularization types (l1/l2/weight decay) for the given parameter.
|
IUpdater |
getUpdaterByParam(String paramName)
Get the updater for the given parameter.
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
org.nd4j.linalg.api.buffer.DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
void |
setNIn(InputType inputType,
boolean override)
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input
type
|
getGradientNormalization, resetLayerDefaultConfig
initializeConstraints, setDataType
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getGradientNormalizationThreshold, getLayerName
protected double decay
protected double eps
protected boolean isMinibatch
protected double gamma
protected double beta
protected boolean lockGammaBeta
protected boolean cudnnAllowFallback
protected boolean useLogStd
public BatchNormalization clone()
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, org.nd4j.linalg.api.buffer.DataType networkDataType)
instantiate
in class Layer
public ParamInitializer initializer()
initializer
in class Layer
public InputType getOutputType(int layerIndex, InputType inputType)
Layer
getOutputType
in class FeedForwardLayer
layerIndex
- Index of the layerinputType
- Type of input for the layerpublic void setNIn(InputType inputType, boolean override)
Layer
setNIn
in class FeedForwardLayer
inputType
- Input type for this layeroverride
- If false: only set the nIn value if it's not already set. If true: set it
regardless of whether it's already set or not.public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Layer
InputPreProcessor
for this layer, such as a CnnToFeedForwardPreProcessor
getPreProcessorForInputType
in class FeedForwardLayer
inputType
- InputType to this layerpublic List<Regularization> getRegularizationByParam(String paramName)
Layer
getRegularizationByParam
in interface TrainingConfig
getRegularizationByParam
in class BaseLayer
paramName
- Parameter name ("W", "b" etc)public IUpdater getUpdaterByParam(String paramName)
BaseLayer
getUpdaterByParam
in interface TrainingConfig
getUpdaterByParam
in class BaseLayer
paramName
- Parameter namepublic LayerMemoryReport getMemoryReport(InputType inputType)
Layer
getMemoryReport
in class Layer
inputType
- Input type to the layer. Memory consumption is often a function of the input
typepublic boolean isPretrainParam(String paramName)
Layer
isPretrainParam
in interface TrainingConfig
isPretrainParam
in class FeedForwardLayer
paramName
- Parameter name/keyCopyright © 2019. All rights reserved.