- a(double) - Method in class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- AbstractLayer<LayerConfT extends Layer> - Class in org.deeplearning4j.nn.layers
-
A layer with input and output, no parameters or gradients
- AbstractLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.AbstractLayer
-
- AbstractLSTM - Class in org.deeplearning4j.nn.conf.layers
-
- AbstractLSTM(AbstractLSTM.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- AbstractLSTM.Builder<T extends AbstractLSTM.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- AbstractSameDiffLayer - Class in org.deeplearning4j.nn.conf.layers.samediff
-
- AbstractSameDiffLayer(AbstractSameDiffLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- AbstractSameDiffLayer() - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- AbstractSameDiffLayer.Builder<T extends AbstractSameDiffLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers.samediff
-
- accumulator - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- accumulator - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- accumulator - Variable in class org.deeplearning4j.optimize.solvers.accumulation.LocalHandler
-
- accumulator - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- activate(boolean, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.Layer
-
Perform forward pass and return the activations array with the last set input
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.Layer
-
Perform forward pass and return the activations array with the specified input
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- activate(INDArray, IActivation, boolean) - Method in interface org.deeplearning4j.nn.layers.convolution.ConvolutionHelper
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cropping1DLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cropping2DLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cropping3DLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Deconvolution2DLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.DepthwiseConvolution2DLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.SeparableConvolution2DLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- activate(INDArray, boolean, int[], int[], int[], PoolingType, ConvolutionMode, int[], LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingHelper
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling1D
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding1DLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding3DLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.PReLU
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- activate(INDArray, IActivation, boolean) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper
-
- activate(INDArray, boolean, double, double, double, double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNLocalResponseNormalizationHelper
-
- activate(INDArray, boolean, int[], int[], int[], PoolingType, ConvolutionMode, int[], LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNSubsamplingHelper
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- activate(INDArray, boolean, double, double, double, double, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.normalization.LocalResponseNormalizationHelper
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- activate(INDArray, INDArray) - Static method in class org.deeplearning4j.nn.layers.objdetect.YoloUtils
-
Essentially: just apply activation functions...
- activate(INDArray, INDArray, LayerWorkspaceMgr) - Static method in class org.deeplearning4j.nn.layers.objdetect.YoloUtils
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.LastTimeStepLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.LastTimeStepLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- activate(Layer, NeuralNetConfiguration, IActivation, INDArray, INDArray, INDArray, INDArray, boolean, INDArray, INDArray, boolean, boolean, String, INDArray, boolean, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.recurrent.LSTMHelper
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.MaskZeroLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.MaskZeroLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.SimpleRnn
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.util.MaskLayer
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- activate(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- activate(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Equivalent to #output(INDArray, TrainingMode)
- activate(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- activate(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- activateHelper(BaseRecurrentLayer, NeuralNetConfiguration, IActivation, INDArray, INDArray, INDArray, INDArray, boolean, INDArray, INDArray, boolean, boolean, String, INDArray, boolean, LSTMHelper, CacheMode, LayerWorkspaceMgr, boolean) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
Returns FwdPassReturn object with activations/INDArrays.
- activateSelectedLayers(int, int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate activation for few layers at once.
- activation(String) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- activation(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- activation(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Set the activation function for the layer.
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Set the activation function for the layer, from an
Activation
enumeration value.
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer.Builder
-
- activation(IActivation) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Activation function / neuron non-linearity
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- activation(Activation) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Activation function / neuron non-linearity
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- activation - Variable in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
The activation function to use with ocnn
- activation(IActivation) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
The activation function to use with ocnn
- activation(IActivation) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Activation function / neuron non-linearity
- activation(Activation) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Activation function / neuron non-linearity
- activationExceedsZeroOneRange(IActivation, boolean) - Static method in class org.deeplearning4j.util.OutputLayerUtil
-
- activationFn - Variable in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- activationFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- activationFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Set the activation function for the layer.
- activationFn - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- activationFn - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- activationFromPrevLayer(int, INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- ActivationLayer - Class in org.deeplearning4j.nn.conf.layers
-
Activation layer is a simple layer that applies the specified activation function to the input activations
- ActivationLayer(ActivationLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- ActivationLayer(Activation) - Constructor for class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- ActivationLayer(IActivation) - Constructor for class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- ActivationLayer - Class in org.deeplearning4j.nn.layers
-
Activation Layer
Used to apply activation on input and corresponding derivative on epsilon.
- ActivationLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.ActivationLayer
-
- ActivationLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- activationsVertexName() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffOutputLayer
-
Output layers should terminate in a single scalar value (i.e., a score) - however, sometimes the output activations
(such as softmax probabilities) need to be returned.
- adapt2dMask(INDArray, INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- AdaptiveThresholdAlgorithm - Class in org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold
-
An adaptive threshold algorithm used to determine the encoding threshold for distributed training.
The idea: the threshold can be too high or too low for optimal training - both cases are bad.
So instead, we'll define a range of "acceptable" sparsity ratio values (default: 1e-4 to 1e-2).
The sparsity ratio is defined as numValues(encodedUpdate)/numParameters
If the sparsity ratio falls outside of this acceptable range, we'll either increase or decrease the threshold.
The threshold changed multiplicatively using the decay rate:
To increase threshold:
newThreshold = decayRate * threshold
To decrease threshold:
newThreshold = (1.0/decayRate) * threshold
The default decay rate used is
AdaptiveThresholdAlgorithm.DEFAULT_DECAY_RATE
=0.965936 which corresponds to an a maximum increase or
decrease of the threshold by a factor of:
* 2.0 in 20 iterations
* 100 in 132 iterations
* 1000 in 200 iterations
A high threshold leads to few values being encoded and communicated - a small "sparsity ratio".
Too high threshold (too low sparsity ratio): fast network communication but slow training (few parameter updates being communicated).
A low threshold leads to many values being encoded and communicated - a large "sparsity ratio".
Too low threshold (too high sparsity ratio): slower network communication and maybe slow training (lots of parameter updates
being communicated - but they are all very small, changing network's predictions only a tiny amount).
A sparsity ratio of 1.0 means all values are present in the encoded update vector.
A sparsity ratio of 0.0 means all values were excluded from the encoded update vector.
- AdaptiveThresholdAlgorithm() - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- AdaptiveThresholdAlgorithm(double) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- AdaptiveThresholdAlgorithm(double, double, double, double) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- add(ThresholdAlgorithm) - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.FixedThresholdAlgorithm.FixedAlgorithmThresholdReducer
-
- add(ThresholdAlgorithm) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.encoding.ThresholdAlgorithmReducer
-
Add a ThresholdAlgorithm instance to the reducer
- add(E) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- addAll(Collection<? extends E>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- addBiasParam(String, long...) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
Add a bias parameter to the layer, with the specified shape.
- addDistribution(int, ReconstructionDistribution) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution.Builder
-
Add another distribution to the composite distribution.
- addInputs(String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Specify the inputs to the network, and their associated labels.
- addInputs(Collection<String>) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Specify the inputs to the network, and their associated labels.
- addInputs(String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- addLayer(String, Layer, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Add a layer, with no
InputPreProcessor
, with the specified name and specified inputs.
- addLayer(String, Layer, InputPreProcessor, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- addLayer(Layer) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Add layers to the net
Required if layers are removed.
- addLayer(String, Layer, String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Add a layer of the specified configuration to the computation graph
- addLayer(String, Layer, InputPreProcessor, String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Add a layer with a specified preprocessor
- addListeners(TrainingListener...) - Method in interface org.deeplearning4j.nn.api.Model
-
This method ADDS additional TrainingListener to existing listeners
- addListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method ADDS additional TrainingListener to existing listeners
- addListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
This method ADDS additional TrainingListener to existing listeners
- addListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- addListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
This method ADDS additional TrainingListener to existing listeners
- addListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- addListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method ADDS additional TrainingListener to existing listeners
- addNormalizerToModel(File, Normalizer<?>) - Static method in class org.deeplearning4j.util.ModelSerializer
-
This method appends normalizer to a given persisted model.
- addObjectToFile(File, String, Object) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Add an object to the (already existing) model file using Java Object Serialization.
- addPreProcessors(InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Add preprocessors automatically, given the specified types of inputs for the network.
- addVariable(String) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- addVertex(String, GraphVertex, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- addVertex(String, GraphVertex, String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Add a vertex of the given configuration to the computation graph
- addWeightParam(String, long...) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
Add a weight parameter to the layer, with the specified shape.
- ALF - Variable in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- allowCollapse - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- allowDisconnected - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- allowDisconnected(boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Used only during validation after building.
If true: don't throw an exception on configurations containing vertices that are 'disconnected'.
- allowInputModification(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
-
A performance optimization: mark whether the layer is allowed to modify its input array in-place.
- allowInputModification(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- allowInputModification(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- allowInputModification(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- allowInputModification(boolean) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- allowInputModification(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- allowNoOutput - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- allowNoOutput(boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Used only during validation after building.
If true: don't throw an exception on configurations without any outputs.
- allParamConstraints - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- allParamConstraints - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- allThreadThresholdAlgorithms - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- alpha - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- alpha - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- alpha(double) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- alpha - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- alpha(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
LRN scaling constant alpha.
- AlphaDropout - Class in org.deeplearning4j.nn.conf.dropout
-
AlphaDropout is a dropout technique proposed by Klaumbauer et al.
- AlphaDropout(double) - Constructor for class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- AlphaDropout(ISchedule) - Constructor for class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- AlphaDropout(double, ISchedule, double, double) - Constructor for class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- ancestor(int, Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the ancestor of the given tree
- And(FailureTestingListener.FailureTrigger...) - Constructor for class org.deeplearning4j.optimize.listeners.FailureTestingListener.And
-
- appendLayer(String, Layer) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Add a layer, with no
InputPreProcessor
, with the specified name
and input from the last added layer/vertex.
- appendLayer(String, Layer, InputPreProcessor) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Add a layer and an
InputPreProcessor
, with the specified name
and input from the last added layer/vertex.
- appendVertex(String, GraphVertex) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Add a
GraphVertex
to the network configuration, with input from the last added vertex/layer.
- appliedConfiguration - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- appliedNeuralNetConfiguration(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- appliedNeuralNetConfigurationBuilder() - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- apply(INDArray...) - Method in class org.deeplearning4j.nn.adapters.ArgmaxAdapter
-
This method does conversion from INDArrays to int[], where each element will represents position of the highest element in output INDArray
I.e.
- apply(INDArray...) - Method in class org.deeplearning4j.nn.adapters.Regression2dAdapter
-
- apply(Model, INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.adapters.YoloModelAdapter
-
- apply(INDArray...) - Method in class org.deeplearning4j.nn.adapters.YoloModelAdapter
-
- apply(Model, INDArray[], INDArray[], INDArray[]) - Method in interface org.deeplearning4j.nn.api.ModelAdapter
-
This method invokes model internally, and does convertion to T
- apply(INDArray) - Method in class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- apply(INDArray) - Method in class org.deeplearning4j.nn.conf.constraint.MaxNormConstraint
-
- apply(INDArray) - Method in class org.deeplearning4j.nn.conf.constraint.MinMaxNormConstraint
-
- apply(INDArray) - Method in class org.deeplearning4j.nn.conf.constraint.NonNegativeConstraint
-
- apply(INDArray) - Method in class org.deeplearning4j.nn.conf.constraint.UnitNormConstraint
-
- applyConstraint(Layer, int, int) - Method in interface org.deeplearning4j.nn.api.layers.LayerConstraint
-
Apply a given constraint to a layer at each iteration
in the provided epoch, after parameters have been updated.
- applyConstraint(Layer, int, int) - Method in class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- applyConstraints(int, int) - Method in interface org.deeplearning4j.nn.api.Model
-
Apply any constraints to the model
- applyConstraints(int, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- applyConstraints(int, int) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- applyConstraints(int, int) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- applyConstraints(int, int) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- applyConstraints(int, int) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- applyConstraints(int, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- applyConstraints(int, int) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- applyConstraints(int, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- applyConstraints(Model) - Static method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- applyDropout(INDArray, INDArray, int, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- applyDropout(INDArray, INDArray, int, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.dropout.Dropout
-
- applyDropout(INDArray, INDArray, double) - Method in interface org.deeplearning4j.nn.conf.dropout.DropoutHelper
-
Apply the dropout during forward pass
- applyDropout(INDArray, INDArray, int, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.dropout.GaussianDropout
-
- applyDropout(INDArray, INDArray, int, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.dropout.GaussianNoise
-
- applyDropout(INDArray, INDArray, int, int, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.conf.dropout.IDropout
-
- applyDropout(INDArray, INDArray, int, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.dropout.SpatialDropout
-
- applyDropOutIfNecessary(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- applyDropOutIfNecessary(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- applyDropOutIfNecessary(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer
-
- applyGlobalConfig(NeuralNetConfiguration.Builder) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- applyGlobalConfig(NeuralNetConfiguration.Builder) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- applyGlobalConfigToLayer(NeuralNetConfiguration.Builder) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D
-
- applyGlobalConfigToLayer(NeuralNetConfiguration.Builder) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D
-
- applyGlobalConfigToLayer(NeuralNetConfiguration.Builder) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- applyGlobalConfigToLayer(NeuralNetConfiguration.Builder) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- applyGlobalConfigToLayer(NeuralNetConfiguration.Builder) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- applyMask(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- applyMask(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- applyPostProcessor(int, int, Double, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- applyPreprocessorAndSetInput(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- applyRegularization(Regularization.ApplyStep, Trainable, String, INDArray, INDArray, int, int, double) - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
Apply L1 and L2 regularization, if necessary.
- applyRegularizationAllVariables(Regularization.ApplyStep, int, int, boolean, INDArray, INDArray) - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- applyToComputationGraphConfiguration(ComputationGraphConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- applyToMultiLayerConfiguration(MultiLayerConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- applyToNeuralNetConfiguration(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- applyUpdate(StepFunction, INDArray, INDArray, boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray, boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray, boolean) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- applyUpdate(StepFunction, INDArray, INDArray, double) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method applies accumulated updates via given StepFunction
- ArgmaxAdapter - Class in org.deeplearning4j.nn.adapters
-
This OutputAdapter implementation is suited for silent conversion of 2D SoftMax output
- ArgmaxAdapter() - Constructor for class org.deeplearning4j.nn.adapters.ArgmaxAdapter
-
- arr(INDArray) - Static method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional3D
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
-
- arrayElementsPerExample() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
-
- ArrayEmbeddingInitializer - Class in org.deeplearning4j.nn.weights.embeddings
-
Embedding layer initialization from a specified array
- ArrayEmbeddingInitializer(INDArray) - Constructor for class org.deeplearning4j.nn.weights.embeddings.ArrayEmbeddingInitializer
-
- ArrayType - Enum in org.deeplearning4j.nn.workspace
-
Array type enumeration for use with
LayerWorkspaceMgr
Array types:
INPUT: The array set to the input field of a layer (i.e., input activations)
ACTIVATIONS: The output activations for a layer's feed-forward method
ACTIVATION_GRAD: Activation gradient arrays - aka "epsilons" - output from a layer's backprop method
FF_WORKING_MEM: Working memory during feed-forward.
- assertInputSet(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- assertInputSet(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- assertNInNOutSet(String, String, long, long, long) - Static method in class org.deeplearning4j.nn.conf.layers.LayerValidation
-
Asserts that the layer nIn and nOut values are set for the layer
- assertNOutSet(String, String, long, long) - Static method in class org.deeplearning4j.nn.conf.layers.LayerValidation
-
Asserts that the layer nOut value is set for the layer
- asyncSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- atomicBoundary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- AttentionVertex - Class in org.deeplearning4j.nn.conf.graph
-
Implements Dot Product Attention using the given inputs.
- AttentionVertex(AttentionVertex.Builder) - Constructor for class org.deeplearning4j.nn.conf.graph.AttentionVertex
-
- AttentionVertex.Builder - Class in org.deeplearning4j.nn.conf.graph
-
- AutoEncoder - Class in org.deeplearning4j.nn.conf.layers
-
Autoencoder layer.
- AutoEncoder - Class in org.deeplearning4j.nn.layers.feedforward.autoencoder
-
Autoencoder.
- AutoEncoder(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- AutoEncoder.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- AutoencoderScoreCalculator - Class in org.deeplearning4j.earlystopping.scorecalc
-
Score function for a MultiLayerNetwork or ComputationGraph with a single
AutoEncoder
layer.
- AutoencoderScoreCalculator(RegressionEvaluation.Metric, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- availableCheckpoints() - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
List all available checkpoints.
- availableCheckpoints(File) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
List all available checkpoints.
- average - Variable in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- avgPoolIncludePadInDivisor - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- avgPoolIncludePadInDivisor - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- avgPoolIncludePadInDivisor(boolean) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
When doing average pooling, should the padding values be included in the divisor or not?
Not applicable for max and p-norm pooling.
Users should not usually set this - instead, leave it as the default (false).
- b(double) - Method in class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- backingQueue - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- backprop(INDArray, INDArray, int, int) - Method in class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- backprop(INDArray, INDArray, int, int) - Method in class org.deeplearning4j.nn.conf.dropout.Dropout
-
- backprop(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.conf.dropout.DropoutHelper
-
Perform backpropagation.
- backprop(INDArray, INDArray, int, int) - Method in class org.deeplearning4j.nn.conf.dropout.GaussianDropout
-
- backprop(INDArray, INDArray, int, int) - Method in class org.deeplearning4j.nn.conf.dropout.GaussianNoise
-
- backprop(INDArray, INDArray, int, int) - Method in interface org.deeplearning4j.nn.conf.dropout.IDropout
-
Perform backprop.
- backprop(INDArray, INDArray, int, int) - Method in class org.deeplearning4j.nn.conf.dropout.SpatialDropout
-
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
Reverse the preProcess during backprop.
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnn3DPreProcessor
-
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- backprop(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- backprop - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- backprop(boolean) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- backpropDropOutIfPresent(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.Layer
-
Calculate the gradient relative to the error in the next layer
- backpropGradient(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the gradient of the network with respect to some external errors.
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution3DLayer
-
- backpropGradient(INDArray, INDArray, INDArray, INDArray, int[], int[], int[], INDArray, INDArray, IActivation, ConvolutionLayer.AlgoMode, ConvolutionLayer.BwdFilterAlgo, ConvolutionLayer.BwdDataAlgo, ConvolutionMode, int[], LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.convolution.ConvolutionHelper
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cropping1DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cropping2DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cropping3DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Deconvolution2DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.DepthwiseConvolution2DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.SeparableConvolution2DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- backpropGradient(INDArray, INDArray, int[], int[], int[], PoolingType, ConvolutionMode, int[], LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingHelper
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling1D
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding1DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding3DLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.elementwise.ElementWiseMultiplicationLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.PReLU
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- backpropGradient(INDArray, INDArray, int[], INDArray, INDArray, INDArray, double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNBatchNormHelper
-
- backpropGradient(INDArray, INDArray, INDArray, INDArray, int[], int[], int[], INDArray, INDArray, IActivation, ConvolutionLayer.AlgoMode, ConvolutionLayer.BwdFilterAlgo, ConvolutionLayer.BwdDataAlgo, ConvolutionMode, int[], LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper
-
- backpropGradient(INDArray, INDArray, double, double, double, double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNLocalResponseNormalizationHelper
-
- backpropGradient(INDArray, INDArray, int[], int[], int[], PoolingType, ConvolutionMode, int[], LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNSubsamplingHelper
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- backpropGradient(INDArray, INDArray, int[], INDArray, INDArray, INDArray, double, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.normalization.BatchNormalizationHelper
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- backpropGradient(INDArray, INDArray, double, double, double, double, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.normalization.LocalResponseNormalizationHelper
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.LastTimeStepLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- backpropGradient(NeuralNetConfiguration, IActivation, INDArray, INDArray, INDArray, INDArray, boolean, int, FwdPassReturn, boolean, String, String, String, Map<String, INDArray>, INDArray, boolean, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.recurrent.LSTMHelper
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.MaskZeroLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.SimpleRnn
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.util.MaskLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- backpropGradient(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- backpropGradientHelper(BaseRecurrentLayer, NeuralNetConfiguration, IActivation, INDArray, INDArray, INDArray, INDArray, boolean, int, FwdPassReturn, boolean, String, String, String, Map<String, INDArray>, INDArray, boolean, LSTMHelper, LayerWorkspaceMgr, boolean) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
- BackpropType - Enum in org.deeplearning4j.nn.conf
-
Defines the type of backpropagation.
- backpropType - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- backpropType - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- backpropType(BackpropType) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
The type of backprop.
- backpropType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- backpropType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- backpropType(BackpropType) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
The type of backprop.
- backpropType - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- backpropType(BackpropType) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
The type of backprop.
- BackTrackLineSearch - Class in org.deeplearning4j.optimize.solvers
-
- BackTrackLineSearch(Model, StepFunction, ConvexOptimizer) - Constructor for class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- BackTrackLineSearch(Model, ConvexOptimizer) - Constructor for class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- BACKWARD_PREFIX - Static variable in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- barrier - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- barrier - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- barrier - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- BaseConstraint - Class in org.deeplearning4j.nn.conf.constraint
-
- BaseConstraint() - Constructor for class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- BaseConstraint(Set<String>, int...) - Constructor for class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- BaseConvBuilder(int[], int[], int[], int[], int) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder(int[], int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder(int[], int[], int[], int) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder(int[], int[], int) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder(int, int...) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseConvBuilder() - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- BaseEarlyStoppingTrainer<T extends Model> - Class in org.deeplearning4j.earlystopping.trainer
-
Base/abstract class for conducting early stopping training locally (single machine).
Can be used to train a
MultiLayerNetwork
or a
ComputationGraph
via early stopping
- BaseEarlyStoppingTrainer(EarlyStoppingConfiguration<T>, T, DataSetIterator, MultiDataSetIterator, EarlyStoppingListener<T>) - Constructor for class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- BaseEvaluation<T extends BaseEvaluation> - Class in org.deeplearning4j.eval
-
- BaseEvaluation() - Constructor for class org.deeplearning4j.eval.BaseEvaluation
-
Deprecated.
- BaseGraphVertex - Class in org.deeplearning4j.nn.graph.vertex
-
BaseGraphVertex defines a set of common functionality for GraphVertex instances.
- BaseGraphVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- BaseIEvaluationScoreCalculator<T extends Model,U extends IEvaluation> - Class in org.deeplearning4j.earlystopping.scorecalc.base
-
Base score function based on an IEvaluation instance.
- BaseIEvaluationScoreCalculator(MultiDataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.base.BaseIEvaluationScoreCalculator
-
- BaseIEvaluationScoreCalculator(DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.base.BaseIEvaluationScoreCalculator
-
- BaseInputPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
- BaseInputPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
-
- BaseLayer - Class in org.deeplearning4j.nn.conf.layers
-
A neural network layer.
- BaseLayer(BaseLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- BaseLayer<LayerConfT extends BaseLayer> - Class in org.deeplearning4j.nn.layers
-
A layer with parameters
- BaseLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.BaseLayer
-
- BaseLayer.Builder<T extends BaseLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- BaseMKLDNNHelper - Class in org.deeplearning4j.nn.layers.mkldnn
-
Base class for MKL-DNN Helpers
- BaseMKLDNNHelper() - Constructor for class org.deeplearning4j.nn.layers.mkldnn.BaseMKLDNNHelper
-
- BaseMLNScoreCalculator - Class in org.deeplearning4j.earlystopping.scorecalc.base
-
Abstract score calculator for MultiLayerNetwonk
- BaseMLNScoreCalculator(DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.base.BaseMLNScoreCalculator
-
- BaseMultiLayerUpdater<T extends Model> - Class in org.deeplearning4j.nn.updater
-
BaseMultiLayerUpdater - core functionality for applying updaters to MultiLayerNetwork and ComputationGraph.
- BaseMultiLayerUpdater(T) - Constructor for class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- BaseMultiLayerUpdater(T, INDArray) - Constructor for class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- BaseNetConfigDeserializer<T> - Class in org.deeplearning4j.nn.conf.serde
-
A custom (abstract) deserializer that handles backward compatibility (currently only for updater refactoring that
happened after 0.8.0).
- BaseNetConfigDeserializer(JsonDeserializer<?>, Class<T>) - Constructor for class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- BaseOptimizer - Class in org.deeplearning4j.optimize.solvers
-
Base optimizer
- BaseOptimizer(NeuralNetConfiguration, StepFunction, Collection<TrainingListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- BaseOutputLayer - Class in org.deeplearning4j.nn.conf.layers
-
- BaseOutputLayer(BaseOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
-
- BaseOutputLayer<LayerConfT extends BaseOutputLayer> - Class in org.deeplearning4j.nn.layers
-
Output layer with different objective
in co-occurrences for different objectives.
- BaseOutputLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- BaseOutputLayer.Builder<T extends BaseOutputLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- BasePretrainNetwork - Class in org.deeplearning4j.nn.conf.layers
-
- BasePretrainNetwork(BasePretrainNetwork.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- BasePretrainNetwork<LayerConfT extends BasePretrainNetwork> - Class in org.deeplearning4j.nn.layers
-
Baseline class for any Neural Network used
as a layer in a deep network *
- BasePretrainNetwork(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- BasePretrainNetwork.Builder<T extends BasePretrainNetwork.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- BaseRecurrentLayer - Class in org.deeplearning4j.nn.conf.layers
-
- BaseRecurrentLayer(BaseRecurrentLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
-
- BaseRecurrentLayer<LayerConfT extends BaseLayer> - Class in org.deeplearning4j.nn.layers.recurrent
-
- BaseRecurrentLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
- BaseRecurrentLayer.Builder<T extends BaseRecurrentLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- BaseScoreCalculator<T extends Model> - Class in org.deeplearning4j.earlystopping.scorecalc.base
-
- BaseScoreCalculator(DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- BaseScoreCalculator(MultiDataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- BaseSubsamplingBuilder(Subsampling3DLayer.PoolingType, int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(Subsampling3DLayer.PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(Subsampling3DLayer.PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(Subsampling3DLayer.PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(SubsamplingLayer.PoolingType, int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(SubsamplingLayer.PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(SubsamplingLayer.PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(SubsamplingLayer.PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseSubsamplingBuilder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- BaseTrainingListener - Class in org.deeplearning4j.optimize.api
-
A no-op implementation of a
TrainingListener
to be used as a starting point for custom training callbacks.
- BaseTrainingListener() - Constructor for class org.deeplearning4j.optimize.api.BaseTrainingListener
-
- BaseUpsamplingLayer - Class in org.deeplearning4j.nn.conf.layers
-
Upsampling base layer
- BaseUpsamplingLayer(BaseUpsamplingLayer.UpsamplingBuilder) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseUpsamplingLayer
-
- BaseUpsamplingLayer.UpsamplingBuilder<T extends BaseUpsamplingLayer.UpsamplingBuilder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- BaseWrapperLayer - Class in org.deeplearning4j.nn.conf.layers.wrapper
-
Base wrapper layer: the idea is to pass through all methods to the underlying layer, and selectively override
them as required.
- BaseWrapperLayer(Layer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- BaseWrapperLayer() - Constructor for class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- BaseWrapperLayer(Layer) - Constructor for class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- BaseWrapperLayer - Class in org.deeplearning4j.nn.layers.wrapper
-
Abstract wrapper layer.
- BaseWrapperLayer(Layer) - Constructor for class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- BaseWrapperVertex - Class in org.deeplearning4j.nn.graph.vertex
-
A base class for wrapper vertices: i.e., those vertices that have another vertex inside.
- BaseWrapperVertex(GraphVertex) - Constructor for class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- BasicGradientsAccumulator - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This class provides accumulation for gradients for both input (i.e.
- BasicGradientsAccumulator(int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
Creates new GradientsAccumulator with starting threshold of 1e-3
- BasicGradientsAccumulator(int, MessageHandler) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
Creates new GradientsAccumulator with custom starting threshold
- BatchNormalization - Class in org.deeplearning4j.nn.conf.layers
-
Batch normalization layer
See: Ioffe and Szegedy, 2014,
Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift
https://arxiv.org/abs/1502.03167
- BatchNormalization() - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- BatchNormalization - Class in org.deeplearning4j.nn.layers.normalization
-
- BatchNormalization(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- BatchNormalization.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- BatchNormalizationHelper - Interface in org.deeplearning4j.nn.layers.normalization
-
Helper for the batch normalization layer.
- BatchNormalizationParamInitializer - Class in org.deeplearning4j.nn.params
-
Batch normalization variable init
- BatchNormalizationParamInitializer() - Constructor for class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- batchSize() - Method in interface org.deeplearning4j.nn.api.Model
-
The current inputs batch size
- batchSize() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- batchSize() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- batchSize() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- batchSize() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- batchSize() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- batchSize() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- batchSize() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
The batch size for the optimizer
- batchSize() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- BernoulliReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
-
Bernoulli reconstruction distribution for variational autoencoder.
Outputs are modelled by a Bernoulli distribution - i.e., the Bernoulli distribution should be used for binary data (all
values 0 or 1); the VAE models the probability of the output being 0 or 1.
Consequently, the sigmoid activation function should be used to bound activations to the range of 0 to 1.
- BernoulliReconstructionDistribution() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
Create a BernoulliReconstructionDistribution with the default Sigmoid activation function
- BernoulliReconstructionDistribution(Activation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- BernoulliReconstructionDistribution(IActivation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- BestScoreEpochTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Created by Sadat Anwar on 3/26/16.
- BestScoreEpochTerminationCondition(double) - Constructor for class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
-
- BestScoreEpochTerminationCondition(double, boolean) - Constructor for class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
-
- beta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- beta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- beta(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- beta - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- beta(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
Scaling constant beta.
- BETA - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- betaConstraints - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
Set constraints to be applied to the beta parameter of this batch normalisation layer.
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.Convolution3DParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- BIAS_KEY_BACKWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- BIAS_KEY_FORWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- BIAS_KEY_SUFFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- biasConstraints - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- biasConstraints - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- biasInit - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- biasInit - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Bias initialization value, for layers with biases.
- biasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Bias initialization value, for layers with biases.
- biasInit - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- biasInit(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Constant for bias initialization.
- biasInit - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- biasInit(double) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Constant for bias initialization.
- biasKeys(Layer) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
Bias parameter keys given the layer configuration
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- biasKeys(Layer) - Method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- biasUpdater - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- biasUpdater - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Gradient updater configuration, for the biases only.
- biasUpdater(IUpdater) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Gradient updater configuration, for the biases only.
- biasUpdater - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- biasUpdater - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
Gradient updater configuration, for the biases only.
- biasUpdater(IUpdater) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
Gradient updater configuration, for the biases only.
- biasUpdater - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- biasUpdater - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- biasUpdater(IUpdater) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Gradient updater configuration, for the biases only.
- biasUpdater - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- biasUpdater(IUpdater) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Gradient updater configuration, for the biases only.
- Bidirectional - Class in org.deeplearning4j.nn.conf.layers.recurrent
-
Bidirectional is a "wrapper" layer: it wraps any uni-directional RNN layer to make it bidirectional.
Note that
multiple different modes are supported - these specify how the activations should be combined from the forward and
backward RNN networks.
- Bidirectional(Layer) - Constructor for class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
Create a Bidirectional wrapper, with the default Mode (CONCAT) for the specified layer
- Bidirectional(Bidirectional.Mode, Layer) - Constructor for class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
Create a Bidirectional wrapper for the specified layer
- Bidirectional.Builder - Class in org.deeplearning4j.nn.conf.layers.recurrent
-
- Bidirectional.Mode - Enum in org.deeplearning4j.nn.conf.layers.recurrent
-
This Mode enumeration defines how the activations for the forward and backward networks should be combined.
ADD: out = forward + backward (elementwise addition)
MUL: out = forward * backward (elementwise
multiplication)
AVERAGE: out = 0.5 * (forward + backward)
CONCAT: Concatenate the activations.
Where
'forward' is the activations for the forward RNN, and 'backward' is the activations for the backward RNN.
- BidirectionalLayer - Class in org.deeplearning4j.nn.layers.recurrent
-
Bidirectional is a "wrapper" layer: it wraps any uni-directional RNN layer to make it bidirectional.
Note that multiple different modes are supported - these specify how the activations should be combined from
the forward and backward RNN networks.
- BidirectionalLayer(NeuralNetConfiguration, Layer, Layer, INDArray) - Constructor for class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- BidirectionalParamInitializer - Class in org.deeplearning4j.nn.params
-
Parameter initializer for bidirectional wrapper layer
- BidirectionalParamInitializer(Bidirectional) - Constructor for class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- BinomialDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
A binomial distribution, with 2 parameters: number of trials, and probability of success
- BinomialDistribution(int, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
Create a distribution
- bitmapMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- blocks - Variable in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- blocks - Variable in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
Block size for SpaceToBatch layer.
- blocks(int...) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
- blocks(int) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.Builder
-
- blockSize - Variable in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- blockSize - Variable in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.Builder
-
- boundary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- boundary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- boundary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- boundingBoxPriors(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer.Builder
-
Bounding box priors dimensions [width, height].
- broadcastUpdates(INDArray, int, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- broadcastUpdates(INDArray, int, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.LocalHandler
-
- broadcastUpdates(INDArray, int, int) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.MessageHandler
-
This method does broadcast of given update message across network
- build() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Create the early stopping configuration
- build() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Create the ComputationGraphConfiguration from the Builder pattern
- build() - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.CapsuleStrengthLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Deprecated.
- build() - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder
-
Deprecated.
- build() - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.LSTM.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.misc.ElementWiseMultiplicationLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.OutputLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.SimpleRnn.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Upsampling1D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Upsampling2D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- build() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Return a configuration based on this builder
- build() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
Build the multi layer network
based on this neural network and
overr ridden parameters
- build() - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
- build() - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- build() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Returns a model with the fine tune configuration and specified architecture changes.
- build() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Returns a computation graph build to specifications.
- build() - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr.Builder
-
- build() - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
- build() - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method returns configured PerformanceListener instance
- build() - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- build() - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- Builder() - Constructor for class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.ActivationLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
- Builder(double) - Constructor for class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
Builder - sets the level of corruption - 0.0 (none) to 1.0 (all values corrupted)
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
- Builder(double, boolean) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder(double, double) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder(double, double, boolean) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder(boolean) - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
- Builder(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.CapsuleStrengthLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- Builder(Convolution3D.DataFormat) - Constructor for class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.CnnLossLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.CnnLossLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.CnnLossLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
Constructor with specified kernel size, stride of 1, padding of 0
- Builder(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
- Builder(int[], int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
- Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
- Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D.Builder
-
- Builder(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D.Builder
-
- Builder(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D.Builder
-
- Builder(int, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D.Builder
-
- Builder(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D.Builder
-
- Builder(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D.Builder
-
- Builder(int, int, int, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D.Builder
-
- Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.DenseLayer.Builder
-
- Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
- Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
- Builder(double) - Constructor for class org.deeplearning4j.nn.conf.layers.DropoutLayer.Builder
-
Create a dropout layer with standard
Dropout
, with the specified probability of retaining the input
activation.
- Builder(IDropout) - Constructor for class org.deeplearning4j.nn.conf.layers.DropoutLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
- Builder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Deprecated.
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.GravesLSTM.Builder
-
Deprecated.
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- Builder(double, double, double, double) - Constructor for class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
- Builder(double, double, double) - Constructor for class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.LSTM.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.misc.ElementWiseMultiplicationLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.misc.RepeatVector.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.OutputLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.OutputLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.OutputLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.PReLULayer.Builder
-
- Builder(int, int, int[], int[], int[], int[], ConvolutionMode) - Constructor for class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- Builder(int, int, int[], int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- Builder(int, int, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- Builder(int, int, int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- Builder(int, int, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.recurrent.SimpleRnn.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.RnnLossLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.RnnLossLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.RnnLossLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
-
- Builder(LossFunctions.LossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
-
- Builder(ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.RnnOutputLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer.Builder
-
- Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
- Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
- Builder(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
- Builder(int[], int[][]) - Constructor for class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.Builder
-
- Builder(int, SpaceToDepthLayer.DataFormat) - Constructor for class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(PoolingType, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(PoolingType, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
- Builder(Subsampling3DLayer.PoolingType, int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(Subsampling3DLayer.PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(Subsampling3DLayer.PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(Subsampling3DLayer.PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(PoolingType, int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(PoolingType, int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(int[], int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(SubsamplingLayer.PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.Upsampling1D.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.Upsampling2D.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.Upsampling3D.Builder
-
- Builder(Convolution3D.DataFormat, int) - Constructor for class org.deeplearning4j.nn.conf.layers.Upsampling3D.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer.Builder
-
- Builder(int...) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer.Builder
-
- Builder(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer.Builder
-
Use same padding for left and right boundaries in depth, height and width.
- Builder(int, int, int, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer.Builder
-
Explicit padding of left and right boundaries in depth, height and width dimensions
- Builder(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer.Builder
-
- Builder(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer.Builder
-
- Builder(int, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer.Builder
-
- Builder(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer.Builder
-
- Builder(String, Class<?>, InputType, InputType) - Constructor for class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- Builder(NeuralNetConfiguration) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- Builder() - Constructor for class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
- builder() - Static method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- Builder() - Constructor for class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- Builder(MultiLayerNetwork) - Constructor for class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Multilayer Network to tweak for transfer learning
- builder() - Static method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- Builder() - Constructor for class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr.Builder
-
- Builder(String) - Constructor for class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
- Builder(File) - Constructor for class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
- Builder() - Constructor for class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
- Builder() - Constructor for class org.deeplearning4j.optimize.Solver.Builder
-
- Builder(int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
This
- bypassMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- bypassMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- CACHE_MODE_ALL_ZEROS - Static variable in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
A simple Map containing all zeros for each CacheMode key
- cachedFwdPass - Variable in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- cachedFwdPass - Variable in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- cachedPassBackward - Variable in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- cachedPassForward - Variable in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- cacheMemory(long, long) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
Reports the cached/cacheable memory requirements.
- cacheMemory(Map<CacheMode, Long>, Map<CacheMode, Long>) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
Reports the cached/cacheable memory requirements.
- CacheMode - Enum in org.deeplearning4j.nn.conf
-
- cacheMode - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- cacheMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- cacheMode(CacheMode) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
This method defines how/if preOutput cache is handled:
NONE: cache disabled (default value)
HOST: Host memory will be used
DEVICE: GPU memory will be used (on CPU backends effect will be the same as for HOST)
- cacheMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- cacheMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- cacheMode(CacheMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
This method defines how/if preOutput cache is handled:
NONE: cache disabled (default value)
HOST: Host memory will be used
DEVICE: GPU memory will be used (on CPU backends effect will be the same as for HOST)
- cacheMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- cacheMode - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- cacheMode - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- cacheModeMapFor(long) - Static method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get a map of CacheMode with all keys associated with the specified value
- calcBackpropGradients(boolean, boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Do backprop (gradient calculation)
- calcBackpropGradients(INDArray, boolean, boolean, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate gradients and errors.
- calcRegularizationScore(boolean) - Method in interface org.deeplearning4j.nn.api.Layer
-
Calculate the regularization component of the score, for the parameters in this layer
For example, the L1, L2 and/or weight decay components of the loss function
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.Cropping1DLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.Cropping2DLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.Cropping3DLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding1DLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding3DLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- calcRegularizationScore(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- calculateGradients(INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate parameter gradients and input activation gradients given the input and labels, and optionally mask arrays
- calculateIndices() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the indices needed for the network:
(a) topological sort order
(b) Map: vertex index -> vertex name
(c) Map: vertex name -> vertex index
- calculateScore(T) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseIEvaluationScoreCalculator
-
- calculateScore(T) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- calculateScore(ComputationGraph) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
-
Deprecated.
- calculateScore(T) - Method in interface org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator
-
Calculate the score for the given MultiLayerNetwork
- calculateThreshold(int, int, Double, Boolean, Double, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- calculateThreshold(int, int, Double, Boolean, Double, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.FixedThresholdAlgorithm
-
- calculateThreshold(int, int, Double, Boolean, Double, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.TargetSparsityThresholdAlgorithm
-
- calculateThreshold(int, int, Double, Boolean, Double, INDArray) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.encoding.ThresholdAlgorithm
-
- call(EvaluativeListener, Model, long, IEvaluation[]) - Method in interface org.deeplearning4j.optimize.listeners.callbacks.EvaluationCallback
-
- call(EvaluativeListener, Model, long, IEvaluation[]) - Method in class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
- call(FailureTestingListener.CallType, Model) - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener
-
- callback - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
This callback will be invoked after evaluation finished
- candidates - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- canDoBackward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex can do backward pass.
- canDoBackward() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- canDoForward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- canDoForward() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- canDoForward() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex can do forward pass.
- capsuleDimensions(int) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
Set the number dimensions of each capsule
- capsuleDimensions(int) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Sets the number of dimensions to use in the capsules.
- CapsuleLayer - Class in org.deeplearning4j.nn.conf.layers
-
An implementation of the DigiCaps layer from Dynamic Routing Between Capsules
Input should come from a PrimaryCapsules layer and be of shape [mb, inputCaps, inputCapDims].
- CapsuleLayer(CapsuleLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.CapsuleLayer
-
- CapsuleLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- capsules(int) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
Set the number of capsules to use.
- capsules(int) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Usually inferred automatically.
- CapsuleStrengthLayer - Class in org.deeplearning4j.nn.conf.layers
-
An layer to get the "strength" of each capsule, that is, the probability of it being in the input.
- CapsuleStrengthLayer(CapsuleStrengthLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.CapsuleStrengthLayer
-
- CapsuleStrengthLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- CapsuleUtils - Class in org.deeplearning4j.util
-
Utilities for CapsNet Layers
- CapsuleUtils() - Constructor for class org.deeplearning4j.util.CapsuleUtils
-
- CENTER_KEY - Static variable in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- CenterLossOutputLayer - Class in org.deeplearning4j.nn.conf.layers
-
Center loss is similar to triplet loss except that it enforces intraclass consistency and doesn't require feed
forward of multiple examples.
- CenterLossOutputLayer(CenterLossOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- CenterLossOutputLayer - Class in org.deeplearning4j.nn.layers.training
-
Center loss is similar to triplet loss except that it enforces
intraclass consistency and doesn't require feed forward of multiple
examples.
- CenterLossOutputLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- CenterLossOutputLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- CenterLossParamInitializer - Class in org.deeplearning4j.nn.params
-
Initialize Center Loss params.
- CenterLossParamInitializer() - Constructor for class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- channels(int) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Sets the number of channels to use in the 2d convolution.
- checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
Check backprop gradients for a MultiLayerNetwork.
- checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray, Set<String>) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray, INDArray, INDArray) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray, INDArray, INDArray, boolean, int) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray, INDArray, INDArray, boolean, int, Set<String>) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray, INDArray, INDArray, boolean, int, Set<String>, Integer) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradients(MultiLayerNetwork, double, double, double, boolean, boolean, INDArray, INDArray, INDArray, INDArray, boolean, int, Set<String>, Consumer<MultiLayerNetwork>) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradients(ComputationGraph, double, double, double, boolean, boolean, INDArray[], INDArray[]) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
Check backprop gradients for a ComputationGraph
- checkGradients(ComputationGraph, double, double, double, boolean, boolean, INDArray[], INDArray[], INDArray[], INDArray[]) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradients(ComputationGraph, double, double, double, boolean, boolean, INDArray[], INDArray[], INDArray[], INDArray[], Set<String>) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradients(ComputationGraph, double, double, double, boolean, boolean, INDArray[], INDArray[], INDArray[], INDArray[], Set<String>, Integer) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradients(ComputationGraph, double, double, double, boolean, boolean, INDArray[], INDArray[], INDArray[], INDArray[], Set<String>, Consumer<ComputationGraph>) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
- checkGradientsPretrainLayer(Layer, double, double, double, boolean, boolean, INDArray, int) - Static method in class org.deeplearning4j.gradientcheck.GradientCheckUtil
-
Check backprop gradients for a pretrain layer
NOTE: gradient checking pretrain layers can be difficult...
- Checkpoint - Class in org.deeplearning4j.optimize.listeners
-
- Checkpoint() - Constructor for class org.deeplearning4j.optimize.listeners.Checkpoint
-
- CheckpointListener - Class in org.deeplearning4j.optimize.listeners
-
CheckpointListener: The goal of this listener is to periodically save a copy of the model during training..
Model saving may be done:
1.
- CheckpointListener.Builder - Class in org.deeplearning4j.optimize.listeners
-
- checkSupported() - Method in interface org.deeplearning4j.nn.conf.dropout.DropoutHelper
-
- checkSupported() - Method in interface org.deeplearning4j.nn.layers.convolution.ConvolutionHelper
-
- checkSupported() - Method in interface org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingHelper
-
- checkSupported(double, boolean) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNBatchNormHelper
-
- checkSupported() - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper
-
- checkSupported(double, double, double, double) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNLocalResponseNormalizationHelper
-
- checkSupported() - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNSubsamplingHelper
-
- checkSupported(double, boolean) - Method in interface org.deeplearning4j.nn.layers.normalization.BatchNormalizationHelper
-
- checkSupported(double, double, double, double) - Method in interface org.deeplearning4j.nn.layers.normalization.LocalResponseNormalizationHelper
-
- checkSupported(IActivation, IActivation, boolean) - Method in interface org.deeplearning4j.nn.layers.recurrent.LSTMHelper
-
- children() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- ClassificationScoreCalculator - Class in org.deeplearning4j.earlystopping.scorecalc
-
Score function for evaluating a MultiLayerNetwork according to an evaluation metric (Evaluation.Metric
such
as accuracy, F1 score, etc.
- ClassificationScoreCalculator(Evaluation.Metric, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.ClassificationScoreCalculator
-
- ClassificationScoreCalculator(Evaluation.Metric, MultiDataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.ClassificationScoreCalculator
-
- Classifier - Interface in org.deeplearning4j.nn.api
-
A classifier (this is for supervised learning)
- clear() - Method in interface org.deeplearning4j.nn.api.Model
-
Clear input
- clear() - Method in class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- clear() - Method in class org.deeplearning4j.nn.conf.dropout.Dropout
-
- clear() - Method in class org.deeplearning4j.nn.conf.dropout.GaussianDropout
-
- clear() - Method in class org.deeplearning4j.nn.conf.dropout.GaussianNoise
-
- clear() - Method in interface org.deeplearning4j.nn.conf.dropout.IDropout
-
Clear the internal state (for example, dropout mask) if any is present
- clear() - Method in class org.deeplearning4j.nn.conf.dropout.SpatialDropout
-
- clear() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
Clear any previously set weight/bias parameters (including their shapes)
- clear() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- clear() - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Clear residual parameters (useful for returning a gradient and then clearing old objects)
- clear() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clear() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- clear() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- clear() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Clear the internal state (if any) of the GraphVertex.
- clear() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- clear() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- clear() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- clear() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Clear the inputs.
- clear() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clearLayerMaskArrays() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- clearLayersStates() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method just makes sure there's no state preserved within layers
- clearLayersStates() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method just makes sure there's no state preserved within layers
- clearNoiseWeightParams() - Method in interface org.deeplearning4j.nn.api.Layer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.Cropping1DLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.Cropping2DLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.Cropping3DLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding1DLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding3DLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.util.MaskLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- clearNoiseWeightParams() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- clearTbpttState - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clearTbpttState - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- clearVariables() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- clearVertex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- clearVertex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- clearVertex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
This method clears inpjut for this vertex
- clearVertex() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- clone() - Method in class org.deeplearning4j.eval.ROC.CountsForThreshold
-
Deprecated.
- clone() - Method in interface org.deeplearning4j.nn.api.layers.LayerConstraint
-
- clone() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- clone() - Method in class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- clone() - Method in class org.deeplearning4j.nn.conf.constraint.MaxNormConstraint
-
- clone() - Method in class org.deeplearning4j.nn.conf.constraint.MinMaxNormConstraint
-
- clone() - Method in class org.deeplearning4j.nn.conf.constraint.NonNegativeConstraint
-
- clone() - Method in class org.deeplearning4j.nn.conf.constraint.UnitNormConstraint
-
- clone() - Method in class org.deeplearning4j.nn.conf.distribution.Distribution
-
- clone() - Method in class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- clone() - Method in class org.deeplearning4j.nn.conf.dropout.Dropout
-
- clone() - Method in class org.deeplearning4j.nn.conf.dropout.GaussianDropout
-
- clone() - Method in class org.deeplearning4j.nn.conf.dropout.GaussianNoise
-
- clone() - Method in interface org.deeplearning4j.nn.conf.dropout.IDropout
-
- clone() - Method in class org.deeplearning4j.nn.conf.dropout.SpatialDropout
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.FrozenVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- clone() - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.BaseUpsamplingLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.misc.ElementWiseMultiplicationLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Upsampling1D
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Upsampling2D
-
- clone() - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D
-
- clone() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- clone() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Creates and returns a deep copy of the configuration.
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnn3DPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- clone() - Method in class org.deeplearning4j.nn.conf.stepfunctions.StepFunction
-
- clone() - Method in class org.deeplearning4j.nn.conf.weightnoise.DropConnect
-
- clone() - Method in interface org.deeplearning4j.nn.conf.weightnoise.IWeightNoise
-
- clone() - Method in class org.deeplearning4j.nn.conf.weightnoise.WeightNoise
-
- clone() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- clone() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.convolution.Cropping1DLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.convolution.Cropping2DLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.convolution.Cropping3DLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding1DLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding3DLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- clone() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- clone() - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- clone() - Method in class org.deeplearning4j.nn.layers.util.MaskLayer
-
- clone() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Clone the MultiLayerNetwork
- clone() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- clone() - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.residual.NoOpResidualPostProcessor
-
- clone() - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.residual.ResidualClippingPostProcessor
-
- clone() - Method in interface org.deeplearning4j.optimize.solvers.accumulation.encoding.ResidualPostProcessor
-
- clone() - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- clone() - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.FixedThresholdAlgorithm
-
- clone() - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.TargetSparsityThresholdAlgorithm
-
- clone() - Method in interface org.deeplearning4j.optimize.solvers.accumulation.encoding.ThresholdAlgorithm
-
- cnn1dMaskReduction(INDArray, int, int, int, int, ConvolutionMode) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Given a mask array for a 1D CNN layer of shape [minibatch, sequenceLength], reduce the mask according to the 1D CNN layer configuration.
- cnn2dMaskReduction(INDArray, int[], int[], int[], int[], ConvolutionMode) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Reduce a 2d CNN layer mask array (of 0s and 1s) according to the layer configuration.
- Cnn3DLossLayer - Class in org.deeplearning4j.nn.conf.layers
-
3D Convolutional Neural Network Loss Layer.
Handles calculation of gradients etc for various loss (objective)
functions.
NOTE: Cnn3DLossLayer does not have any parameters.
- Cnn3DLossLayer - Class in org.deeplearning4j.nn.layers.convolution
-
3D Convolutional Neural Network Loss Layer.
Handles calculation of gradients etc for various objective functions.
NOTE: Cnn3DLossLayer does not have any parameters.
- Cnn3DLossLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- Cnn3DLossLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- Cnn3DToFeedForwardPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, CNN3D -> Denselayer
This does two things:
(b) Reshapes 5d activations out of CNN layer, with shape
[numExamples, numChannels, inputDepth, inputHeight, inputWidth]) into 2d activations (with shape
[numExamples, inputDepth*inputHeight*inputWidth*numChannels]) for use in feed forward layer
(a) Reshapes epsilons (weights*deltas) out of FeedFoward layer (which is 2D or 3D with shape
[numExamples, inputDepth* inputHeight*inputWidth*numChannels]) into 5d epsilons (with shape
[numExamples, numChannels, inputDepth, inputHeight, inputWidth]) suitable to feed into CNN layers.
Note: numChannels is equivalent to featureMaps referenced in different literature
- Cnn3DToFeedForwardPreProcessor(long, long, long, long, boolean) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- Cnn3DToFeedForwardPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- Cnn3DToFeedForwardPreProcessor(int, int, int, int, Convolution3D.DataFormat) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- Cnn3DToFeedForwardPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- CnnLossLayer - Class in org.deeplearning4j.nn.conf.layers
-
Convolutional Neural Network Loss Layer.
Handles calculation of gradients etc for various loss (objective)
functions.
NOTE: CnnLossLayer does not have any parameters.
- CnnLossLayer - Class in org.deeplearning4j.nn.layers.convolution
-
Convolutional Neural Network Loss Layer.
Handles calculation of gradients etc for various objective functions.
NOTE: CnnLossLayer does not have any parameters.
- CnnLossLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- CnnLossLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- CnnToFeedForwardPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, CNN -> Denselayer
This does two things:
(b) Reshapes 4d activations out of CNN layer, with shape
[numExamples, numChannels, inputHeight, inputWidth]) into 2d activations (with shape
[numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer
(a) Reshapes epsilons (weights*deltas) out of FeedFoward layer (which is 2D or 3D with shape
[numExamples, inputHeight*inputWidth*numChannels]) into 4d epsilons (with shape
[numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
Note: numChannels is equivalent to channels or featureMaps referenced in different literature
- CnnToFeedForwardPreProcessor(long, long, long) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- CnnToFeedForwardPreProcessor(long, long) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- CnnToFeedForwardPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- CnnToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and RNN layers to be used together.
For example, ConvolutionLayer -> GravesLSTM
Functionally equivalent to combining CnnToFeedForwardPreProcessor + FeedForwardToRnnPreProcessor
Specifically, this does two things:
(a) Reshape 4d activations out of CNN layer, with shape [timeSeriesLength*miniBatchSize, numChannels, inputHeight, inputWidth])
into 3d (time series) activations (with shape [numExamples, inputHeight*inputWidth*numChannels, timeSeriesLength])
for use in RNN layers
(b) Reshapes 3d epsilons (weights.*deltas) out of RNN layer (with shape
[miniBatchSize,inputHeight*inputWidth*numChannels,timeSeriesLength]) into 4d epsilons with shape
[miniBatchSize*timeSeriesLength, numChannels, inputHeight, inputWidth] suitable to feed into CNN layers.
- CnnToRnnPreProcessor(long, long, long) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- COEFFICIENTS_BIN - Static variable in class org.deeplearning4j.util.ModelSerializer
-
- collapseDimensions(boolean) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
Whether to collapse dimensions when pooling or not.
- collapsedIndex - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- collapsedMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- collapsedMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- collapseThreshold - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- CollectScoresIterationListener - Class in org.deeplearning4j.optimize.listeners
-
CollectScoresIterationListener simply stores the model scores internally (along with the iteration) every 1 or N
iterations (this is configurable).
- CollectScoresIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Constructor for collecting scores with default saving frequency of 1
- CollectScoresIterationListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Constructor for collecting scores with the specified frequency.
- CollectScoresListener - Class in org.deeplearning4j.optimize.listeners
-
A simple listener that collects scores to a list every N iterations.
- CollectScoresListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresListener
-
- CollectScoresListener(int, boolean) - Constructor for class org.deeplearning4j.optimize.listeners.CollectScoresListener
-
- ComposableInputPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
Composable input pre processor
- ComposableInputPreProcessor(InputPreProcessor...) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- ComposableIterationListener - Class in org.deeplearning4j.optimize.listeners
-
- ComposableIterationListener(TrainingListener...) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
Deprecated.
- ComposableIterationListener(Collection<TrainingListener>) - Constructor for class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
Deprecated.
- CompositeReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
-
CompositeReconstructionDistribution is a reconstruction distribution built from multiple other ReconstructionDistribution
instances.
The typical use is to combine for example continuous and binary data in the same model, or to combine different
distributions for continuous variables.
- CompositeReconstructionDistribution(int[], ReconstructionDistribution[], int) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- CompositeReconstructionDistribution.Builder - Class in org.deeplearning4j.nn.conf.layers.variational
-
- compressor - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- ComputationGraph - Class in org.deeplearning4j.nn.graph
-
A ComputationGraph network is a neural network with arbitrary (directed acyclic graph) connection structure.
- ComputationGraph(ComputationGraphConfiguration) - Constructor for class org.deeplearning4j.nn.graph.ComputationGraph
-
- ComputationGraphConfiguration - Class in org.deeplearning4j.nn.conf
-
ComputationGraphConfiguration is a configuration object for neural networks with arbitrary connection structure.
- ComputationGraphConfiguration() - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- ComputationGraphConfiguration.GraphBuilder - Class in org.deeplearning4j.nn.conf
-
- ComputationGraphConfigurationDeserializer - Class in org.deeplearning4j.nn.conf.serde
-
- ComputationGraphConfigurationDeserializer(JsonDeserializer<?>) - Constructor for class org.deeplearning4j.nn.conf.serde.ComputationGraphConfigurationDeserializer
-
- ComputationGraphUpdater - Class in org.deeplearning4j.nn.updater.graph
-
Gradient updater for ComputationGraph.
- ComputationGraphUpdater(ComputationGraph) - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- ComputationGraphUpdater(ComputationGraph, INDArray) - Constructor for class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- computationGraphUpdater - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- ComputationGraphUtil - Class in org.deeplearning4j.nn.graph.util
-
- computeGradient(INDArray, INDArray, IActivation, INDArray) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer.OCNNLossFunction
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.Model
-
Update the score
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- computeGradientAndScore(INDArray, INDArray, IActivation, INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer.OCNNLossFunction
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- computeGradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- computeGradientAndScore() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- computeLossFunctionScoreArray(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- computeOutputSize() - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D
-
- computeOutputSize() - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D
-
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
Compute score after labels and input have been set.
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Compute score after labels and input have been set.
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Compute score after labels and input have been set.
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
Compute score after labels and input have been set.
- computeScore(INDArray, INDArray, IActivation, INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer.OCNNLossFunction
-
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- computeScore(double, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
Compute score after labels and input have been set.
- computeScoreArray(INDArray, INDArray, IActivation, INDArray) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer.OCNNLossFunction
-
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- computeScoreForExamples(double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
Compute the score for each example individually, after labels and input have been set.
- conf() - Method in interface org.deeplearning4j.nn.api.Model
-
The configuration for the neural network
- conf() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- conf - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- conf() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- conf() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- conf - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- conf() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- conf() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- conf() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- conf - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- config - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- configuration - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- CONFIGURATION_JSON - Static variable in class org.deeplearning4j.util.ModelSerializer
-
- configure(NeuralNetConfiguration) - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- configureR - Variable in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
- configureR(boolean) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
- confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- confs(List<NeuralNetConfiguration>) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- confs - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- Confusion(PrecisionRecallCurve.Point, int, int, int, int) - Constructor for class org.deeplearning4j.eval.curves.PrecisionRecallCurve.Confusion
-
Deprecated.
- ConfusionMatrix<T extends Comparable<? super T>> - Class in org.deeplearning4j.eval
-
- ConfusionMatrix(List<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
-
- ConfusionMatrix() - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
-
- ConfusionMatrix(ConfusionMatrix<T>) - Constructor for class org.deeplearning4j.eval.ConfusionMatrix
-
- ConjugateGradient - Class in org.deeplearning4j.optimize.solvers
-
Originally based on cc.mallet.optimize.ConjugateGradient
Rewritten based on Conjugate Gradient algorithm in Bengio et al.,
Deep Learning (in preparation) Ch8.
- ConjugateGradient(NeuralNetConfiguration, StepFunction, Collection<TrainingListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.ConjugateGradient
-
- connect(List<Tree>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Connects the given trees
and sets the parents of the children
- ConstantDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
Constant distribution: a "distribution" where all values are set to the specified constant
- ConstantDistribution(double) - Constructor for class org.deeplearning4j.nn.conf.distribution.ConstantDistribution
-
Create a Constant distribution with given value
- constrainAllParameters(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
Set constraints to be applied to this layer.
- constrainAllParameters(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set constraints to be applied to all layers.
- constrainBeta(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
Set constraints to be applied to the beta parameter of this batch normalisation layer.
- constrainBias(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
Set constraints to be applied to bias parameters of this layer.
- constrainBias(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set constraints to be applied to all layers.
- constrainGamma(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
Set constraints to be applied to the gamma parameter of this batch normalisation layer.
- constrainInputWeights(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
Set constraints to be applied to the RNN input weight parameters of this layer.
- constrainPointWise(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
Set constraints to be applied to the point-wise convolution weight parameters of this layer.
- constrainRecurrent(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
Set constraints to be applied to the RNN recurrent weight parameters of this layer.
- constraints - Variable in class org.deeplearning4j.nn.conf.layers.Layer
-
- constraints(List<LayerConstraint>) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Set constraints to be applied to all layers.
- constraints - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- constrainWeights(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
Set constraints to be applied to the weight parameters of this layer.
- constrainWeights(LayerConstraint...) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set constraints to be applied to all layers.
- consumers - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- contains(Object) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- containsAll(Collection<?>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- context - Variable in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNBatchNormHelper
-
- context - Variable in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper
-
- context - Variable in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNLocalResponseNormalizationHelper
-
- context - Variable in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNSubsamplingHelper
-
- contextBwd - Variable in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper
-
- convertDataType(DataType) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return a copy of the network with the parameters and activations set to use the specified (floating point) data type.
- convertDataType(DataType) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Return a copy of the network with the parameters and activations set to use the specified (floating point) data type.
- ConvexOptimizer - Interface in org.deeplearning4j.optimize.api
-
Convex optimizer.
- Convolution1D - Class in org.deeplearning4j.nn.conf.layers
-
1D convolution layer.
- Convolution1D() - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution1D
-
- Convolution1DLayer - Class in org.deeplearning4j.nn.conf.layers
-
1D (temporal) convolutional layer.
- Convolution1DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
1D (temporal) convolutional layer.
- Convolution1DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- Convolution1DLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- Convolution1DUtils - Class in org.deeplearning4j.util
-
Shape utilities for 1D convolution layers
- Convolution2D - Class in org.deeplearning4j.nn.conf.layers
-
2D convolution layer
- Convolution2D() - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution2D
-
- Convolution3D - Class in org.deeplearning4j.nn.conf.layers
-
3D convolution layer configuration
- Convolution3D(Convolution3D.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.Convolution3D
-
3-dimensional convolutional layer configuration nIn in the input layer is the number of channels nOut is the
number of filters to be used in the net or in other words the depth The builder specifies the filter/kernel size,
the stride and padding The pooling layer takes the kernel size
- Convolution3D.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- Convolution3D.DataFormat - Enum in org.deeplearning4j.nn.conf.layers
-
An optional dataFormat: "NDHWC" or "NCDHW".
- Convolution3DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
3D convolution layer implementation.
- Convolution3DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.Convolution3DLayer
-
- Convolution3DParamInitializer - Class in org.deeplearning4j.nn.params
-
Initialize 3D convolution parameters.
- Convolution3DParamInitializer() - Constructor for class org.deeplearning4j.nn.params.Convolution3DParamInitializer
-
- Convolution3DUtils - Class in org.deeplearning4j.util
-
Shape utilities for 3D convolution layers
- convolutional(long, long, long) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
Input type for convolutional (CNN) data, that is 4d with shape [miniBatchSize, channels, height, width].
- convolutional(int, int, int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder.InputTypeBuilder
-
- convolutional3D(long, long, long, long) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- convolutional3D(Convolution3D.DataFormat, long, long, long, long) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
Input type for 3D convolutional (CNN3D) 5d data:
If NDHWC format [miniBatchSize, depth, height, width, channels]
If NDCWH
- convolutionalFlat(long, long, long) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
Input type for convolutional (CNN) data, where the data is in flattened (row vector) format.
- convolutionalFlat(int, int, int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder.InputTypeBuilder
-
- convolutionDim - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- ConvolutionHelper - Interface in org.deeplearning4j.nn.layers.convolution
-
Helper for the convolution layer.
- ConvolutionLayer - Class in org.deeplearning4j.nn.conf.layers
-
2D Convolution layer (for example, spatial convolution over images).
- ConvolutionLayer(ConvolutionLayer.BaseConvBuilder<?>) - Constructor for class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
ConvolutionLayer nIn in the input layer is the number of channels nOut is the number of filters to be used in the
net or in other words the channels The builder specifies the filter/kernel size, the stride and padding The
pooling layer takes the kernel size
- ConvolutionLayer - Class in org.deeplearning4j.nn.layers.convolution
-
Convolution layer
- ConvolutionLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- ConvolutionLayer.AlgoMode - Enum in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.BaseConvBuilder<T extends ConvolutionLayer.BaseConvBuilder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.BwdDataAlgo - Enum in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.BwdFilterAlgo - Enum in org.deeplearning4j.nn.conf.layers
-
- ConvolutionLayer.FwdAlgo - Enum in org.deeplearning4j.nn.conf.layers
-
- ConvolutionMode - Enum in org.deeplearning4j.nn.conf
-
ConvolutionMode defines how convolution operations should be executed for Convolutional and Subsampling layers,
for a given input size and network configuration (specifically stride/padding/kernel sizes).
Currently, 3 modes are provided:
Strict: Output size for Convolutional and Subsampling layers are calculated as follows, in each dimension:
outputSize = (inputSize - kernelSize + 2*padding) / stride + 1.
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
Set the convolution mode for the Convolution layer.
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
The convolution mode to use in the 2d convolution
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
Set the convolution mode for the Convolution layer.
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Sets the convolution mode for convolutional layers, which impacts padding and output sizes.
- convolutionMode - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- convolutionMode - Variable in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- convolutionMode(ConvolutionMode) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Sets the convolution mode for convolutional layers, which impacts padding and output sizes.
- convolutionMode - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- ConvolutionParamInitializer - Class in org.deeplearning4j.nn.params
-
Initialize convolution params.
- ConvolutionParamInitializer() - Constructor for class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- ConvolutionUtils - Class in org.deeplearning4j.util
-
Convolutional shape utilities
- copyToLegacy(IEvaluation<?>, Class<T>) - Static method in class org.deeplearning4j.eval.EvaluationUtils
-
Deprecated.
- corruptionLevel(double) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
Level of corruption - 0.0 (none) to 1.0 (all values corrupted)
- corruptionLevel - Variable in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- CountsForThreshold(double) - Constructor for class org.deeplearning4j.eval.ROC.CountsForThreshold
-
Deprecated.
- CountsForThreshold(double, long, long) - Constructor for class org.deeplearning4j.eval.ROC.CountsForThreshold
-
Deprecated.
- crashDumpOutputDirectory(File) - Static method in class org.deeplearning4j.util.CrashReportingUtil
-
Method that can be use to customize the output directory for memory crash reporting.
- crashDumpsEnabled(boolean) - Static method in class org.deeplearning4j.util.CrashReportingUtil
-
Method that can be used to enable or disable memory crash reporting.
- CrashReportingUtil - Class in org.deeplearning4j.util
-
A utility for generating crash reports when an out of memory error occurs.
- createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createBias(long, double, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- createBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- createCenterLossMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- createDepthWiseWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- createDepthWiseWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- createDistribution(Distribution) - Static method in class org.deeplearning4j.nn.conf.distribution.Distributions
-
- createGain(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createGain(long, double, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createGradient(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- createPointWiseWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- createStepFunction(StepFunction) - Static method in class org.deeplearning4j.optimize.stepfunctions.StepFunctions
-
- createVisibleBias(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.Convolution3DParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DeconvolutionParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createWeightMatrix(long, long, IWeightInit, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- createWeightMatrix(long, long, IWeightInit, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ElementWiseParamInitializer
-
- createWeightMatrix(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- Cropping1D - Class in org.deeplearning4j.nn.conf.layers.convolutional
-
Cropping layer for convolutional (1d) neural networks.
- Cropping1D(int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D
-
- Cropping1D(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D
-
- Cropping1D(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D
-
- Cropping1D(Cropping1D.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D
-
- Cropping1D.Builder - Class in org.deeplearning4j.nn.conf.layers.convolutional
-
- Cropping1DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
Zero cropping layer for 1D convolutional neural networks.
- Cropping1DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.Cropping1DLayer
-
- Cropping2D - Class in org.deeplearning4j.nn.conf.layers.convolutional
-
Cropping layer for convolutional (2d) neural networks.
- Cropping2D(int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D
-
- Cropping2D(int, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D
-
- Cropping2D(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D
-
- Cropping2D(Cropping2D.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D
-
- Cropping2D.Builder - Class in org.deeplearning4j.nn.conf.layers.convolutional
-
- Cropping2DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
Zero cropping layer for convolutional neural networks.
- Cropping2DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.Cropping2DLayer
-
- Cropping3D - Class in org.deeplearning4j.nn.conf.layers.convolutional
-
Cropping layer for convolutional (3d) neural networks.
- Cropping3D(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D
-
- Cropping3D(int, int, int, int, int, int) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D
-
- Cropping3D(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D
-
- Cropping3D(Cropping3D.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D
-
- Cropping3D.Builder - Class in org.deeplearning4j.nn.conf.layers.convolutional
-
- Cropping3DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
Cropping layer for 3D convolutional neural networks.
- Cropping3DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.Cropping3DLayer
-
- CUDNN_WORKSPACE_KEY - Static variable in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- cudnnAlgoMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
- cudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
- cudnnAlgoMode - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
Defaults to "PREFER_FASTEST", but "NO_WORKSPACE" uses less memory.
- cudnnAlgoMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- cudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Sets the cuDNN algo mode for convolutional layers, which impacts performance and memory usage of cuDNN.
- cudnnAlgoMode(ConvolutionLayer.AlgoMode) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Sets the cuDNN algo mode for convolutional layers, which impacts performance and memory usage of cuDNN.
- cudnnAlgoMode - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
- cudnnAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
- cudnnAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
- cudnnAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
- cudnnAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
- cudnnAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- cudnnAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- cudnnBwdDataAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnBwdDataAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- cudnnBwdDataMode(ConvolutionLayer.BwdDataAlgo) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnBwdFilterAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnBwdFilterAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- cudnnBwdFilterMode(ConvolutionLayer.BwdFilterAlgo) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnFwdAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- cudnnFwdAlgo - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- cudnnFwdMode(ConvolutionLayer.FwdAlgo) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- currentConsumers - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- currentConsumers - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- currentStep - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- currentThreshold - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- dampingFactor - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- dataFormat - Variable in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer.Builder
-
Format of the input/output data.
- dataFormat - Variable in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer
-
- dataFormat(Convolution3D.DataFormat) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
The data format for input and output activations.
NCDHW: activations (in/out) should have shape
[minibatch, channels, depth, height, width]
NDHWC: activations (in/out) should have shape [minibatch,
depth, height, width, channels]
- dataFormat - Variable in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.Builder
-
Data format for input activations.
- dataFormat(SpaceToDepthLayer.DataFormat) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.Builder
-
- dataFormat - Variable in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- dataFormat - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
The data format for input and output activations.
NCDHW: activations (in/out) should have shape
[minibatch, channels, depth, height, width]
NDHWC: activations (in/out) should have shape [minibatch,
depth, height, width, channels]
- dataFormat(Convolution3D.DataFormat) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
The data format for input and output activations.
NCDHW: activations (in/out) should have shape
[minibatch, channels, depth, height, width]
NDHWC: activations (in/out) should have shape [minibatch,
depth, height, width, channels]
- dataFormat - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- dataFormat - Variable in class org.deeplearning4j.nn.conf.layers.Upsampling3D.Builder
-
- dataFormat(Convolution3D.DataFormat) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D.Builder
-
Sets the DataFormat.
- dataFormat - Variable in class org.deeplearning4j.nn.conf.layers.Upsampling3D
-
- DataSetLossCalculator - Class in org.deeplearning4j.earlystopping.scorecalc
-
Given a DataSetIterator: calculate the total loss for the model on that data set.
- DataSetLossCalculator(DataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
Calculate the score (loss function value) on a given data set (usually a test set)
- DataSetLossCalculator(MultiDataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
Calculate the score (loss function value) on a given data set (usually a test set)
- DataSetLossCalculatorCG - Class in org.deeplearning4j.earlystopping.scorecalc
-
- DataSetLossCalculatorCG(DataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
-
Deprecated.
Calculate the score (loss function value) on a given data set (usually a test set)
- DataSetLossCalculatorCG(MultiDataSetIterator, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
-
Deprecated.
Calculate the score (loss function value) on a given data set (usually a test set)
- dataType - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- dataType - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- dataType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- dataType(DataType) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
Set the DataType for the network parameters and activations for all layers in the network.
- dataType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- dataType - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- dataType(DataType) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set the DataType for the network parameters and activations.
- dataType - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- dataType - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- dataType - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- dataType - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- dead - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- decay - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
At test time: we can use a global estimate of the mean and variance, calculated using a moving average of the
batch means/variances.
- decay(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
At test time: we can use a global estimate of the mean and variance, calculated using a moving average of the
batch means/variances.
- decay - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- decode(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- DECODER_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- decoderLayerSizes(int...) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Size of the decoder layers, in units.
- decoderLayerSizes - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- decodeUpdates(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
Deprecated.
- decompressionThreshold - Variable in class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- Deconvolution2D - Class in org.deeplearning4j.nn.conf.layers
-
2D deconvolution layer configuration
Deconvolutions are also known as transpose convolutions or fractionally strided convolutions.
- Deconvolution2D(ConvolutionLayer.BaseConvBuilder<?>) - Constructor for class org.deeplearning4j.nn.conf.layers.Deconvolution2D
-
Deconvolution2D layer nIn in the input layer is the number of channels nOut is the number of filters to be used
in the net or in other words the channels The builder specifies the filter/kernel size, the stride and padding
The pooling layer takes the kernel size
- Deconvolution2D.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- Deconvolution2DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
2D deconvolution layer implementation.
- Deconvolution2DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.Deconvolution2DLayer
-
- DeconvolutionParamInitializer - Class in org.deeplearning4j.nn.params
-
- DeconvolutionParamInitializer() - Constructor for class org.deeplearning4j.nn.params.DeconvolutionParamInitializer
-
- DeepLearningException - Exception in org.deeplearning4j.exception
-
- DeepLearningException() - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DeepLearningException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DeepLearningException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DeepLearningException(String) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DeepLearningException(Throwable) - Constructor for exception org.deeplearning4j.exception.DeepLearningException
-
- DEFAULT_ALPHA - Static variable in class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- DEFAULT_DECAY_RATE - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- DEFAULT_DECAY_RATE - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.TargetSparsityThresholdAlgorithm
-
- DEFAULT_EDGE_VALUE - Static variable in class org.deeplearning4j.eval.EvaluationBinary
-
Deprecated.
- DEFAULT_EPS - Static variable in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- DEFAULT_EPSILON - Static variable in class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- DEFAULT_FLATTENING_ORDER - Static variable in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- DEFAULT_INITIAL_MEMORY - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- DEFAULT_INITIAL_THRESHOLD - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- DEFAULT_INITIAL_THRESHOLD - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.TargetSparsityThresholdAlgorithm
-
- DEFAULT_LAMBDA - Static variable in class org.deeplearning4j.nn.conf.dropout.AlphaDropout
-
- DEFAULT_MAX_SPARSITY_TARGET - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- DEFAULT_MIN_SPARSITY_TARGET - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- DEFAULT_PRECISION - Static variable in class org.deeplearning4j.eval.EvaluationBinary
-
Deprecated.
- DEFAULT_RATE - Static variable in class org.deeplearning4j.nn.conf.constraint.MinMaxNormConstraint
-
- DEFAULT_RESHAPE_ORDER - Static variable in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- DEFAULT_SPARSITY_TARGET - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.TargetSparsityThresholdAlgorithm
-
- DEFAULT_STATS_PRECISION - Static variable in class org.deeplearning4j.eval.ROCBinary
-
- DEFAULT_STATS_PRECISION - Static variable in class org.deeplearning4j.eval.ROCMultiClass
-
- DEFAULT_WEIGHT_INIT_ORDER - Static variable in interface org.deeplearning4j.nn.weights.IWeightInit
-
- DEFAULT_WEIGHT_INIT_ORDER - Static variable in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Default order for the arrays created by WeightInitUtil.
- defaultConfiguration - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- defaultConfiguration - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- defaultDeserializer - Variable in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- DefaultGradient - Class in org.deeplearning4j.nn.gradient
-
Default gradient implementation.
- DefaultGradient() - Constructor for class org.deeplearning4j.nn.gradient.DefaultGradient
-
- DefaultGradient(INDArray) - Constructor for class org.deeplearning4j.nn.gradient.DefaultGradient
-
- defaultNoWorkspace() - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr.Builder
-
Set the default to be scoped out for all array types.
- DefaultParamInitializer - Class in org.deeplearning4j.nn.params
-
Static weight initializer with just a weight matrix and a bias
- DefaultParamInitializer() - Constructor for class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- DefaultStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Default step function
- DefaultStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
-
- DefaultStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
-
Default step function
- DefaultStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
-
- defaultWorkspace(String, WorkspaceConfiguration) - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr.Builder
-
Set the default workspace for all array types to the specified workspace name/configuration
NOTE: This will NOT override any settings previously set.
- defineInputs(String...) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDVertexParams
-
Define the inputs to the DL4J SameDiff Vertex with specific names
- defineInputs(int) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDVertexParams
-
Define the inputs to the DL4J SameDiff vertex with generated names.
- defineLayer(SameDiff, SDVariable, Map<String, SDVariable>, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer
-
- defineLayer(SameDiff, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleStrengthLayer
-
- defineLayer(SameDiff, SDVariable, Map<String, SDVariable>, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer
-
- defineLayer(SameDiff, SDVariable, Map<String, SDVariable>, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D
-
- defineLayer(SameDiff, SDVariable, Map<String, SDVariable>, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D
-
- defineLayer(SameDiff, SDVariable, Map<String, SDVariable>, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules
-
- defineLayer(SameDiff, SDVariable, Map<String, SDVariable>, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- defineLayer(SameDiff, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer
-
The defineLayer method is used to define the foward pass for the layer
- defineLayer(SameDiff, SDVariable, Map<String, SDVariable>, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer
-
- defineLayer(SameDiff, SDVariable, Map<String, SDVariable>, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
-
Define the layer
- defineLayer(SameDiff, SDVariable, SDVariable, Map<String, SDVariable>) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffOutputLayer
-
Define the output layer
- defineLayer(SameDiff, SDVariable, Map<String, SDVariable>, SDVariable) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer
-
- defineLayer(SameDiff, SDVariable) - Method in class org.deeplearning4j.nn.layers.util.IdentityLayer
-
- defineParameters(SDLayerParams) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer
-
- defineParameters(SDLayerParams) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer
-
- defineParameters(SDLayerParams) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D
-
- defineParameters(SDLayerParams) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D
-
- defineParameters(SDLayerParams) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules
-
- defineParameters(SDLayerParams) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- defineParameters(SDLayerParams) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
Define the parameters for the network.
- defineParameters(SDLayerParams) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer
-
- defineParameters(SDLayerParams) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer
-
- defineParametersAndInputs(SDVertexParams) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex
-
- defineParametersAndInputs(SDVertexParams) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex
-
- defineParametersAndInputs(SDVertexParams) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
Define the parameters - and inputs - for the network.
- defineVertex(SameDiff, Map<String, SDVariable>, Map<String, SDVariable>, Map<String, SDVariable>) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex
-
- defineVertex(SameDiff, SameDiffLambdaVertex.VertexInputs) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex
-
The defineVertex method is used to define the foward pass for the vertex
- defineVertex(SameDiff, Map<String, SDVariable>, Map<String, SDVariable>, Map<String, SDVariable>) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex
-
- defineVertex(SameDiff, Map<String, SDVariable>, Map<String, SDVariable>, Map<String, SDVariable>) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
Define the vertex
- deleteExisting(boolean) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
If the checkpoint listener is set to save to a non-empty directory, should the CheckpointListener-related
content be deleted?
This is disabled by default (and instead, an exception will be thrown if existing data is found)
WARNING: Be careful when enabling this, as it deletes all saved checkpoint models in the specified directory!
- DenseLayer - Class in org.deeplearning4j.nn.conf.layers
-
Dense layer: a standard fully connected feed forward layer
- DenseLayer - Class in org.deeplearning4j.nn.layers.feedforward.dense
-
- DenseLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- DenseLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- depth() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Finds the channels of the tree.
- depth(Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the distance between this node
and the specified subnode
- DEPTH_WISE_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- depthMultiplier - Variable in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
Set channels multiplier for depth-wise convolution
- depthMultiplier(int) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
Set channels multiplier for depth-wise convolution
- depthMultiplier - Variable in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
Set channels multiplier of channels-wise step in separable convolution
- depthMultiplier(int) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
Set channels multiplier of channels-wise step in separable convolution
- DepthwiseConvolution2D - Class in org.deeplearning4j.nn.conf.layers
-
2D depth-wise convolution layer configuration.
- DepthwiseConvolution2D(DepthwiseConvolution2D.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D
-
- DepthwiseConvolution2D.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- DepthwiseConvolution2DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
2D depth-wise convolution layer configuration.
- DepthwiseConvolution2DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.DepthwiseConvolution2DLayer
-
- DepthwiseConvolutionParamInitializer - Class in org.deeplearning4j.nn.params
-
Initialize depth-wise convolution parameters.
- DepthwiseConvolutionParamInitializer() - Constructor for class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.nn.conf.distribution.serde.LegacyDistributionDeserializer
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.nn.conf.serde.ComputationGraphConfigurationDeserializer
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.nn.conf.serde.legacy.LegacyIntArrayDeserializer
-
- deserialize(JsonParser, DeserializationContext) - Method in class org.deeplearning4j.nn.conf.serde.MultiLayerConfigurationDeserializer
-
- DetectedObject - Class in org.deeplearning4j.nn.layers.objdetect
-
A detected object, by an object detection algorithm.
- DetectedObject(int, double, double, double, double, INDArray, double) - Constructor for class org.deeplearning4j.nn.layers.objdetect.DetectedObject
-
- dilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
Set dilation size for 3D convolutions in (depth, height, width) order
- dilation - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Kernel dilation.
- dilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
Kernel dilation.
- dilation - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- dilation(int) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- dilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- dilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Sets the dilation of the 2d convolution
- dilation - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- dilation(int, int, int) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- dilation - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- dilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
Kernel dilation.
- dilation - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- dimension - Variable in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- dimensions - Variable in class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- dist(Distribution) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Deprecated.
- dist(Distribution) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- dist(Distribution) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Deprecated.
- Distribution - Class in org.deeplearning4j.nn.conf.distribution
-
An abstract distribution.
- Distribution() - Constructor for class org.deeplearning4j.nn.conf.distribution.Distribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- distributionInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- distributionInputSize(int) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Get the number of distribution parameters for the given input data size.
- Distributions - Class in org.deeplearning4j.nn.conf.distribution
-
Static methods for instantiating an nd4j distribution from a DL4J distribution configuration object.
- divideByMinibatch(boolean, Gradient, int) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- DL4JException - Exception in org.deeplearning4j.exception
-
Base exception for DL4J
- DL4JException() - Constructor for exception org.deeplearning4j.exception.DL4JException
-
- DL4JException(String) - Constructor for exception org.deeplearning4j.exception.DL4JException
-
- DL4JException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JException
-
- DL4JException(Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JException
-
- DL4JInvalidConfigException - Exception in org.deeplearning4j.exception
-
Exception signifying that the specified configuration is invalid
- DL4JInvalidConfigException() - Constructor for exception org.deeplearning4j.exception.DL4JInvalidConfigException
-
- DL4JInvalidConfigException(String) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidConfigException
-
- DL4JInvalidConfigException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidConfigException
-
- DL4JInvalidConfigException(Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidConfigException
-
- DL4JInvalidInputException - Exception in org.deeplearning4j.exception
-
DL4J Exception thrown when invalid input is provided (wrong rank, wrong size, etc)
- DL4JInvalidInputException() - Constructor for exception org.deeplearning4j.exception.DL4JInvalidInputException
-
- DL4JInvalidInputException(String) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidInputException
-
- DL4JInvalidInputException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidInputException
-
- DL4JInvalidInputException(Throwable) - Constructor for exception org.deeplearning4j.exception.DL4JInvalidInputException
-
- DL4JModelValidator - Class in org.deeplearning4j.util
-
A utility for validating Deeplearning4j Serialized model file formats
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Do backward pass
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.ReverseTimeSeriesVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- doBackward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- doEvaluation(DataSetIterator, T...) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method executes evaluation of the model against given iterator and evaluation implementations
- doEvaluation(MultiDataSetIterator, T...) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method executes evaluation of the model against given iterator and evaluation implementations
- doEvaluation(DataSetIterator, T...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Perform evaluation on the given data (DataSetIterator) with the given
IEvaluation
instance
- doEvaluation(MultiDataSetIterator, T...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Perform evaluation on the given data (MultiDataSetIterator) with the given
IEvaluation
instance
- doEvaluation(DataSetIterator, T...) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform evaluation using an arbitrary IEvaluation instance.
- doEvaluation(MultiDataSetIterator, T[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- doEvaluationHelper(DataSetIterator, T...) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Do forward pass using the stored inputs
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.ReverseTimeSeriesVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- doForward(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- doInit() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- doInit() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- doInit() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- doTruncatedBPTT(INDArray[], INDArray[], INDArray[], INDArray[], LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the network using truncated BPTT
- doTruncatedBPTT(INDArray, INDArray, INDArray, INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- drainTo(Collection<? super E>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- drainTo(Collection<? super E>, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- drainTo(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- drainTo(long, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- DropConnect - Class in org.deeplearning4j.nn.conf.weightnoise
-
DropConnect, based on Wan et.
- DropConnect(double) - Constructor for class org.deeplearning4j.nn.conf.weightnoise.DropConnect
-
- DropConnect(double, boolean) - Constructor for class org.deeplearning4j.nn.conf.weightnoise.DropConnect
-
- DropConnect(ISchedule) - Constructor for class org.deeplearning4j.nn.conf.weightnoise.DropConnect
-
- DropConnect(ISchedule, boolean) - Constructor for class org.deeplearning4j.nn.conf.weightnoise.DropConnect
-
- Dropout - Class in org.deeplearning4j.nn.conf.dropout
-
Implements standard (inverted) dropout.
Regarding dropout probability.
- Dropout(double) - Constructor for class org.deeplearning4j.nn.conf.dropout.Dropout
-
- Dropout(ISchedule) - Constructor for class org.deeplearning4j.nn.conf.dropout.Dropout
-
- Dropout(double, ISchedule) - Constructor for class org.deeplearning4j.nn.conf.dropout.Dropout
-
- dropOut(double) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
Dropout probability.
- dropOut(IDropout) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
Set the dropout for all layers in this network
- dropOut(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Dropout probability.
- dropOut(IDropout) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set the dropout for all layers in this network
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- dropout(IDropout) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Set the dropout
- dropOut(double) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Dropout probability.
- dropout - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- dropoutApplied - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- DropoutHelper - Interface in org.deeplearning4j.nn.conf.dropout
-
A helper interface for native dropout implementations
- DropoutLayer - Class in org.deeplearning4j.nn.conf.layers
-
Dropout layer.
- DropoutLayer(double) - Constructor for class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- DropoutLayer(IDropout) - Constructor for class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- DropoutLayer - Class in org.deeplearning4j.nn.layers
-
Created by davekale on 12/7/16.
- DropoutLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.DropoutLayer
-
- DropoutLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- ds - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- dsIterator - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- dummyBias - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- dummyBiasGrad - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- DummyConfig - Class in org.deeplearning4j.nn.conf.misc
-
A 'dummy' training configuration for use in frozen layers
- DummyConfig() - Constructor for class org.deeplearning4j.nn.conf.misc.DummyConfig
-
- DuplicateToTimeSeriesVertex - Class in org.deeplearning4j.nn.conf.graph.rnn
-
DuplicateToTimeSeriesVertex is a vertex that goes from 2d activations to a 3d time series activations, by means of
duplication.
- DuplicateToTimeSeriesVertex(String) - Constructor for class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- DuplicateToTimeSeriesVertex - Class in org.deeplearning4j.nn.graph.vertex.impl.rnn
-
DuplicateToTimeSeriesVertex is a vertex that goes from 2d activations to a 3d time series activations, by means of
duplication.
- DuplicateToTimeSeriesVertex(ComputationGraph, String, int, String, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- DuplicateToTimeSeriesVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], String, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- EarlyStoppingConfiguration<T extends Model> - Class in org.deeplearning4j.earlystopping
-
Early stopping configuration: Specifies the various configuration options for running training with early stopping.
Users need to specify the following:
(a) EarlyStoppingModelSaver: How models will be saved (to disk, to memory, etc) (Default: in memory)
(b) Termination conditions: at least one termination condition must be specified
(i) Iteration termination conditions: calculated once for each minibatch.
- EarlyStoppingConfiguration.Builder<T extends Model> - Class in org.deeplearning4j.earlystopping
-
- EarlyStoppingGraphTrainer - Class in org.deeplearning4j.earlystopping.trainer
-
Class for conducting early stopping training locally (single machine).
Can be used to train a
ComputationGraph
- EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph>, ComputationGraph, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph>, ComputationGraph, DataSetIterator, EarlyStoppingListener<ComputationGraph>) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- EarlyStoppingGraphTrainer(EarlyStoppingConfiguration<ComputationGraph>, ComputationGraph, MultiDataSetIterator, EarlyStoppingListener<ComputationGraph>) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- EarlyStoppingListener<T extends Model> - Interface in org.deeplearning4j.earlystopping.listener
-
EarlyStoppingListener is a listener interface for conducting early stopping training.
- EarlyStoppingModelSaver<T extends Model> - Interface in org.deeplearning4j.earlystopping
-
Interface for saving MultiLayerNetworks learned during early stopping, and retrieving them again later
- EarlyStoppingResult<T extends Model> - Class in org.deeplearning4j.earlystopping
-
EarlyStoppingResult: contains the results of the early stopping training, such as:
- Why the training was terminated
- Score vs.
- EarlyStoppingResult(EarlyStoppingResult.TerminationReason, String, Map<Integer, Double>, int, double, int, T) - Constructor for class org.deeplearning4j.earlystopping.EarlyStoppingResult
-
- EarlyStoppingResult.TerminationReason - Enum in org.deeplearning4j.earlystopping
-
- EarlyStoppingTrainer - Class in org.deeplearning4j.earlystopping.trainer
-
Class for conducting early stopping training locally (single machine), for training a
MultiLayerNetwork
.
- EarlyStoppingTrainer(EarlyStoppingConfiguration<MultiLayerNetwork>, MultiLayerConfiguration, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- EarlyStoppingTrainer(EarlyStoppingConfiguration<MultiLayerNetwork>, MultiLayerNetwork, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- EarlyStoppingTrainer(EarlyStoppingConfiguration<MultiLayerNetwork>, MultiLayerNetwork, DataSetIterator, EarlyStoppingListener<MultiLayerNetwork>) - Constructor for class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- effectiveKernelSize(int, int) - Static method in class org.deeplearning4j.util.Convolution1DUtils
-
- effectiveKernelSize(int[], int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- element() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- ElementWiseMultiplicationLayer - Class in org.deeplearning4j.nn.conf.layers.misc
-
Elementwise multiplication layer with weights: implements out = activationFn(input .* w + b)
where:
- w
is a learnable weight vector of length nOut
- ".*" is element-wise multiplication
- b is a bias vector
Note that the input and output sizes of the element-wise layer are the same for this layer
- ElementWiseMultiplicationLayer() - Constructor for class org.deeplearning4j.nn.conf.layers.misc.ElementWiseMultiplicationLayer
-
- ElementWiseMultiplicationLayer(ElementWiseMultiplicationLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.misc.ElementWiseMultiplicationLayer
-
- ElementWiseMultiplicationLayer - Class in org.deeplearning4j.nn.layers.feedforward.elementwise
-
Elementwise multiplication layer with weights: implements out = activationFn(input .* w + b) where:
- w is a learnable weight vector of length nOut
- ".*" is element-wise multiplication
- b is a bias vector
Note that the input and output sizes of the element-wise layer are the same for this layer
- ElementWiseMultiplicationLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.feedforward.elementwise.ElementWiseMultiplicationLayer
-
- ElementWiseMultiplicationLayer.Builder - Class in org.deeplearning4j.nn.conf.layers.misc
-
- ElementWiseParamInitializer - Class in org.deeplearning4j.nn.params
-
created by jingshu
- ElementWiseParamInitializer() - Constructor for class org.deeplearning4j.nn.params.ElementWiseParamInitializer
-
- ElementWiseVertex - Class in org.deeplearning4j.nn.conf.graph
-
An ElementWiseVertex is used to combine the activations of two or more layer in an element-wise manner
For example, the activations may be combined by addition, subtraction, multiplication (product), average or by
selecting the maximum.
Addition, Average, Max and Product may use an arbitrary number of input arrays.
- ElementWiseVertex(ElementWiseVertex.Op) - Constructor for class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- ElementWiseVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
An ElementWiseVertex is used to combine the activations of two or more layer in an element-wise manner
For example, the activations may be combined by addition, subtraction or multiplication or by selecting the maximum.
- ElementWiseVertex(ComputationGraph, String, int, ElementWiseVertex.Op, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- ElementWiseVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], ElementWiseVertex.Op, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- ElementWiseVertex.Op - Enum in org.deeplearning4j.nn.conf.graph
-
- ElementWiseVertex.Op - Enum in org.deeplearning4j.nn.graph.vertex.impl
-
- EmbeddingInitializer - Interface in org.deeplearning4j.nn.weights.embeddings
-
An interface implemented by things like Word2Vec etc that allows them to be used as weight
- EmbeddingLayer - Class in org.deeplearning4j.nn.conf.layers
-
Embedding layer: feed-forward layer that expects single integers per example as input (class numbers, in range 0 to
numClass-1) as input.
- EmbeddingLayer - Class in org.deeplearning4j.nn.layers.feedforward.embedding
-
Embedding layer: feed-forward layer that expects single integers per example as input (class numbers, in range 0 to numClass-1)
as input.
- EmbeddingLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- EmbeddingLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- EmbeddingSequenceLayer - Class in org.deeplearning4j.nn.conf.layers
-
Embedding layer for sequences: feed-forward layer that expects fixed-length number (inputLength) of integers/indices
per example as input, ranged from 0 to numClasses - 1.
- EmbeddingSequenceLayer - Class in org.deeplearning4j.nn.layers.feedforward.embedding
-
Embedding layer for sequences: feed-forward layer that expects fixed-length number (inputLength) of integers/indices
per example as input, ranged from 0 to numClasses - 1.
- EmbeddingSequenceLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer
-
- EmbeddingSequenceLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- EmptyParamInitializer - Class in org.deeplearning4j.nn.params
-
- EmptyParamInitializer() - Constructor for class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- encode(INDArray, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- EncodedGradientsAccumulator - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This GradientsAccumulator is suited for CUDA backend.
- EncodedGradientsAccumulator(int, double) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- EncodedGradientsAccumulator(int, ThresholdAlgorithm, ResidualPostProcessor, boolean) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- EncodedGradientsAccumulator(int, MessageHandler, long, int, Double, boolean) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- EncodedGradientsAccumulator.Builder - Class in org.deeplearning4j.optimize.solvers.accumulation
-
- ENCODER_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- encoderLayerSizes(int...) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Size of the encoder layers, in units.
- encoderLayerSizes - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- encodeUpdates(int, int, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- encodingDebugMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- encodingDebugMode(boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- encodingDebugMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- encodingDebugMode - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- EncodingHandler - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This MessageHandler implementation is suited for debugging mostly, but still can be used in production environment if you really want that.
- EncodingHandler(ThresholdAlgorithm, ResidualPostProcessor, Double, boolean) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- epochCount - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- epochCount - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- epochCount - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- epochCount - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- epochCount - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- EpochTerminationCondition - Interface in org.deeplearning4j.earlystopping.termination
-
Interface for termination conditions to be evaluated once per epoch (i.e., once per pass of the full data set),
based on a score and epoch number
- epochTerminationConditions(EpochTerminationCondition...) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Termination conditions to be evaluated every N epochs, with N set by evaluateEveryNEpochs option
- epochTerminationConditions(List<EpochTerminationCondition>) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Termination conditions to be evaluated every N epochs, with N set by evaluateEveryNEpochs option
- eps - Variable in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- eps - Variable in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- eps - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
Epsilon value for batch normalization; small floating point value added to variance (algorithm 1 in
http://arxiv.org/pdf/1502.03167v3.pdf) to reduce/avoid
underflow issues.
Default: 1e-5
- eps(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
Epsilon value for batch normalization; small floating point value added to variance (algorithm 1 in
http://arxiv.org/pdf/1502.03167v3.pdf) to reduce/avoid
underflow issues.
Default: 1e-5
- eps - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- eps - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- eps(double) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- eps - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- epsilon - Variable in class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- epsilon - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
-
- equals(Object) - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
-
- equals(Object) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- equals(Object) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- error() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the prediction error for this node
- errorIfGraphIfMLN() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- errorSum() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the total prediction error for this
tree and its children
- esConfig - Variable in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- evalAtIndex(IEvaluation, INDArray[], INDArray[], int) - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- evaluate(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (classification performance - single output ComputationGraphs only)
- evaluate(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (classification performance - single output ComputationGraphs only)
- evaluate(DataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network on the provided data set (single output ComputationGraphs only).
- evaluate(MultiDataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network on the provided data set (single output ComputationGraphs only).
- evaluate(DataSetIterator, List<String>, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (for classification) on the provided data set, with top N accuracy in addition to standard accuracy.
- evaluate(MultiDataSetIterator, List<String>, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (for classification) on the provided data set, with top N accuracy in addition to standard accuracy.
- evaluate(DataSetIterator, Map<Integer, T[]>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Perform evaluation for networks with multiple outputs.
- evaluate(MultiDataSetIterator, Map<Integer, T[]>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Perform evaluation for networks with multiple outputs.
- evaluate(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network (classification performance)
- evaluate(DataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network on the provided data set.
- evaluate(DataSetIterator, List<String>, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network (for classification) on the provided data set, with top N accuracy in addition to standard accuracy.
- evaluateEveryNEpochs(int) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
How frequently should evaluations be conducted (in terms of epochs)? Defaults to every (1) epochs.
- evaluateRegression(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the (single output layer only) network for regression performance
- evaluateRegression(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the (single output layer only) network for regression performance
- evaluateRegression(DataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the (single output layer only) network for regression performance
- evaluateRegression(MultiDataSetIterator, List<String>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the (single output layer only) network for regression performance
- evaluateRegression(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network for regression performance
- evaluateROC(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- evaluateROC(DataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (must be a binary classifier) on the specified data, using the
ROC
class
- evaluateROC(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- evaluateROC(MultiDataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network (must be a binary classifier) on the specified data, using the
ROC
class
- evaluateROC(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- evaluateROC(DataSetIterator, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network (must be a binary classifier) on the specified data, using the
ROC
class
- evaluateROCMultiClass(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- evaluateROCMultiClass(DataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network on the specified data, using the
ROCMultiClass
class
- evaluateROCMultiClass(MultiDataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Evaluate the network on the specified data, using the
ROCMultiClass
class
- evaluateROCMultiClass(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- evaluateROCMultiClass(DataSetIterator, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Evaluate the network on the specified data, using the
ROCMultiClass
class
- evaluation - Variable in class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- evaluation - Variable in class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
- Evaluation - Class in org.deeplearning4j.eval
-
- Evaluation() - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(int) - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(int, Integer) - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(List<String>) - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(Map<Integer, String>) - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(List<String>, int) - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(double) - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(double, Integer) - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(INDArray) - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation(List<String>, INDArray) - Constructor for class org.deeplearning4j.eval.Evaluation
-
- Evaluation.Metric - Enum in org.deeplearning4j.eval
-
Deprecated.
- EvaluationAveraging - Enum in org.deeplearning4j.eval
-
- EvaluationBinary - Class in org.deeplearning4j.eval
-
Deprecated.
- EvaluationBinary(INDArray) - Constructor for class org.deeplearning4j.eval.EvaluationBinary
-
Deprecated.
- EvaluationBinary(int, Integer) - Constructor for class org.deeplearning4j.eval.EvaluationBinary
-
Deprecated.
- EvaluationCalibration - Class in org.deeplearning4j.eval
-
- EvaluationCalibration() - Constructor for class org.deeplearning4j.eval.EvaluationCalibration
-
- EvaluationCalibration(int, int) - Constructor for class org.deeplearning4j.eval.EvaluationCalibration
-
- EvaluationCalibration(int, int, boolean) - Constructor for class org.deeplearning4j.eval.EvaluationCalibration
-
- EvaluationCallback - Interface in org.deeplearning4j.optimize.listeners.callbacks
-
This interface describes callback, which can be used with EvaluativeListener, to extend its functionality.
- evaluations - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluationUtils - Class in org.deeplearning4j.eval
-
- EvaluationUtils() - Constructor for class org.deeplearning4j.eval.EvaluationUtils
-
Deprecated.
- EvaluativeListener - Class in org.deeplearning4j.optimize.listeners
-
This TrainingListener implementation provides simple way for model evaluation during training.
- EvaluativeListener(DataSetIterator, int) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iterations, with
Evaluation
datatype
- EvaluativeListener(DataSetIterator, int, InvocationType) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(MultiDataSetIterator, int) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iterations, with
Evaluation
datatype
- EvaluativeListener(MultiDataSetIterator, int, InvocationType) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(DataSetIterator, int, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iteration
- EvaluativeListener(DataSetIterator, int, InvocationType, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iteration
- EvaluativeListener(MultiDataSetIterator, int, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iteration
- EvaluativeListener(MultiDataSetIterator, int, InvocationType, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Evaluation will be launched after each *frequency* iteration
- EvaluativeListener(DataSet, int, InvocationType) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(MultiDataSet, int, InvocationType) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(DataSet, int, InvocationType, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- EvaluativeListener(MultiDataSet, int, InvocationType, IEvaluation...) - Constructor for class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- exampleCount - Variable in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- exampleNegLogProbability(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- exampleNegLogProbability(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Calculate the negative log probability for each example individually
- expectedConsumers - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- ExponentialReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
-
Exponential reconstruction distribution.
Supports data in range [0,infinity)
- ExponentialReconstructionDistribution() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- ExponentialReconstructionDistribution(String) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- ExponentialReconstructionDistribution(Activation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- ExponentialReconstructionDistribution(IActivation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- exportScores(OutputStream) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Export the scores in tab-delimited (one per line) UTF-8 format.
- exportScores(OutputStream, String) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Export the scores in delimited (one per line) UTF-8 format with the specified delimiter
- exportScores(File) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Export the scores to the specified file in delimited (one per line) UTF-8 format, tab delimited
- exportScores(File, String) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
Export the scores to the specified file in delimited (one per line) UTF-8 format, using the specified delimiter
- extCounter - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- externalSource - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- externalUpdatesAvailable - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- f1(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Deprecated.
- f1Score(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Sets the input and labels and returns a score for the prediction
wrt true labels
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
Returns the f1 score for the given examples.
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
Returns the f1 score for the given examples.
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- f1Score(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Sets the input and labels and returns the F1 score for the prediction with respect to the true labels
- f1Score(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform inference and then calculate the F1 score of the output(input) vs.
- fa - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- FailureTestingListener - Class in org.deeplearning4j.optimize.listeners
-
WARNING: THIS LISTENER SHOULD ONLY BE USED FOR MANUAL TESTING PURPOSES
It intentionally causes various types of failures according to some criteria, in order to test the response
to it.
This is useful for example in:
(a) Testing Spark fault tolerance
(b) Testing OOM exception crash dump information
Generally it should not be used in unit tests either, depending on how it is configured.
Two aspects need to be configured to use this listener:
1.
- FailureTestingListener(FailureTestingListener.FailureMode, FailureTestingListener.FailureTrigger) - Constructor for class org.deeplearning4j.optimize.listeners.FailureTestingListener
-
- FailureTestingListener.And - Class in org.deeplearning4j.optimize.listeners
-
- FailureTestingListener.CallType - Enum in org.deeplearning4j.optimize.listeners
-
- FailureTestingListener.FailureMode - Enum in org.deeplearning4j.optimize.listeners
-
- FailureTestingListener.FailureTrigger - Class in org.deeplearning4j.optimize.listeners
-
- FailureTestingListener.HostNameTrigger - Class in org.deeplearning4j.optimize.listeners
-
- FailureTestingListener.IterationEpochTrigger - Class in org.deeplearning4j.optimize.listeners
-
- FailureTestingListener.Or - Class in org.deeplearning4j.optimize.listeners
-
- FailureTestingListener.RandomProb - Class in org.deeplearning4j.optimize.listeners
-
- FailureTestingListener.TimeSinceInitializedTrigger - Class in org.deeplearning4j.optimize.listeners
-
- FailureTestingListener.UserNameTrigger - Class in org.deeplearning4j.optimize.listeners
-
- FailureTrigger() - Constructor for class org.deeplearning4j.optimize.listeners.FailureTestingListener.FailureTrigger
-
- fallbackToSingleConsumerMode(boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- fallbackToSingleConsumerMode(boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- fallbackToSingleConsumerMode(boolean) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.Registerable
-
This method enables/disables bypass mode
- falseNegativeRate(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Deprecated.
- falsePositiveRate(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Deprecated.
- FancyBlockingQueue<E> - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This BlockingQueue implementation is suited only for symmetric gradients updates, and should NOT be used anywhere else.
- FancyBlockingQueue(BlockingQueue<E>) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- FancyBlockingQueue(BlockingQueue<E>, int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- fBeta(double, EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Deprecated.
- featurize(MultiDataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
During training frozen vertices/layers can be treated as "featurizing" the input
The forward pass through these frozen layer/vertices can be done in advance and the dataset saved to disk to iterate
quickly on the smaller unfrozen part of the model
Currently does not support datasets with feature masks
- featurize(DataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
During training frozen vertices/layers can be treated as "featurizing" the input
The forward pass through these frozen layer/vertices can be done in advance and the dataset saved to disk to iterate
quickly on the smaller unfrozen part of the model
Currently does not support datasets with feature masks
- feedForward(long) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
InputType for feed forward network data
- feedForward(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder.InputTypeBuilder
-
- feedForward(INDArray, int, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using a single input array.
- feedForward(INDArray[], int, boolean, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using an array of inputs.
- feedForward(INDArray[], int, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using an array of inputs
- feedForward(boolean, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using the stored inputs
- feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using a single input array.
- feedForward(INDArray[], boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using an array of inputs
- feedForward(INDArray[], boolean, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using an array of inputs.
- feedForward() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using the stored inputs, at test time
- feedForward(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Conduct forward pass using the stored inputs
- feedForward(boolean, boolean, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- feedForward(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute all layer activations, from input to output of the output layer.
- feedForward(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations from input to output of the output layer.
- feedForward(boolean, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform feed-forward, optionally (not) clearing the layer input arrays.
Note: when using clearInputs=false, there can be some performance and memory overhead: this is because the arrays are
defined outside of workspaces (which are enabled by default) - otherwise, old/invalidated arrays could still be
accessed after calling this method.
- feedForward() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations of all layers from input (inclusive) to output of the final/output layer.
- feedForward(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute activations of all layers from input (inclusive) to output of the final/output layer.
- feedForward(INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the output layer, given mask arrays (that may be null)
The masking arrays are used in situations such an one-to-many and many-to-one rucerrent neural network (RNN)
designs, as well as for supporting time series of varying lengths within the same minibatch for RNNs.
- FeedForwardLayer - Class in org.deeplearning4j.nn.conf.layers
-
Created by jeffreytang on 7/21/15.
- FeedForwardLayer(FeedForwardLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- FeedForwardLayer.Builder<T extends FeedForwardLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in interface org.deeplearning4j.nn.api.Layer
-
Feed forward the input mask array, setting in the layer as appropriate.
- feedForwardMaskArray(INDArray, MaskState, int) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnn3DPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.LastTimeStepLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.MaskZeroLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- feedForwardMaskArray(INDArray, MaskState, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.ReverseTimeSeriesVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- feedForwardMaskArrays(INDArray[], MaskState, int) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- FeedForwardToCnn3DPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow 3D CNN and standard feed-forward network layers to be used together.
For example, DenseLayer -> Convolution3D
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D with shape
[numExamples, inputDepth*inputHeight*inputWidth*numChannels]) into 5d activations (with shape
[numExamples, numChannels, inputDepth, inputHeight, inputWidth]) suitable to feed into CNN layers.
(b) Reshapes 5d epsilons from 3D CNN layer, with shape
[numExamples, numChannels, inputDepth, inputHeight, inputWidth]) into 2d epsilons (with shape
[numExamples, inputDepth*inputHeight*inputWidth*numChannels]) for use in feed forward layer
- FeedForwardToCnn3DPreProcessor(int, int, int, int, boolean) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnn3DPreProcessor
-
- FeedForwardToCnn3DPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnn3DPreProcessor
-
- FeedForwardToCnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow CNN and standard feed-forward network layers to be used together.
For example, DenseLayer -> CNN
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D or 3D with shape
[numExamples, inputHeight*inputWidth*numChannels]) into 4d activations (with shape
[numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.
(b) Reshapes 4d epsilons (weights*deltas) from CNN layer, with shape
[numExamples, numChannels, inputHeight, inputWidth]) into 2d epsilons (with shape
[numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer
Note: numChannels is equivalent to channels or featureMaps referenced in different literature
- FeedForwardToCnnPreProcessor(long, long, long) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
Reshape to a channels x rows x columns tensor
- FeedForwardToCnnPreProcessor(long, long) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- feedForwardToLayer(int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
- feedForwardToLayer(int, INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the specified layer.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
- feedForwardToLayer(int, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Compute the activations from the input to the specified layer, using the currently set input for the network.
To compute activations for all layers, use feedForward(...) methods
Note: output list includes the original input.
- FeedForwardToRnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow RNN and feed-forward network layers to be used together.
For example, DenseLayer -> GravesLSTM
This does two things:
(a) Reshapes activations out of FeedFoward layer (which is 2D with shape
[miniBatchSize*timeSeriesLength,layerSize]) into 3d activations (with shape
[miniBatchSize,layerSize,timeSeriesLength]) suitable to feed into RNN layers.
(b) Reshapes 3d epsilons (weights*deltas from RNN layer, with shape
[miniBatchSize,layerSize,timeSeriesLength]) into 2d epsilons (with shape
[miniBatchSize*timeSeriesLength,layerSize]) for use in feed forward layer
- FeedForwardToRnnPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- ffToLayerActivationsDetached(boolean, FwdPassType, boolean, int, int[], INDArray[], INDArray[], INDArray[], boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Feed-forward through the network - returning all array activations detached from any workspace.
- ffToLayerActivationsDetached(boolean, FwdPassType, boolean, int, INDArray, INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Feed-forward through the network - returning all array activations in a list, detached from any workspace.
- ffToLayerActivationsInWS(boolean, int, int[], FwdPassType, boolean, INDArray[], INDArray[], INDArray[], boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Feed-forward through the network - if workspaces are used, all returned activations will be present in workspace
WS_ALL_LAYERS_ACT.
Note: if using workspaces for training, requires that WS_ALL_LAYERS_ACT is open externally.
- ffToLayerActivationsInWs(int, FwdPassType, boolean, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Feed-forward through the network at training time - returning a list of all activations in a workspace (WS_ALL_LAYERS_ACT)
if workspaces are enabled for training; or detached if no workspaces are used.
Note: if using workspaces for training, this method requires that WS_ALL_LAYERS_ACT is open externally.
If using NO workspaces, requires that no external workspace is open
Note that this method does NOT clear the inputs to each layer - instead, they are in the WS_ALL_LAYERS_ACT workspace
for use in later backprop.
- finalScore(double, int, int) - Method in class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- finalScore(U) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseIEvaluationScoreCalculator
-
- finalScore(double, int, int) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- finalScore(Evaluation) - Method in class org.deeplearning4j.earlystopping.scorecalc.ClassificationScoreCalculator
-
- finalScore(double, int, int) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
- finalScore(RegressionEvaluation) - Method in class org.deeplearning4j.earlystopping.scorecalc.RegressionScoreCalculator
-
- finalScore(IEvaluation) - Method in class org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator
-
- finalScore(double, int, int) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
- finalScore(double, int, int) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- FineTuneConfiguration - Class in org.deeplearning4j.nn.transferlearning
-
Configuration for fine tuning.
- FineTuneConfiguration() - Constructor for class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- fineTuneConfiguration(FineTuneConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Fine tune configurations specified will overwrite the existing configuration if any
Usage example: specify a learning rate will set specified learning rate on all layers
Refer to the fineTuneConfiguration class for more details
- fineTuneConfiguration(FineTuneConfiguration) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Set parameters to selectively override existing learning parameters
Usage eg.
- FineTuneConfiguration.Builder - Class in org.deeplearning4j.nn.transferlearning
-
- firstChild() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- firstNotAppliedIndexEverywhere() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- firstOne - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit() - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit(boolean) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- fit(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- fit() - Method in interface org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer
-
Conduct early stopping training
- fit(DataSetIterator) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Train the model based on the datasetiterator
- fit(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Fit the model
- fit(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Fit the model
- fit(INDArray, int[]) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Fit the model
- fit() - Method in interface org.deeplearning4j.nn.api.Model
-
Deprecated.
- fit(INDArray, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.Model
-
Fit the model to the given data
- fit(DataSet) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method fits model with a given DataSet
- fit(MultiDataSet) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method fits model with a given MultiDataSet
- fit(DataSetIterator) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method fits model with a given DataSetIterator
- fit(MultiDataSetIterator) - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method fits model with a given MultiDataSetIterator
- fit(DataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a DataSet.
- fit(DataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Perform minibatch training on all minibatches in the DataSetIterator, for the specified number of epochs.
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a DataSetIterator.
Note that this method can only be used with ComputationGraphs with 1 input and 1 output
Method doesn't do layerwise pretraining.
For pretraining use method pretrain..
- fit(MultiDataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a MultiDataSet
- fit(MultiDataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Perform minibatch training on all minibatches in the MultiDataSetIterator, for the specified number of epochs.
- fit(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using a MultiDataSetIterator
Method doesn't do layerwise pretraining.
For pretraining use method pretrain..
- fit(INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph given arrays of inputs and labels.
- fit(INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Fit the ComputationGraph using the specified inputs and labels (and mask arrays)
- fit() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Fit the model
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- fit() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Fit the model
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Fit the model
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Fit the model
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- fit() - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- fit(DataSet) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- fit() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- fit() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- fit(DataSetIterator, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform minibatch training on all minibatches in the DataSetIterator, for the specified number of epochs.
- fit(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform minibatch training on all minibatches in the DataSetIterator for 1 epoch.
Note that this method does not do layerwise pretraining.
For pretraining use method pretrain..
- fit(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model for one iteration on the provided data
- fit(INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model for one iteration on the provided data
- fit(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- fit(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model for one iteration on the provided data
- fit(INDArray, int[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Fit the model for one iteration on the provided data
- fit() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- fit(MultiDataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- fit(MultiDataSetIterator, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform minibatch training on all minibatches in the MultiDataSetIterator, for the specified number of epochs.
- fit(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform minibatch training on all minibatches in the MultiDataSetIterator.
Note: The MultiDataSets in the MultiDataSetIterator must have exactly 1 input and output array (as
MultiLayerNetwork only supports 1 input and 1 output)
- fitFeaturized(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Fit from a featurized dataset.
- fitFeaturized(MultiDataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- fitFeaturized(DataSet) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- fitFeaturized(DataSetIterator) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
- FixedAlgorithmThresholdReducer() - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.FixedThresholdAlgorithm.FixedAlgorithmThresholdReducer
-
- FixedThresholdAlgorithm - Class in org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold
-
A simple fixed threshold algorithm, not adaptive in any way.
- FixedThresholdAlgorithm() - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.FixedThresholdAlgorithm
-
- FixedThresholdAlgorithm.FixedAlgorithmThresholdReducer - Class in org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold
-
- flattenedGradients - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- flattenedGradients - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- flattenedParams - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- flattenedParams - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- flatteningOrderForVariable(String) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- flatteningOrderForVariable(String) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Return the gradient flattening order for the specified variable, or null if it is not explicitly set
- fn - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- fn - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- forgetGateBiasInit - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Set forget gate bias initalizations.
- forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Set forget gate bias initalizations.
- forgetGateBiasInit - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- forgetGateBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Deprecated.
Set forget gate bias initalizations.
- format(double) - Static method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- formatter - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- formatter2 - Static variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- FORWARD_PREFIX - Static variable in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- frequency - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- from - Variable in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- fromFileString(String) - Static method in class org.deeplearning4j.optimize.listeners.Checkpoint
-
- fromIActivation(IActivation) - Static method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayerUtils
-
- fromJson(String) - Static method in class org.deeplearning4j.eval.curves.Histogram
-
- fromJson(String) - Static method in class org.deeplearning4j.eval.curves.RocCurve
-
- fromJson(String) - Static method in class org.deeplearning4j.eval.Evaluation
-
- fromJson(String) - Static method in class org.deeplearning4j.eval.EvaluationBinary
-
Deprecated.
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Create a computation graph configuration from json
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
Create a neural net configuration from json
- fromJson(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Create a neural net configuration from json
- fromJson(String) - Static method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- fromYaml(String) - Static method in class org.deeplearning4j.eval.curves.Histogram
-
- fromYaml(String) - Static method in class org.deeplearning4j.eval.curves.RocCurve
-
- fromYaml(String) - Static method in class org.deeplearning4j.eval.Evaluation
-
- fromYaml(String) - Static method in class org.deeplearning4j.eval.EvaluationBinary
-
Deprecated.
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Create a neural net configuration from YAML
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
Create a neural net configuration from json
- fromYaml(String) - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Create a neural net configuration from json
- fromYaml(String) - Static method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- FrozenLayer - Class in org.deeplearning4j.nn.conf.layers.misc
-
FrozenLayer is used for the purposes of transfer learning.
A frozen layer wraps another DL4J Layer within it.
- FrozenLayer(Layer) - Constructor for class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- FrozenLayer - Class in org.deeplearning4j.nn.layers
-
For purposes of transfer learning
A frozen layers wraps another dl4j layer within it.
- FrozenLayer(Layer) - Constructor for class org.deeplearning4j.nn.layers.FrozenLayer
-
- FrozenLayer.Builder - Class in org.deeplearning4j.nn.conf.layers.misc
-
- FrozenLayerParamInitializer - Class in org.deeplearning4j.nn.params
-
- FrozenLayerParamInitializer() - Constructor for class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- FrozenLayerWithBackprop - Class in org.deeplearning4j.nn.conf.layers.misc
-
Frozen layer freezes parameters of the layer it wraps, but allows the backpropagation to continue.
- FrozenLayerWithBackprop(Layer) - Constructor for class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- FrozenLayerWithBackprop - Class in org.deeplearning4j.nn.layers
-
Frozen layer freezes parameters of the layer it wraps, but allows the backpropagation to continue.
- FrozenLayerWithBackprop(Layer) - Constructor for class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- FrozenLayerWithBackpropParamInitializer - Class in org.deeplearning4j.nn.params
-
- FrozenLayerWithBackpropParamInitializer() - Constructor for class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- FrozenVertex - Class in org.deeplearning4j.nn.conf.graph
-
FrozenVertex is used for the purposes of transfer learning.
A frozen vertex wraps another DL4J GraphVertex within it.
- FrozenVertex(GraphVertex) - Constructor for class org.deeplearning4j.nn.conf.graph.FrozenVertex
-
- FrozenVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
FrozenVertex is used for the purposes of transfer learning
A frozen layers wraps another DL4J GraphVertex within it.
- FrozenVertex(GraphVertex) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.FrozenVertex
-
- fwdPassOutput - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- fwdPassOutputAsArrays - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- FwdPassReturn - Class in org.deeplearning4j.nn.layers.recurrent
-
Created by benny on 12/31/15.
- FwdPassReturn() - Constructor for class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- FwdPassType - Enum in org.deeplearning4j.nn.api
-
Type of forward pass to do.
- fz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- ga - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- GAIN_KEY - Static variable in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- GAIN_KEY - Static variable in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- gainInit - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Gain initialization value, for layers with Layer Normalization.
- gainInit(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Gain initialization value, for layers with Layer Normalization.
- gainInit - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- gainInit - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- gamma - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- gamma(double) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- gamma - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- GAMMA - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- gammaConstraints - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
Set constraints to be applied to the gamma parameter of this batch normalisation layer.
- gateActivationFn - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Activation function for the LSTM gates.
- gateActivationFn - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- gateActivationFunction(String) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Activation function for the LSTM gates.
- gateActivationFunction(Activation) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Activation function for the LSTM gates.
- gateActivationFunction(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
Activation function for the LSTM gates.
- gateActivationFunction(String) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Deprecated.
Activation function for the LSTM gates.
- gateActivationFunction(Activation) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Deprecated.
Activation function for the LSTM gates.
- gateActivationFunction(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Deprecated.
Activation function for the LSTM gates.
- GaussianDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
- GaussianDistribution(double, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.GaussianDistribution
-
Deprecated.
Create a gaussian distribution (equivalent to normal)
with the given mean and std
- GaussianDropout - Class in org.deeplearning4j.nn.conf.dropout
-
Gaussian dropout.
- GaussianDropout(double) - Constructor for class org.deeplearning4j.nn.conf.dropout.GaussianDropout
-
- GaussianDropout(ISchedule) - Constructor for class org.deeplearning4j.nn.conf.dropout.GaussianDropout
-
- GaussianDropout(double, ISchedule) - Constructor for class org.deeplearning4j.nn.conf.dropout.GaussianDropout
-
- GaussianNoise - Class in org.deeplearning4j.nn.conf.dropout
-
Applies additive, mean-zero Gaussian noise to the input - i.e., x = x + N(0,stddev).
Note that this differs from
GaussianDropout
, which applies
multiplicative mean-1 N(1,s) noise.
Note also that schedules for the standard deviation value can also be used.
- GaussianNoise(double) - Constructor for class org.deeplearning4j.nn.conf.dropout.GaussianNoise
-
- GaussianNoise(ISchedule) - Constructor for class org.deeplearning4j.nn.conf.dropout.GaussianNoise
-
- GaussianNoise(double, ISchedule) - Constructor for class org.deeplearning4j.nn.conf.dropout.GaussianNoise
-
- GaussianReconstructionDistribution - Class in org.deeplearning4j.nn.conf.layers.variational
-
Gaussian reconstruction distribution for variational autoencoder.
Outputs are modelled by a Gaussian distribution, with the mean and variances (diagonal covariance matrix) for each
output determined by the network forward pass.
- GaussianReconstructionDistribution() - Constructor for class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
Create a GaussianReconstructionDistribution with the default identity activation function.
- GaussianReconstructionDistribution(Activation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- GaussianReconstructionDistribution(IActivation) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- generalValidation(String, Layer, IDropout, List<Regularization>, List<Regularization>, List<LayerConstraint>, List<LayerConstraint>, List<LayerConstraint>) - Static method in class org.deeplearning4j.nn.conf.layers.LayerValidation
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- generateAtMean(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- generateAtMean(INDArray) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Generate a sample from P(x|z), where x = E[P(x|z)]
i.e., return the mean value for the distribution
- generateAtMeanGivenZ(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
Given a specified values for the latent space as input (latent space being z in p(z|data)), generate output
from P(x|z), where x = E[P(x|z)]
i.e., return the mean value for the distribution P(x|z)
- generateMemoryStatus(Model, int, InputType...) - Static method in class org.deeplearning4j.util.CrashReportingUtil
-
Generate memory/system report as a String, for the specified network.
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- generateRandom(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- generateRandom(INDArray) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Randomly sample from P(x|z) using the specified distribution parameters
- generateRandomGivenZ(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
Given a specified values for the latent space as input (latent space being z in p(z|data)), randomly generate output
x, where x ~ P(x|z)
- get0(INDArray[]) - Static method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- get3DOutputSize(INDArray, int[], int[], int[], ConvolutionMode, int[], boolean) - Static method in class org.deeplearning4j.util.Convolution3DUtils
-
Get the output size (depth/height/width) for the given input data and CNN3D configuration
- get3DSameModeTopLeftPadding(int[], int[], int[], int[], int[]) - Static method in class org.deeplearning4j.util.Convolution3DUtils
-
Get top and left padding for same mode only for 3d convolutions
- getAlpha() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getAverageThresholdAlgorithm() - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
This should ONLY be called once all training threads have completed
- getBegin() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getBestModel() - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
-
Retrieve the best model that was previously saved
- getBestModel() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingResult
-
- getBestModel() - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- getBestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- getBestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- getBiasParameterKeys() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
- getBottomRightXY() - Method in class org.deeplearning4j.nn.layers.objdetect.DetectedObject
-
Get the bottom right X/Y coordinates of the detected object
- getBroadcastDims(int[], int) - Static method in class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- getBytesPerElement(DataType) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- getChildren() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getComputationGraphUpdater() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- getComputationGraphUpdater(boolean) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- getComputationGraphUpdater() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getComputationGraphUpdater(boolean) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getConf(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- getConf() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- getConf() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getConfidenceMatrix(INDArray, int, int) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
Get the confidence matrix (confidence for all x/y positions) for the specified bounding box, from the network
output activations array
- getConfig() - Method in interface org.deeplearning4j.nn.api.Trainable
-
- getConfig() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getConfig() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getConfig() - Method in class org.deeplearning4j.nn.graph.vertex.impl.FrozenVertex
-
- getConfig() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- getConfig() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getConfig() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getConfig() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getConfig() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- getConfig() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getConfig() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getConfig() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getConfiguration() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method returns configuration of this ComputationGraph
- getCorruptedInput(INDArray, double) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
Corrupts the given input by doing a binomial sampling
given the corruption level
- getDeconvolutionOutputSize(INDArray, int[], int[], int[], ConvolutionMode, int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get the output size of a deconvolution operation for given input data.
- getDefaultConfiguration() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Intended for internal/developer use
- getDefaultStepFunctionForOptimizer(Class<? extends ConvexOptimizer>) - Static method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getDelta() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- getDelta(long) - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- getDepth() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
Deprecated.
- getEnd() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getEpoch(Model) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
- getEpochCount() - Method in interface org.deeplearning4j.nn.api.Layer
-
- getEpochCount() - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- getEpochCount() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Returns the number of epochs that the ComputationGraph has done.
- getEpochCount() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getEpochCount() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getEpochCount() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getEpochCount() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getEpochCount(Model) - Static method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getEps() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getEpsilon() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getEpsilon() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getEpsilon() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the epsilon/error (i.e., dL/dOutput) array previously set for this GraphVertex
- getExternalSource() - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- getExternalSource() - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- getExternalSource() - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
- getFileForCheckpoint(Checkpoint) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Get the model file for the given checkpoint.
- getFileForCheckpoint(int) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Get the model file for the given checkpoint number.
- getFileForCheckpoint(File, int) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
- getFileHeader() - Static method in class org.deeplearning4j.optimize.listeners.Checkpoint
-
- getFinalResult() - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.FixedThresholdAlgorithm.FixedAlgorithmThresholdReducer
-
- getFinalResult() - Method in interface org.deeplearning4j.optimize.solvers.accumulation.encoding.ThresholdAlgorithmReducer
-
- getFlattenedGradientsView() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getFlattenedGradientsView() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- getFlattenedGradientsView() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- getFlattenedGradientsView() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- getFlattenedSize() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- getGlobalPosition() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- getGradientCheck() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getGradientFor(String) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- getGradientFor(String) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
The gradient for the given variable
- getGradientNormalization() - Method in interface org.deeplearning4j.nn.api.TrainingConfig
-
- getGradientNormalization() - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- getGradientNormalization() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getGradientNormalization() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getGradientNormalization() - Method in class org.deeplearning4j.nn.conf.layers.NoParamLayer
-
- getGradientNormalization() - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- getGradientNormalization() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- getGradientNormalization() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- getGradientNormalization() - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- getGradientNormalization() - Method in class org.deeplearning4j.nn.conf.misc.DummyConfig
-
- getGradientNormalizationThreshold() - Method in interface org.deeplearning4j.nn.api.TrainingConfig
-
- getGradientNormalizationThreshold() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getGradientNormalizationThreshold() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getGradientNormalizationThreshold() - Method in class org.deeplearning4j.nn.conf.layers.NoParamLayer
-
- getGradientNormalizationThreshold() - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- getGradientNormalizationThreshold() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- getGradientNormalizationThreshold() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- getGradientNormalizationThreshold() - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- getGradientNormalizationThreshold() - Method in class org.deeplearning4j.nn.conf.misc.DummyConfig
-
- getGradientsAccumulator() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
This method returns GradientsAccumulator instance used in this optimizer.
- getGradientsAccumulator() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
Return a map of gradients (in their standard non-flattened representation), taken from the flattened (row vector) gradientView array.
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.Convolution3DParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.DeconvolutionParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.ElementWiseParamInitializer
-
Return a map of gradients (in their standard non-flattened representation), taken from the flattened (row vector) gradientView array.
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- getGradientsFromFlattened(NeuralNetConfiguration, INDArray) - Method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- getGradientsViewArray() - Method in interface org.deeplearning4j.nn.api.Model
-
- getGradientsViewArray() - Method in interface org.deeplearning4j.nn.api.Trainable
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getGradientsViewArray() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getGradientUpdater() - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- getHeadWord() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getHeightAndWidth(NeuralNetConfiguration) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get the height and width
from the configuration
- getHeightAndWidth(int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get the height and width
for an image
- getHelper() - Method in interface org.deeplearning4j.nn.api.Layer
-
- getHelper() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getHelper() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- getHelper() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- getHelper() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- getHelper() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- getHelper() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getHelper() - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- getHelper() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getHelper() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getHelper() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getHelperWorkspace(String) - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
Get the pointer to the helper memory.
- getHWDFromInputType(InputType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get heigh/width/channels as length 3 int[] from the InputType
- getIndex() - Method in interface org.deeplearning4j.nn.api.Layer
-
Get the layer index.
- getIndex() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getIndex() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- getIndex() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getIndex() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getIndex() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getIndex() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getInnerConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getInnerConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- getInput(int) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex.VertexInputs
-
- getInput(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the previously set input for the ComputationGraph
- getInput() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getInput() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- getInput() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getInputMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the previously set feature/input mask arrays for the ComputationGraph
- getInputMiniBatchSize() - Method in interface org.deeplearning4j.nn.api.Layer
-
Get current/last input mini-batch size, as set by setInputMiniBatchSize(int)
- getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getInputMiniBatchSize() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getInputPreProcess(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- getInputs(SameDiff) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex
-
- getInputs() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the previously set inputs for the ComputationGraph
- getInputs() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getInputs() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the array of inputs previously set for this GraphVertex
- getInputVertices() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
A representation of the vertices that are inputs to this vertex (inputs duing forward pass)
Specifically, if inputVertices[X].getVertexIndex() = Y, and inputVertices[X].getVertexEdgeNumber() = Z
then the Zth output of vertex Y is the Xth input to this vertex
- getInputVertices() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getInputVertices() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
A representation of the vertices that are inputs to this vertex (inputs duing forward pass)
Specifically, if inputVertices[X].getVertexIndex() = Y, and inputVertices[X].getVertexEdgeNumber() = Z
then the Zth output connection (see
GraphVertex.getNumOutputConnections()
of vertex Y is the Xth input to this vertex
- getInsideLayer() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- getInsideLayer() - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- getInstance() - Static method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.Convolution3DParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.DeconvolutionParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.ElementWiseParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- getInstance(long[], long[]) - Static method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- getInstance() - Static method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- getIter(Model) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
- getIterationCount() - Method in interface org.deeplearning4j.nn.api.Layer
-
- getIterationCount() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Returns the number of iterations (parameter updates) that the ComputationGraph has done
- getIterationCount() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getIterationCount() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getIterationCount() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getIterationCount(Model) - Static method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getIUpdaterWithDefaultConfig() - Method in enum org.deeplearning4j.nn.conf.Updater
-
- getLabelMaskArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the previously set label/output mask arrays for the ComputationGraph
- getLabels() - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
- getLabels() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- getLabels() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- getLabels() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLabels2d(LayerWorkspaceMgr, ArrayType) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- getLabels2d() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- getLabels2d(LayerWorkspaceMgr, ArrayType) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
- getLabels2d(LayerWorkspaceMgr, ArrayType) - Method in class org.deeplearning4j.nn.layers.OutputLayer
-
- getLabels2d(LayerWorkspaceMgr, ArrayType) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- getLabels2d(LayerWorkspaceMgr, ArrayType) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- getLambda() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getLastEtlTime() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method returns ETL time field value
- getLastEtlTime() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the last ETL time.
- getLatestModel() - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
-
Retrieve the most recent model that was previously saved
- getLatestModel() - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- getLatestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- getLatestModel() - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- getLayer(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the layer by the number of that layer, in range 0 to getNumLayers()-1
NOTE: This is different from the internal GraphVertex index for the layer
- getLayer(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get a given layer by name.
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getLayer() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the Layer (if any).
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.ReverseTimeSeriesVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- getLayer() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- getLayer(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLayer(String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLayerActivationTypes(InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
For the given input shape/type for the network, return a map of activation sizes for each layer and vertex
in the graph.
- getLayerActivationTypes(boolean, InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
For the given input shape/type for the network, return a map of activation sizes for each layer and vertex
in the graph.
- getLayerActivationTypes() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
For the (perhaps partially constructed) network configuration, return a map of activation sizes for each
layer and vertex in the graph.
Note 1: The network configuration may be incomplete, but the inputs have been added to the layer already.
Note 2: To use this method, the network input types must have been set using
ComputationGraphConfiguration.GraphBuilder.setInputTypes(InputType...)
first
- getLayerActivationTypes(InputType) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
For the given input shape/type for the network, return a list of activation sizes for each layer in the network.
i.e., list.get(i) is the output activation sizes for layer i
- getLayerActivationTypes() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- getLayerActivationWSConfig(int) - Static method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLayerName() - Method in interface org.deeplearning4j.nn.api.TrainingConfig
-
- getLayerName() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- getLayerName() - Method in class org.deeplearning4j.nn.conf.misc.DummyConfig
-
- getLayerNames() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLayerParams() - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- getLayers() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get all layers in the ComputationGraph
- getLayers() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLayerwise() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- getLayerWiseConfigurations() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the configuration for the network
- getLayerWorkingMemWSConfig(int) - Static method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLearningRate(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the current learning rate, for the specified layer, from the network.
- getLearningRate(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the current learning rate, for the specified layer, from the network.
- getLearningRate(MultiLayerNetwork, int) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Get the current learning rate, for the specified layer, fromthe network.
- getLearningRate(ComputationGraph, String) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Get the current learning rate, for the specified layer, from the network.
- getLeaves() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Gets the leaves of the tree.
- getLeaves(List<T>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Gets the leaves of the tree.
- getLegacyMapper() - Static method in class org.deeplearning4j.nn.conf.serde.JsonMappers
-
- getListeners() - Method in interface org.deeplearning4j.nn.api.Layer
-
Get the iteration listeners for this layer.
- getListeners() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the trainingListeners for the ComputationGraph
- getListeners() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getListeners() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- getListeners() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getListeners() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getListeners() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getListeners() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getLocalPosition() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- getLocalPosition(long) - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- getLossFn() - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer
-
- getMapper() - Static method in class org.deeplearning4j.nn.conf.serde.JsonMappers
-
- getMapper100alpha() - Static method in class org.deeplearning4j.nn.conf.serde.legacy.LegacyJsonFormat
-
Get a mapper (minus general config) suitable for loading old format JSON - 1.0.0-alpha and before
- getMapperYaml() - Static method in class org.deeplearning4j.nn.conf.serde.JsonMappers
-
- getMask() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getMaskArray() - Method in interface org.deeplearning4j.nn.api.Layer
-
- getMaskArray() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getMaskArray() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getMaskArray() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getMaskArray() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getMaskArray() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getMaxIterations() - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- getMean() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- getMeanCache(DataType) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNBatchNormHelper
-
- getMeanCache(DataType) - Method in interface org.deeplearning4j.nn.layers.normalization.BatchNormalizationHelper
-
- getMemoryBytes(MemoryType, int, MemoryUseMode, CacheMode, DataType) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- getMemoryBytes(MemoryType, int, MemoryUseMode, CacheMode) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get the memory estimate (in bytes) for the specified type of memory, using the current ND4J data type
- getMemoryBytes(MemoryType, int, MemoryUseMode, CacheMode, DataType) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get the memory estimate (in bytes) for the specified type of memory
- getMemoryBytes(MemoryType, int, MemoryUseMode, CacheMode, DataType) - Method in class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Get a
MemoryReport
for the given computation graph configuration.
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.FrozenVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
This is a report of the estimated memory consumption for the given vertex
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
Deprecated.
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM
-
Deprecated.
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
This is a report of the estimated memory consumption for the given layer
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LSTM
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.misc.ElementWiseMultiplicationLayer
-
This is a report of the estimated memory consumption for the given layer
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.SimpleRnn
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- getMemoryReport(InputType...) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling1D
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling2D
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- getMemoryReport(InputType) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- getMemoryReport(AbstractLSTM, InputType) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
- getMemoryReport(GravesBidirectionalLSTM, InputType) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
- getMemoryReport(boolean, FeedForwardLayer, InputType) - Static method in class org.deeplearning4j.nn.layers.recurrent.LSTMHelpers
-
- getMinibatchDivisionSubsets(INDArray) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getModelType(Model) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
- getModuleName() - Method in interface org.deeplearning4j.nn.conf.module.GraphBuilderModule
-
A module should return its name.
- getN() - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- getName() - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- getName() - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Name of the object that the memory report was generated for
- getName() - Method in class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- getNIn() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- getnLayers() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the number of layers in the network
- getNOut() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- getNOut() - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer
-
- getNumberOfTrials() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- getNumInputArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
The number of inputs to this network
- getNumInputArrays() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getNumInputArrays() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getNumInputArrays() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the number of input arrays.
- getNumLayers() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Returns the number of layers in the ComputationGraph
- getNumOutputArrays() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
The number of output (arrays) for this network
- getNumOutputConnections() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getNumOutputConnections() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getNumOutputConnections() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the number of outgoing connections from this GraphVertex.
- getObjectFromFile(File, String) - Static method in class org.deeplearning4j.util.ModelSerializer
-
- getOptimalBufferSize(long, int, int) - Static method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method returns optimal bufferSize for a given model
We know, that updates are guaranteed to have MAX size of params / 16.
- getOptimalBufferSize(Model, int, int) - Static method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- getOptimizer() - Method in interface org.deeplearning4j.nn.api.Model
-
Returns this models optimizer
- getOptimizer() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method returns Optimizer used for training
- getOptimizer() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- getOptimizer() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getOptimizer() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- getOptimizer() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getOptimizer() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getOptimizer() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getOptimizer() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getOptimizer() - Method in class org.deeplearning4j.optimize.Solver
-
- getOrderedLayers() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getOrderedLayers() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- getOrderedLayers() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- getOrderedLayers() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- getOutputLayer(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the specified output layer, by index.
- getOutputLayer() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the output layer - i.e., the last layer in the netwok
- getOutputLayerIndices() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- getOutputSize(INDArray, int, int, int, ConvolutionMode) - Static method in class org.deeplearning4j.util.Convolution1DUtils
-
- getOutputSize(int, int, int, int, ConvolutionMode, int) - Static method in class org.deeplearning4j.util.Convolution1DUtils
-
Get the output size (height) for the given input data and CNN1D configuration
- getOutputSize(INDArray, int, int, int, ConvolutionMode, int) - Static method in class org.deeplearning4j.util.Convolution1DUtils
-
Get the output size (height) for the given input data and CNN1D configuration
- getOutputSize(INDArray, int[], int[], int[], ConvolutionMode) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- getOutputSize(INDArray, int[], int[], int[], ConvolutionMode, int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get the output size (height/width) for the given input data and CNN configuration
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.FrozenVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
Determine the type of output for this GraphVertex, given the specified inputs.
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- getOutputType(InputType) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
For a given type of input to this preprocessor, what is the type of the output?
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleStrengthLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
For a given type of input to this layer, what is the type of the output?
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.LastTimeStep
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer
-
- getOutputType(int, InputType...) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling1D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling2D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnn3DPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- getOutputType(InputType) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- getOutputType(int, InputType) - Method in class org.deeplearning4j.nn.layers.util.IdentityLayer
-
- getOutputTypeCnn1DLayers(InputType, int, int, int, int, ConvolutionMode, long, long, String, Class<?>) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getOutputTypeCnn3DLayers(InputType, int[], int[], int[], int[], ConvolutionMode, long, long, String, Class<?>) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getOutputTypeCnnLayers(InputType, int[], int[], int[], int[], ConvolutionMode, long, long, String, Class<?>) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getOutputTypeDeconvLayer(InputType, int[], int[], int[], int[], ConvolutionMode, long, long, String, Class<?>) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getOutputVertices() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
A representation of the vertices that this vertex is connected to (outputs duing forward pass)
Specifically, if outputVertices[X].getVertexIndex() = Y, and outputVertices[X].getVertexEdgeNumber() = Z
then the Xth output of this vertex is connected to the Zth input of vertex Y
- getOutputVertices() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getOutputVertices() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
A representation of the vertices that this vertex is connected to (outputs duing forward pass)
Specifically, if outputVertices[X].getVertexIndex() = Y, and outputVertices[X].getVertexEdgeNumber() = Z
then the Xth output of this vertex is connected to the Zth input of vertex Y
- getParam(String) - Method in interface org.deeplearning4j.nn.api.Model
-
Get the parameter
- getParam(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getParam(String) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- getParam(String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get one parameter array for the network.
In MultiLayerNetwork, parameters are keyed like "0_W" and "0_b" to mean "weights of layer index 0" and "biases
of layer index 0" respectively.
- getParameter(Layer, String, int, int, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.weightnoise.DropConnect
-
- getParameter(Layer, String, int, int, boolean, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.conf.weightnoise.IWeightNoise
-
Get the parameter, after applying weight noise
- getParameter(Layer, String, int, int, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.weightnoise.WeightNoise
-
- getParameterKeys() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
- getParams() - Method in interface org.deeplearning4j.nn.api.layers.LayerConstraint
-
- getParams() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getParams() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- getParams() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- getParams() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- getParamShapes() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
Get the parameter shapes for all parameters
- getParamWithNoise(String, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
Get the parameter, after applying any weight noise (such as DropConnect) if necessary.
- getParamWithNoise(String, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- getPnorm() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getPredictedClass() - Method in class org.deeplearning4j.nn.layers.objdetect.DetectedObject
-
Get the index of the predicted class (based on maximum predicted probability)
- getPredictedObjects(INDArray, double) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- getPredictedObjects(INDArray, INDArray, double, double) - Static method in class org.deeplearning4j.nn.layers.objdetect.YoloUtils
-
Given the network output and a detection threshold (in range 0 to 1) determine the objects detected by
the network.
Supports minibatches - the returned
DetectedObject
instances have an example number index.
Note that the dimensions are grid cell units - for example, with 416x416 input, 32x downsampling by the network
(before getting to the Yolo2OutputLayer) we have 13x13 grid cells (each corresponding to 32 pixels in the input
image).
- getPreProcessor() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- getPreProcessor() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.BaseUpsamplingLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriate
InputPreProcessor
for this layer, such as a
CnnToFeedForwardPreProcessor
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling1D
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling2D
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer
-
- getPreProcessorForInputType(InputType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- getPreProcessorForInputTypeCnn3DLayers(InputType, String) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getPreProcessorForInputTypeCnnLayers(InputType, String) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getPreprocessorForInputTypeRnnLayers(InputType, String) - Static method in class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- getProbabilityMatrix(INDArray, int, int) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
Get the probability matrix (probability of the specified class, assuming an object is present, for all x/y
positions), from the network output activations array
- getProbabilityOfSuccess() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- getRegularizationByParam(String) - Method in interface org.deeplearning4j.nn.api.TrainingConfig
-
Get the regularization types (l1/l2/weight decay) for the given parameter.
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Get the regularization types (l1/l2/weight decay) for the given parameter.
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.NoParamLayer
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskLayer
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.misc.DummyConfig
-
- getRegularizationByParam(String) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer
-
- getRepetitionFactor() - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector.Builder
-
Set repetition factor for RepeatVector layer
- getReportClass() - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- getReportClass() - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- getReportClass() - Method in class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- getSameModeBottomRightPadding(int, int, int, int, int) - Static method in class org.deeplearning4j.util.Convolution1DUtils
-
- getSameModeBottomRightPadding(int[], int[], int[], int[], int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get bottom and right padding for same mode only.
- getSameModeTopLeftPadding(int, int, int, int, int) - Static method in class org.deeplearning4j.util.Convolution1DUtils
-
Get top padding for same mode only.
- getSameModeTopLeftPadding(int[], int[], int[], int[], int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Get top and left padding for same mode only.
- getScoreCalculator() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration
-
- getScoreVsIter() - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
- getShape(boolean) - Method in class org.deeplearning4j.nn.conf.inputs.InputType
-
Returns the shape of this InputType
- getShape() - Method in class org.deeplearning4j.nn.conf.inputs.InputType
-
Returns the shape of this InputType without minibatch dimension in the returned array
- getShape(boolean) - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
- getShape(boolean) - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional3D
-
- getShape(boolean) - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- getShape(boolean) - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
-
- getShape(boolean) - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
-
- getShape(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- getSize() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling1D
-
- getSize() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- getSize() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- getStateViewArray() - Method in interface org.deeplearning4j.nn.api.Updater
-
- getStateViewArray() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getStateViewArrayCopy() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- getStd() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- getStepFunction() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
This method returns StepFunction defined within this Optimizer instance
- getStepMax() - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- getTokens() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- getTopLeftXY() - Method in class org.deeplearning4j.nn.layers.objdetect.DetectedObject
-
Get the top left X/Y coordinates of the detected object
- getTotalMemoryBytes(int, MemoryUseMode, CacheMode, DataType) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- getTotalMemoryBytes(int, MemoryUseMode, CacheMode) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get the total memory use in bytes for the given configuration (using the current ND4J data type)
- getTotalMemoryBytes(int, MemoryUseMode, CacheMode, DataType) - Method in class org.deeplearning4j.nn.conf.memory.MemoryReport
-
Get the total memory use in bytes for the given configuration
- getTotalMemoryBytes(int, MemoryUseMode, CacheMode, DataType) - Method in class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- getTrainingListeners() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional3D
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
-
- getType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
-
- getType() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
The type of node; mainly extra meta data
- getUnderlying() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.LastTimeStep
-
- getUnflattenedType() - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- getUpdater() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the ComputationGraphUpdater for the network.
- getUpdater(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the ComputationGraphUpdater for this network
- getUpdater() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the updater for this MultiLayerNetwork
- getUpdater(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- getUpdater(Model) - Static method in class org.deeplearning4j.nn.updater.UpdaterCreator
-
- getUpdater() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- getUpdater(boolean) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- getUpdater() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getUpdater(boolean) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- getUpdaterByParam(String) - Method in interface org.deeplearning4j.nn.api.TrainingConfig
-
Get the updater for the given parameter.
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Get the updater for the given parameter.
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Get the updater for the given parameter.
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
Get the updater for the given parameter.
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- getUpdaterByParam(String) - Method in class org.deeplearning4j.nn.conf.misc.DummyConfig
-
- getVarCache(DataType) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNBatchNormHelper
-
- getVarCache(DataType) - Method in interface org.deeplearning4j.nn.layers.normalization.BatchNormalizationHelper
-
- getVertex(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return a given GraphVertex by name, or null if no vertex with that name exists
- getVertexEdgeNumber() - Method in class org.deeplearning4j.nn.graph.vertex.VertexIndices
-
The edge number.
- getVertexIndex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getVertexIndex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getVertexIndex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the index of the GraphVertex
- getVertexIndex() - Method in class org.deeplearning4j.nn.graph.vertex.VertexIndices
-
Index of the vertex
- getVertexName() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- getVertexName() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- getVertexName() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the name/label of the GraphVertex
- getVertexParams() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- getVertices() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Returns an array of all GraphVertex objects.
- getWeightInitFunction() - Method in enum org.deeplearning4j.nn.weights.WeightInit
-
Create an instance of the weight initialization function
- getWeightInitFunction(Distribution) - Method in enum org.deeplearning4j.nn.weights.WeightInit
-
Create an instance of the weight initialization function
- getWeightParameterKeys() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
- GLOBAL_LOG_STD - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- GLOBAL_MEAN - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- GLOBAL_VAR - Static variable in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- globalConfiguration - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- GlobalPoolingLayer - Class in org.deeplearning4j.nn.conf.layers
-
Global pooling layer - used to do pooling over time for RNNs, and 2d pooling for CNNs.
Supports the following
PoolingType
s: SUM, AVG, MAX, PNORM
Global pooling layer can also handle mask arrays when dealing with variable length inputs.
- GlobalPoolingLayer() - Constructor for class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- GlobalPoolingLayer(PoolingType) - Constructor for class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- GlobalPoolingLayer - Class in org.deeplearning4j.nn.layers.pooling
-
Global pooling layer - used to do pooling over time for RNNs, and 2d pooling for CNNs.
Supports the following
PoolingType
s: SUM, AVG, MAX, PNORM
Global pooling layer can also handle mask arrays when dealing with variable length inputs.
mask arrays are assumed to be 2d, and are fed forward through the network during
training or post-training forward pass:
- Time series (RNNs, 1d CNNs): mask arrays are shape [miniBatchSize, maxTimeSeriesLength] and contain values 0 or 1 only
- CNNs (2d): mask have shape [miniBatchSize, 1, height, 1] or [miniBatchSize, 1, 1, width] or [minibatch, 1, height, width].
- GlobalPoolingLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- GlobalPoolingLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- gMeasure(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Deprecated.
- goldLabel() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- gradient() - Method in interface org.deeplearning4j.nn.api.Model
-
Get the gradient.
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- gradient(INDArray, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- gradient(INDArray, INDArray) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Calculate the gradient of the negative log probability with respect to the preOutDistributionParams
- gradient(List<String>) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- gradient() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- Gradient - Interface in org.deeplearning4j.nn.gradient
-
Generic gradient
- gradient(List<String>) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
The full gradient as one flat vector
- gradient() - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
The full gradient as one flat vector
- gradient - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- gradient() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- gradient() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- gradient - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Gets the gradient from one training iteration
- gradient() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- gradient() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- gradient() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- gradient() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- gradient() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Gets the gradient from one training iteration
- gradient() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- gradient() - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- gradient() - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- gradient() - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
Gets the gradient from one training iteration
- gradient - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- gradient() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- gradient() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- gradient - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- gradient() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- gradient - Variable in class org.deeplearning4j.optimize.listeners.SharedGradient
-
- GRADIENT_KEY - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- gradientAndScore() - Method in interface org.deeplearning4j.nn.api.Model
-
Get the gradient and score
- gradientAndScore() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- gradientAndScore() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- gradientAndScore(LayerWorkspaceMgr) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
The gradient and score for this optimizer
- gradientAndScore(LayerWorkspaceMgr) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- gradientCheck - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- gradientCheck(boolean) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- gradientCheck - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- GradientCheckUtil - Class in org.deeplearning4j.gradientcheck
-
A utility for numerically checking gradients.
- gradientForVariable() - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- gradientForVariable() - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Gradient look up table
- GradientNormalization - Enum in org.deeplearning4j.nn.conf
-
Gradient normalization strategies.
- gradientNormalization - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Gradient normalization strategy.
- gradientNormalization(GradientNormalization) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Gradient normalization strategy.
- gradientNormalization - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- gradientNormalization - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- gradientNormalization - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- gradientNormalization - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- gradientNormalization(GradientNormalization) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Gradient normalization strategy.
- gradientNormalization(GradientNormalization) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Gradient normalization strategy.
- gradientNormalization - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used
otherwise.
L2 threshold for first two types of clipping, or absolute value threshold for last type of
clipping.
- gradientNormalizationThreshold(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used
otherwise.
L2 threshold for first two types of clipping, or absolute value threshold for last type of
clipping.
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- gradientNormalizationThreshold(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise.
L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping.
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- gradientNormalizationThreshold(double) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Threshold for gradient normalization, only used for GradientNormalization.ClipL2PerLayer,
GradientNormalization.ClipL2PerParamType, and GradientNormalization.ClipElementWiseAbsoluteValue
Not used otherwise.
L2 threshold for first two types of clipping, or absolute value threshold for last type of clipping
- gradientNormalizationThreshold - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- gradients - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- gradients - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- gradients - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- gradients - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- GradientsAccumulator - Interface in org.deeplearning4j.optimize.solvers.accumulation
-
- gradientsFlattened - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- gradientsFlattened - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- gradientsForMinibatchDivision - Variable in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- GradientStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Normal gradient step function
- GradientStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
-
- GradientStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
-
Normal gradient step function
- GradientStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
-
- gradientViews - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- gradientViews - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- gradTable - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- gradTable - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- gradTable - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- graph - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- GraphBuilder(NeuralNetConfiguration.Builder) - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- GraphBuilder(ComputationGraphConfiguration, NeuralNetConfiguration.Builder) - Constructor for class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- graphBuilder() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Create a GraphBuilder (for creating a ComputationGraphConfiguration).
- GraphBuilder(ComputationGraph) - Constructor for class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Computation Graph to tweak for transfer learning
- GraphBuilderModule - Interface in org.deeplearning4j.nn.conf.module
-
GraphBuilderModule for nn layers.
- graphIndices - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
Topological sort and vertex index/name + name/index mapping
- GraphIndices - Class in org.deeplearning4j.nn.graph.util
-
Simple helper class for ComputationGraph topological sort and vertex index/name + name/index mapping
- GraphIndices() - Constructor for class org.deeplearning4j.nn.graph.util.GraphIndices
-
- GraphVertex - Class in org.deeplearning4j.nn.conf.graph
-
A GraphVertex is a vertex in the computation graph type of neural network.
- GraphVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- GraphVertex - Interface in org.deeplearning4j.nn.graph.vertex
-
A GraphVertex is a vertex in the computation graph.
- GraphVertexMixin() - Constructor for class org.deeplearning4j.nn.conf.serde.legacy.LegacyJsonFormat.GraphVertexMixin
-
- GravesBidirectionalLSTM - Class in org.deeplearning4j.nn.conf.layers
-
- GravesBidirectionalLSTM - Class in org.deeplearning4j.nn.layers.recurrent
-
RNN tutorial: https://deeplearning4j.org/docs/latest/deeplearning4j-nn-recurrent
READ THIS FIRST
Bdirectional LSTM layer implementation.
- GravesBidirectionalLSTM(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- GravesBidirectionalLSTM.Builder - Class in org.deeplearning4j.nn.conf.layers
-
Deprecated.
- GravesBidirectionalLSTMParamInitializer - Class in org.deeplearning4j.nn.params
-
- GravesBidirectionalLSTMParamInitializer() - Constructor for class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- GravesLSTM - Class in org.deeplearning4j.nn.conf.layers
-
- GravesLSTM - Class in org.deeplearning4j.nn.layers.recurrent
-
- GravesLSTM(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- GravesLSTM.Builder - Class in org.deeplearning4j.nn.conf.layers
-
Deprecated.
- GravesLSTMParamInitializer - Class in org.deeplearning4j.nn.params
-
- GravesLSTMParamInitializer() - Constructor for class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- gz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- handleActivationBackwardCompatibility(BaseLayer, ObjectNode) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- handleL1L2BackwardCompatibility(BaseLayer, ObjectNode) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- handleLossBackwardCompatibility(BaseOutputLayer, ObjectNode) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- handler - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- handler - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- handler - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- handleUpdaterBackwardCompatibility(BaseLayer, ObjectNode) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- handleWeightInitBackwardCompatibility(BaseLayer, ObjectNode) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- hasAFrozenLayer() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- hasAnything() - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- hasAnything() - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- hasAnything() - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method checks if there are any (probably external) updates available
- hasAnything() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- hasAnything(long) - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
If true (default): include bias parameters in the model.
- hasBias - Variable in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
-
- hasBias() - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
-
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
Sets whether to use bias.
- hasBias() - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D
-
- hasBias - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
If true (default): include bias parameters in the model.
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
If true (default): include bias parameters in the model.
- hasBias - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- hasBias() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- hasBias() - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D
-
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer.Builder
-
If true (default): include bias parameters in the model.
- hasBias() - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer
-
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
-
If true: include bias parameters in the layer.
- hasBias() - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer
-
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer.Builder
-
If true: include bias parameters in the layer.
- hasBias() - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer
-
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- hasBias(boolean) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer.Builder
-
- hasBias() - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D
-
- hasBias() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
Does this layer have no bias term? Many layers (dense, convolutional, output, embedding) have biases by
default, but no-bias versions are possible via configuration
- hasBias() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- hasBias() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- hasBias() - Method in class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- hasBias() - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- hasBias() - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer
-
- hasBias(Layer) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.stepfunctions.DefaultStepFunction
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.stepfunctions.GradientStepFunction
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
-
- hashCode() - Method in class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
-
- hashCode() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- hashCode() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- hasLayer() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex contains a
Layer
object or not
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.ReverseTimeSeriesVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- hasLayer() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- hasLayerNorm(boolean) - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer.Builder
-
- hasLayerNorm() - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer
-
- hasLayerNorm(boolean) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.SimpleRnn.Builder
-
- hasLayerNorm() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.SimpleRnn
-
- hasLayerNorm() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
Does this layer support and is it enabled layer normalization? Only Dense and SimpleRNN Layers support
layer normalization.
- hasLayerNorm() - Method in class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- hasLayerNorm() - Method in class org.deeplearning4j.nn.layers.recurrent.SimpleRnn
-
- hasLayerNorm(Layer) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- hasLayerNorm(Layer) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- hasLossFunction() - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- hasLossFunction() - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- hasLossFunction() - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- hasLossFunction() - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- hasLossFunction() - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- hasLossFunction() - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Does this reconstruction distribution has a standard neural network loss function (such as mean squared error,
which is deterministic) or is it a standard VAE with a probabilistic reconstruction distribution?
- hasLossFunction() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
Does the reconstruction distribution have a loss function (such as mean squared error) or is it a standard
probabilistic reconstruction distribution?
- hasNext() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- hasSomething - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- headSize(long) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
Size of Attention Heads
- headSize(int) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer.Builder
-
Size of attention heads
- headSize(int) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer.Builder
-
Size of attention heads
- headSize(int) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer.Builder
-
Size of attention heads
- helper - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- helper - Variable in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- helper - Variable in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- helper - Variable in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- helperAllowFallback - Variable in class org.deeplearning4j.nn.conf.dropout.Dropout
-
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
- helperAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.dropout.Dropout
-
When using a helper (CuDNN or MKLDNN in some cases) and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
- helperAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
- helperAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.AbstractLSTM.Builder
-
When using a helper (CuDNN or MKLDNN in some cases) and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
- helperAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.AbstractLSTM
-
- helperAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
- helperAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
- helperAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Deprecated.
When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
If set to false, an exception in CuDNN will be propagated back to the user.
- helperAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM.Builder
-
Deprecated.
When using a helper (CuDNN or MKLDNN in some cases) and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
- helperAllowFallback - Variable in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
Deprecated.
- helperAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
- helperAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
- helperAllowFallback(boolean) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed?
If set to false, an exception in the helper will be propagated back to the user.
- helperCountFail - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- helperCountFail - Variable in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- helperCountFail - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- helperCountFail - Variable in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- helperCountFail - Variable in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
- helperMemoryUse() - Method in interface org.deeplearning4j.nn.layers.LayerHelper
-
Return the currently allocated memory for the helper.
(a) Excludes: any shared memory used by multiple helpers/layers
(b) Excludes any temporary memory
(c) Includes all memory that persists for longer than the helper method
This is mainly used for debugging and reporting purposes.
- helperMemoryUse() - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNBatchNormHelper
-
- helperMemoryUse() - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper
-
- helperMemoryUse() - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNLocalResponseNormalizationHelper
-
- helperMemoryUse() - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNSubsamplingHelper
-
- helperWorkspacePointers - Variable in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- helperWorkspaces - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- helperWorkspaces - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- hiddenLayerSize - Variable in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
The hidden layer size for the one class neural network.
- hiddenLayerSize(int) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
The hidden layer size for the one class neural network.
- Histogram - Class in org.deeplearning4j.eval.curves
-
- Histogram(String, double, double, int[]) - Constructor for class org.deeplearning4j.eval.curves.Histogram
-
- HostNameTrigger(String) - Constructor for class org.deeplearning4j.optimize.listeners.FailureTestingListener.HostNameTrigger
-
- i2d - Variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- ia - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- IActivationMixin() - Constructor for class org.deeplearning4j.nn.conf.serde.legacy.LegacyJsonFormat.IActivationMixin
-
- id - Variable in class org.deeplearning4j.optimize.listeners.SharedGradient
-
- IdentityLayer - Class in org.deeplearning4j.nn.layers.util
-
Identity layer, passes data through unaltered.
- IdentityLayer(String) - Constructor for class org.deeplearning4j.nn.layers.util.IdentityLayer
-
- IDropout - Interface in org.deeplearning4j.nn.conf.dropout
-
IDropout instances operate on an activations array, modifying or dropping values at training time only.
- iDropout - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- iDropout - Variable in class org.deeplearning4j.nn.conf.layers.Layer
-
- idropOut - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- IEarlyStoppingTrainer<T extends Model> - Interface in org.deeplearning4j.earlystopping.trainer
-
Interface for early stopping trainers
- IEvaluation<T extends IEvaluation> - Interface in org.deeplearning4j.eval
-
- ILossFunctionMixin() - Constructor for class org.deeplearning4j.nn.conf.serde.legacy.LegacyJsonFormat.ILossFunctionMixin
-
- incrementEpochCount() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- incrementEpochCount() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- incrementIterationCount(Model, int) - Static method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- index - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- index - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- index - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- index - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- IndexedTail - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This class provides queue-like functionality for multiple readers/multiple writers, with transparent duplication
and collapsing ability
- IndexedTail(int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- IndexedTail(int, boolean, long[]) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- inferenceWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- inferenceWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- inferenceWorkspaceMode(WorkspaceMode) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- inferenceWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- inferenceWorkspaceMode - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- inferenceWorkspaceMode(WorkspaceMode) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
This method defines Workspace mode being used during inference:
NONE: workspace won't be used
ENABLED: workspaces will be used for inference (reduced memory and better performance)
- inferenceWorkspaceMode(WorkspaceMode) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
This method defines Workspace mode being used during inference:
NONE: workspace won't be used
ENABLED: workspaces will be used for inference (reduced memory and better performance)
- inferenceWorkspaceMode - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- inferInputLength(boolean) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer.Builder
-
Set input sequence inference mode for embedding layer.
- inferInputType(INDArray) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- inferInputTypes(INDArray...) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
- init() - Method in interface org.deeplearning4j.nn.api.Model
-
Init the model
- init() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method does initialization of model
PLEASE NOTE: All implementations should track own state, to avoid double spending
- init(NeuralNetConfiguration, INDArray, boolean) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
Initialize the parameters
- init() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Initialize the ComputationGraph network
- init(INDArray, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Initialize the ComputationGraph, optionally with an existing parameters array.
- init() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
Init the model
- init() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
Init the model
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- init() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- init() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
Init the model
- init() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- init() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Initialize the MultiLayerNetwork.
- init(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Initialize the MultiLayerNetwork, optionally with an existing parameters array.
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.Convolution3DParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.ElementWiseParamInitializer
-
Initialize the parameters
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- init(NeuralNetConfiguration, INDArray, boolean) - Method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- init() - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.embeddings.WeightInitEmbedding
-
- init(double, double, long[], char, INDArray) - Method in interface org.deeplearning4j.nn.weights.IWeightInit
-
Initialize parameters in the given view.
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitConstant
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitDistribution
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitIdentity
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitLecunUniform
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitNormal
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitRelu
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitReluUniform
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitSigmoidUniform
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitUniform
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitVarScalingNormalFanAvg
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitVarScalingNormalFanIn
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitVarScalingNormalFanOut
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitVarScalingUniformFanAvg
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitVarScalingUniformFanIn
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitVarScalingUniformFanOut
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitXavier
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitXavierLegacy
-
- init(double, double, long[], char, INDArray) - Method in class org.deeplearning4j.nn.weights.WeightInitXavierUniform
-
- initCalled - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- initCalled - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- initDone - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- initGradientsView() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method: initializes the flattened gradients array (used in backprop) and sets the appropriate subset in all layers.
- initGradientsView() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method: initializes the flattened gradients array (used in backprop) and sets the appropriate subset in all layers.
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.BestScoreEpochTerminationCondition
-
- initialize() - Method in interface org.deeplearning4j.earlystopping.termination.EpochTerminationCondition
-
Initialize the epoch termination condition (often a no-op)
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
-
- initialize() - Method in interface org.deeplearning4j.earlystopping.termination.IterationTerminationCondition
-
Initialize the iteration termination condition (sometimes a no-op)
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
-
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
-
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
-
- initialize() - Method in class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
-
- initialize() - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener.And
-
- initialize() - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener.FailureTrigger
-
- initialize() - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener.HostNameTrigger
-
- initialize() - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener.RandomProb
-
- initialize() - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener.TimeSinceInitializedTrigger
-
- initialize() - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener.UserNameTrigger
-
- initialize(GradientsAccumulator) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- initialize(GradientsAccumulator) - Method in class org.deeplearning4j.optimize.solvers.accumulation.LocalHandler
-
- initialize(GradientsAccumulator) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.MessageHandler
-
This method does initial configuration of given MessageHandler instance
- initializeConstraints(Layer.Builder<?>) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
Deprecated.
- initializeConstraints(Layer.Builder<?>) - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM
-
Deprecated.
- initializeConstraints(Layer.Builder<?>) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Initialize the weight constraints.
- initializeConstraints(Layer.Builder<?>) - Method in class org.deeplearning4j.nn.conf.layers.LSTM
-
- initializeConstraints(Layer.Builder<?>) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D
-
- initialized() - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener.FailureTrigger
-
- initializedMinibatchDivision - Variable in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- initializeHelper(DataType) - Method in class org.deeplearning4j.nn.conf.dropout.Dropout
-
Initialize the CuDNN dropout helper, if possible
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex
-
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer
-
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer
-
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D
-
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D
-
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules
-
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
Set the initial parameter values for this layer, if required
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer
-
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex
-
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
Set the initial parameter values for this layer, if required
- initializeParameters(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
Deprecated.
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM
-
Deprecated.
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.LSTM
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.misc.ElementWiseMultiplicationLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.NoParamLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.OutputLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.recurrent.SimpleRnn
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.util.MaskLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer
-
- initializer() - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer
-
- initialMemory - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- initialMemory - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- initialResidualPostProcessor - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- initialRValue - Variable in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
- initialRValue(double) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
- initialThresholdAlgorithm - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- initOptimizer() - Method in class org.deeplearning4j.optimize.Solver
-
- initWeights(int, int, WeightInit, INDArray) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- initWeights(double, double, int[], WeightInit, Distribution, INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Deprecated.
- initWeights(double, double, long[], WeightInit, Distribution, INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Initializes a matrix with the given weight initialization scheme.
- initWeights(double, double, int[], WeightInit, Distribution, char, INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Deprecated.
- initWeights(double, double, long[], WeightInit, Distribution, char, INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
- InMemoryModelSaver<T extends Model> - Class in org.deeplearning4j.earlystopping.saver
-
Save the best (and latest) models for early stopping training to memory for later retrieval
Note: Assumes that network is cloneable via .clone() method
- InMemoryModelSaver() - Constructor for class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- input() - Method in interface org.deeplearning4j.nn.api.Model
-
The input/feature matrix for the model
- input() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- input - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- input() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- input() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- input - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- input() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- input() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- input - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- input() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- INPUT_KEY - Static variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- INPUT_KEY - Static variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- INPUT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- INPUT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- INPUT_WEIGHT_KEY_BACKWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- INPUT_WEIGHT_KEY_FORWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- inputCapsuleDimensions(int) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
Usually inferred automatically.
- inputCapsules(int) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
Usually inferred automatically.
- inputDepth - Variable in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- inputHeight - Variable in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- inputHeight - Variable in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- inputLength(int) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer.Builder
-
Set input sequence length for this embedding layer.
- inputMaskArray - Variable in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- inputMaskArrayState - Variable in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- inputModificationAllowed - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- inputPreProcessor(String, InputPreProcessor) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- InputPreProcessor - Interface in org.deeplearning4j.nn.conf
-
Input pre processor used
for pre processing input before passing it
to the neural network.
- inputPreProcessor(Integer, InputPreProcessor) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
Specify the processors.
- InputPreProcessorMixin() - Constructor for class org.deeplearning4j.nn.conf.serde.legacy.LegacyJsonFormat.InputPreProcessorMixin
-
- inputPreProcessors - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- inputPreProcessors - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- inputPreProcessors(Map<Integer, InputPreProcessor>) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- inputPreProcessors - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- inputs - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex
-
- inputs - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SDVertexParams
-
- inputs - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- inputShape(int...) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
Usually inferred automatically.
- inputShape(long...) - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer.Builder
-
Explicitly set input shape of incoming activations so that parameters can be initialized properly.
- InputType - Class in org.deeplearning4j.nn.conf.inputs
-
The InputType class is used to track and define the types of activations etc used in a ComputationGraph.
- InputType() - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType
-
- inputType - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- inputType() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
A convenience method for setting input types: note that for example .inputType().convolutional(h,w,d)
is equivalent to .setInputType(InputType.convolutional(h,w,d))
- InputType.InputTypeConvolutional - Class in org.deeplearning4j.nn.conf.inputs
-
- InputType.InputTypeConvolutional3D - Class in org.deeplearning4j.nn.conf.inputs
-
- InputType.InputTypeConvolutionalFlat - Class in org.deeplearning4j.nn.conf.inputs
-
- InputType.InputTypeFeedForward - Class in org.deeplearning4j.nn.conf.inputs
-
- InputType.InputTypeRecurrent - Class in org.deeplearning4j.nn.conf.inputs
-
- InputType.Type - Enum in org.deeplearning4j.nn.conf.inputs
-
The type of activations in/out of a given GraphVertex
FF: Standard feed-foward (2d minibatch, 1d per example) data
RNN: Recurrent neural network (3d minibatch) time series data
CNN: 2D Convolutional neural network (4d minibatch, [miniBatchSize, channels, height, width])
CNNFlat: Flattened 2D conv net data (2d minibatch, [miniBatchSize, height * width * channels])
CNN3D: 3D convolutional neural network (5d minibatch, [miniBatchSize, channels, height, width, channels])
- InputTypeBuilder() - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder.InputTypeBuilder
-
- InputTypeConvolutional(long, long, long) - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
- InputTypeConvolutional3D(Convolution3D.DataFormat, long, long, long, long) - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional3D
-
- InputTypeConvolutionalFlat(long, long, long) - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutionalFlat
-
- InputTypeFeedForward(long) - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeFeedForward
-
- InputTypeRecurrent(long) - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
-
- InputTypeRecurrent(long, long) - Constructor for class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeRecurrent
-
- InputTypeUtil - Class in org.deeplearning4j.nn.conf.layers
-
Utilities for calculating input types
- InputTypeUtil() - Constructor for class org.deeplearning4j.nn.conf.layers.InputTypeUtil
-
- inputVars - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- InputVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
An InputVertex simply defines the location (and connection structure) of inputs to the ComputationGraph.
- InputVertex(ComputationGraph, String, int, VertexIndices[], DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- inputVertices - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
A representation of the vertices that are inputs to this vertex (inputs during forward pass)
Specifically, if inputVertices[X].getVertexIndex() = Y, and inputVertices[X].getVertexEdgeNumber() = Z
then the Zth output of vertex Y is the Xth input to this vertex
- inputWeightConstraints - Variable in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
Set constraints to be applied to the RNN input weight parameters of this layer.
- inputWidth - Variable in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- inputWidth - Variable in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.FrozenVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
Create a
GraphVertex
instance, for the given computation graph,
given the configuration instance.
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.DenseLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM
-
Deprecated.
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.GravesLSTM
-
Deprecated.
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.LSTM
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.misc.ElementWiseMultiplicationLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.OutputLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.LastTimeStep
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.SimpleRnn
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffOutputLayer
-
- instantiate(ComputationGraph, String, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling1D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling2D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer
-
- instantiate(NeuralNetConfiguration, Collection<TrainingListener>, int, INDArray, boolean, DataType) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer
-
- intializeConfigurations() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- InvalidInputTypeException - Exception in org.deeplearning4j.nn.conf.inputs
-
InvalidInputTypeException: Thrown if the GraphVertex cannot handle the type of input provided.
- InvalidInputTypeException(String) - Constructor for exception org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException
-
- InvalidInputTypeException(String, Throwable) - Constructor for exception org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException
-
- InvalidInputTypeException(Throwable) - Constructor for exception org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException
-
- InvalidScoreIterationTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Terminate training at this iteration if score is NaN or Infinite for the last minibatch
- InvalidScoreIterationTerminationCondition() - Constructor for class org.deeplearning4j.earlystopping.termination.InvalidScoreIterationTerminationCondition
-
- InvalidStepException - Exception in org.deeplearning4j.exception
-
Created by agibsonccc on 8/20/14.
- InvalidStepException(String) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
-
Constructs a new exception with the specified detail message.
- InvalidStepException(String, Throwable) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
-
Constructs a new exception with the specified detail message and
cause.
- InvalidStepException(Throwable) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
-
Constructs a new exception with the specified cause and a detail
message of (cause==null ? null : cause.toString()) (which
typically contains the class and detail message of cause).
- InvalidStepException(String, Throwable, boolean, boolean) - Constructor for exception org.deeplearning4j.exception.InvalidStepException
-
Constructs a new exception with the specified detail message,
cause, suppression enabled or disabled, and writable stack
trace enabled or disabled.
- invocationCount - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- InvocationType - Enum in org.deeplearning4j.optimize.api
-
This enum holds options for TrainingListener invocation scheme
- invocationType - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- invokeListener(Model) - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- iou(DetectedObject, DetectedObject) - Static method in class org.deeplearning4j.nn.layers.objdetect.YoloUtils
-
Returns intersection over union (IOU) between o1 and o2.
- IOutputLayer - Interface in org.deeplearning4j.nn.api.layers
-
Interface for output layers (those that calculate gradients with respect to a labels array)
- isBiasParam(Layer, String) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
Is the specified parameter a bias?
- isBiasParam(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- isBiasParam(Layer, String) - Method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- isDead() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- isDebug - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- isDebug - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- isDone - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- isDone - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- isEmpty() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- isEmpty() - Method in class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- isFirst - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- isFirst - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- isInference() - Method in enum org.deeplearning4j.nn.conf.memory.MemoryType
-
- isInitCalled() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- isInputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- isInputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- isInputVertex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex is an input vertex
- isInputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- isLeaf() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns whether the node has any children or not
- isMinibatch - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
If doing minibatch training or not.
- isMinibatch - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- isMiniBatch() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- isMiniBatch() - Method in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- isMiniBatch() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- isMiniBatch() - Method in class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- isNCDHW - Variable in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- isOutputVertex() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Whether the GraphVertex is an output vertex
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- isOutputVertex() - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.ReverseTimeSeriesVertex
-
- isPreTerminal() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Node has one child that is a leaf
- isPretrainLayer() - Method in interface org.deeplearning4j.nn.api.Layer
-
Returns true if the layer can be trained in an unsupervised/pretrain manner (AE, VAE, etc)
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.Cropping1DLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.Cropping2DLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.Cropping3DLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding1DLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPadding3DLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.elementwise.ElementWiseMultiplicationLayer
-
Returns true if the layer can be trained in an unsupervised/pretrain manner (VAE, RBMs etc)
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.feedforward.PReLU
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.pooling.GlobalPoolingLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.recurrent.SimpleRnn
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.util.MaskLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- isPretrainLayer() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- isPretrainParam(String) - Method in interface org.deeplearning4j.nn.api.TrainingConfig
-
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't
used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Is the specified parameter a layerwise pretraining only parameter?
For example, visible
bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used
during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters
will return false for all (valid) inputs.
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.NoParamLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.conf.misc.DummyConfig
-
- isPretrainParam(String) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- isPretrainUpdaterBlock() - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- isSingleLayerUpdater() - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- isSingleLayerUpdater() - Method in class org.deeplearning4j.nn.updater.LayerUpdater
-
- isWeightParam(Layer, String) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
Is the specified parameter a weight?
- isWeightParam(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- isWeightParam(Layer, String) - Method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- iter - Variable in class org.deeplearning4j.earlystopping.scorecalc.base.BaseIEvaluationScoreCalculator
-
- iterationCount - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- iterationCount - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- iterationCount - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- iterationCount - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- iterationCount - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- iterationCount - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.api.BaseTrainingListener
-
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.api.IterationListener
-
Deprecated.
Event listener for each iteration
- iterationDone(Model, int, int) - Method in interface org.deeplearning4j.optimize.api.TrainingListener
-
Event listener for each iteration.
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresIterationListener
-
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.CollectScoresListener
-
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.ComposableIterationListener
-
Deprecated.
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
Event listener for each iteration
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener
-
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
-
Deprecated.
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener
-
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.ScoreIterationListener
-
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- iterationDone(Model, int, int) - Method in class org.deeplearning4j.optimize.listeners.TimeIterationListener
-
- IterationEpochTrigger(boolean, int) - Constructor for class org.deeplearning4j.optimize.listeners.FailureTestingListener.IterationEpochTrigger
-
- IterationListener - Class in org.deeplearning4j.optimize.api
-
- IterationListener() - Constructor for class org.deeplearning4j.optimize.api.IterationListener
-
Deprecated.
- iterations - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- IterationTerminationCondition - Interface in org.deeplearning4j.earlystopping.termination
-
Interface for termination conditions to be evaluated once per iteration (i.e., once per minibatch).
- iterationTerminationConditions(IterationTerminationCondition...) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Termination conditions to be evaluated every iteration (minibatch)
- iterator - Variable in class org.deeplearning4j.earlystopping.scorecalc.base.BaseIEvaluationScoreCalculator
-
- iterator - Variable in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- iterator() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- iupdater - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Gradient updater.
- iUpdater - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- iUpdater - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- IWeightInit - Interface in org.deeplearning4j.nn.weights
-
Interface for weight initialization.
- IWeightNoise - Interface in org.deeplearning4j.nn.conf.weightnoise
-
IWeightNoise instances operate on an weight array(s), modifying values at training time or test
time, before they are used.
- iz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- l1(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
L1 regularization coefficient (weights only).
- l1(double) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
L1 regularization coefficient (weights only).
- l1(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
L1 regularization coefficient for the weights (excluding biases).
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- l1(double) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
L1 regularization coefficient for the weights (excluding biases)
- l1Bias(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
L1 regularization coefficient for the bias.
- l1Bias(double) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
L1 regularization coefficient for the bias.
- l1Bias(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
L1 regularization coefficient for the bias.
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- l1Bias(double) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
L1 regularization coefficient for the bias parameters
- l2(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
L2 regularization coefficient (weights only).
- l2(double) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
L2 regularization coefficient (weights only).
- l2(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- l2(double) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- l2Bias(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
L2 regularization coefficient for the bias.
- l2Bias(double) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
L2 regularization coefficient for the bias.
- l2Bias(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- l2Bias(double) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- L2NormalizeVertex - Class in org.deeplearning4j.nn.conf.graph
-
L2NormalizeVertex performs L2 normalization on a single input, along the specified dimensions.
- L2NormalizeVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- L2NormalizeVertex(int[], double) - Constructor for class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- L2NormalizeVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
L2NormalizeVertex performs L2 normalization on a single input.
- L2NormalizeVertex(ComputationGraph, String, int, int[], double, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- L2NormalizeVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], int[], double, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- L2Vertex - Class in org.deeplearning4j.nn.conf.graph
-
L2Vertex calculates the L2 (Euclidean) least squares error of two inputs, on a per-example basis.
- L2Vertex() - Constructor for class org.deeplearning4j.nn.conf.graph.L2Vertex
-
Constructor with default epsilon value of 1e-8
- L2Vertex(double) - Constructor for class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- L2Vertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
L2Vertex calculates the L2 least squares error of two inputs.
- L2Vertex(ComputationGraph, String, int, double, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- L2Vertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], double, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- label() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- labels - Variable in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- labels - Variable in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- labels - Variable in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- labels - Variable in class org.deeplearning4j.nn.layers.LossLayer
-
- labels - Variable in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- labels - Variable in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- labels - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- labels - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- LABELS_KEY - Static variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- labelsRequired() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffOutputLayer
-
Whether labels are required for calculating the score.
- lambda - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- lambda(double) - Method in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer.Builder
-
- lambda - Variable in class org.deeplearning4j.nn.conf.layers.CenterLossOutputLayer
-
- lambdaCoord(double) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer.Builder
-
Loss function coefficient for position and size/scale components of the loss function.
- lambdaNoObj(double) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer.Builder
-
Loss function coefficient for the "no object confidence" components of the loss function.
- lastAct - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- lastAdded - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- lastBP - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastCheckpoint() - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Return the most recent checkpoint, if one exists - otherwise returns null
- lastCheckpoint(File) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Return the most recent checkpoint, if one exists - otherwise returns null
- lastChild() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- lastDeletedIndex - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- lastEE - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastES - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastEtlTime - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- lastEtlTime - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- lastFF - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastIteration - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- lastIterWasDense - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- lastMemCell - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- lastSparsityRatio - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- lastStep - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- lastThreshold - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- lastThresholdLogTime - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- LastTimeStep - Class in org.deeplearning4j.nn.conf.layers.recurrent
-
LastTimeStep is a "wrapper" layer: it wraps any RNN (or CNN1D) layer, and extracts out the last time step during forward pass,
and returns it as a row vector (per example).
- LastTimeStep(Layer) - Constructor for class org.deeplearning4j.nn.conf.layers.recurrent.LastTimeStep
-
- LastTimeStepLayer - Class in org.deeplearning4j.nn.layers.recurrent
-
LastTimeStep is a "wrapper" layer: it wraps any RNN layer, and extracts out the last time step during forward pass,
and returns it as a row vector (per example).
- LastTimeStepLayer(Layer) - Constructor for class org.deeplearning4j.nn.layers.recurrent.LastTimeStepLayer
-
- LastTimeStepVertex - Class in org.deeplearning4j.nn.conf.graph.rnn
-
LastTimeStepVertex is used in the context of recurrent neural network activations, to go from 3d (time series)
activations to 2d activations, by extracting out the last time step of activations for each example.
This can be used for example in sequence to sequence architectures, and potentially for sequence classification.
- LastTimeStepVertex(String) - Constructor for class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- LastTimeStepVertex - Class in org.deeplearning4j.nn.graph.vertex.impl.rnn
-
LastTimeStepVertex is used in the context of recurrent neural network activations, to go from 3d (time series)
activations to 2d activations, by extracting out the last time step of activations for each example.
This can be used for example in sequence to sequence architectures, and potentially for sequence classification.
- LastTimeStepVertex(ComputationGraph, String, int, String, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- LastTimeStepVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], String, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- Layer - Interface in org.deeplearning4j.nn.api
-
Interface for a layer of a neural network.
- layer(int, Layer, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Add a layer, with no
InputPreProcessor
, with the specified name and specified inputs.
- layer(String, Layer, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Add a layer, with no
InputPreProcessor
, with the specified name and specified inputs.
- layer(String, Layer, InputPreProcessor, String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- Layer - Class in org.deeplearning4j.nn.conf.layers
-
A neural network layer.
- Layer(Layer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.Layer
-
- layer(Layer) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer.Builder
-
- layer - Variable in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- layer - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- layer(Layer) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Layer class.
- layer - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- layer(int, Layer) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- layer(Layer) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- Layer.Builder<T extends Layer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- Layer.TrainingMode - Enum in org.deeplearning4j.nn.api
-
- Layer.Type - Enum in org.deeplearning4j.nn.api
-
- layerConf() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- layerConf() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- layerConf() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- LayerConstraint - Interface in org.deeplearning4j.nn.api.layers
-
- LayerHelper - Interface in org.deeplearning4j.nn.layers
-
- layerId() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- layerId() - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- layerId() - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- layerId() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- layerIndex - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- layerInputSize(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return the input size (number of inputs) for the specified layer.
Note that the meaning of the "input size" can depend on the type of layer.
- layerInputSize(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return the input size (number of inputs) for the specified layer.
Note that the meaning of the "input size" can depend on the type of layer.
- layerInputSize(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Return the input size (number of inputs) for the specified layer.
Note that the meaning of the "input size" can depend on the type of layer.
- layerMap - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- LayerMemoryReport - Class in org.deeplearning4j.nn.conf.memory
-
A
MemoryReport
Designed to report estimated memory use for a single layer or graph vertex.
- LayerMemoryReport(LayerMemoryReport.Builder) - Constructor for class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
- LayerMemoryReport.Builder - Class in org.deeplearning4j.nn.conf.memory
-
- LayerMixin() - Constructor for class org.deeplearning4j.nn.conf.serde.legacy.LegacyJsonFormat.LayerMixin
-
- layerName - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- layerName - Variable in class org.deeplearning4j.nn.conf.layers.Layer
-
- layers - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
A list of layers.
- layers - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- layersByName - Variable in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- layerSize(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return the layer size (number of units) for the specified layer.
- layerSize(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return the layer size (number of units) for the specified layer.
Note that the meaning of the "layer size" can depend on the type of layer.
- layerSize(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Return the layer size (number of units) for the specified layer.
Note that the meaning of the "layer size" can depend on the type of layer.
- LayerUpdater - Class in org.deeplearning4j.nn.updater
-
Updater for a single layer, excluding MultiLayerNetwork (which also implements the Layer interface)
- LayerUpdater(Layer) - Constructor for class org.deeplearning4j.nn.updater.LayerUpdater
-
- LayerUpdater(Layer, INDArray) - Constructor for class org.deeplearning4j.nn.updater.LayerUpdater
-
- LayerValidation - Class in org.deeplearning4j.nn.conf.layers
-
Utility methods for validating layer configurations
- LayerVertex - Class in org.deeplearning4j.nn.conf.graph
-
LayerVertex is a GraphVertex with a neural network Layer (and, optionally an
InputPreProcessor
) in it
- LayerVertex(NeuralNetConfiguration, InputPreProcessor) - Constructor for class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- LayerVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
LayerVertex is a GraphVertex with a neural network Layer (and, optionally an
InputPreProcessor
) in it
- LayerVertex(ComputationGraph, String, int, Layer, InputPreProcessor, boolean, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
Create a network input vertex:
- LayerVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], Layer, InputPreProcessor, boolean, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- layerWiseConfigurations - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- LayerWorkspaceMgr - Class in org.deeplearning4j.nn.workspace
-
- LayerWorkspaceMgr(Set<ArrayType>, Map<ArrayType, WorkspaceConfiguration>, Map<ArrayType, String>) - Constructor for class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- LayerWorkspaceMgr.Builder - Class in org.deeplearning4j.nn.workspace
-
- LBFGS - Class in org.deeplearning4j.optimize.solvers
-
LBFGS
- LBFGS(NeuralNetConfiguration, StepFunction, Collection<TrainingListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LBFGS
-
- LearnedSelfAttentionLayer - Class in org.deeplearning4j.nn.conf.layers
-
Implements Dot Product Self Attention with learned queries
Takes in RNN style input in the shape of [batchSize, features, timesteps]
and applies dot product attention using learned queries.
- LearnedSelfAttentionLayer(LearnedSelfAttentionLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer
-
- LearnedSelfAttentionLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- LegacyDistributionDeserializer - Class in org.deeplearning4j.nn.conf.distribution.serde
-
Jackson Json deserializer to handle legacy format for distributions.
Now, we use 'type' field which contains class information.
Previously, we used wrapper objects for type information instead (see TestDistributionDeserializer for examples)
- LegacyDistributionDeserializer() - Constructor for class org.deeplearning4j.nn.conf.distribution.serde.LegacyDistributionDeserializer
-
- LegacyDistributionHelper - Class in org.deeplearning4j.nn.conf.distribution.serde
-
A dummy helper "distribution" for deserializing distributions in legacy/different JSON format.
- LegacyIntArrayDeserializer - Class in org.deeplearning4j.nn.conf.serde.legacy
-
Deserialize either an int[] to an int[], or a single int x to int[]{x,x}
Used when supporting a configuration format change from single int value to int[], as for Upsampling2D
between 1.0.0-alpha and 1.0.0-beta
- LegacyIntArrayDeserializer() - Constructor for class org.deeplearning4j.nn.conf.serde.legacy.LegacyIntArrayDeserializer
-
- LegacyJsonFormat - Class in org.deeplearning4j.nn.conf.serde.legacy
-
This class defines a set of Jackson Mixins - which are a way of using a proxy class with annotations to override
the existing annotations.
- LegacyJsonFormat.GraphVertexMixin - Class in org.deeplearning4j.nn.conf.serde.legacy
-
- LegacyJsonFormat.IActivationMixin - Class in org.deeplearning4j.nn.conf.serde.legacy
-
- LegacyJsonFormat.ILossFunctionMixin - Class in org.deeplearning4j.nn.conf.serde.legacy
-
- LegacyJsonFormat.InputPreProcessorMixin - Class in org.deeplearning4j.nn.conf.serde.legacy
-
- LegacyJsonFormat.LayerMixin - Class in org.deeplearning4j.nn.conf.serde.legacy
-
- LegacyJsonFormat.ReconstructionDistributionMixin - Class in org.deeplearning4j.nn.conf.serde.legacy
-
- leverageTo(String) - Method in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
This method is OPTIONAL, and written mostly for future use
- leverageTo(ArrayType, INDArray) - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- LineGradientDescent - Class in org.deeplearning4j.optimize.solvers
-
Stochastic Gradient Descent with Line Search
- LineGradientDescent(NeuralNetConfiguration, StepFunction, Collection<TrainingListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.LineGradientDescent
-
- lineMaximizer - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- LineOptimizer - Interface in org.deeplearning4j.optimize.api
-
Line optimizer interface adapted from mallet
- list() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Create a ListBuilder (for creating a MultiLayerConfiguration)
Usage:
- list(Layer...) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Create a ListBuilder (for creating a MultiLayerConfiguration) with the specified layers
Usage:
- ListBuilder(NeuralNetConfiguration.Builder, Map<Integer, NeuralNetConfiguration.Builder>) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- ListBuilder(NeuralNetConfiguration.Builder) - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- listener(TrainingListener...) - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- listeners - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- listeners(Collection<TrainingListener>) - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- listObjectsInFile(File) - Static method in class org.deeplearning4j.util.ModelSerializer
-
- load(File, boolean) - Static method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- load(File, boolean) - Static method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- loadCheckpointCG(Checkpoint) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load a ComputationGraph for the given checkpoint
- loadCheckpointCG(File, Checkpoint) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load a ComputationGraph for the given checkpoint from the specified root direcotry
- loadCheckpointCG(int) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load a ComputationGraph for the given checkpoint
- loadCheckpointCG(File, int) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load a ComputationGraph for the given checkpoint that resides in the specified root directory
- loadCheckpointMLN(Checkpoint) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load a MultiLayerNetwork for the given checkpoint
- loadCheckpointMLN(int) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load a MultiLayerNetwork for the given checkpoint number
- loadCheckpointMLN(File, Checkpoint) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load a MultiLayerNetwork for the given checkpoint that resides in the specified root directory
- loadCheckpointMLN(File, int) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load a MultiLayerNetwork for the given checkpoint number
- loadLastCheckpointCG(File) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load the last (most recent) checkpoint from the specified root directory
- loadLastCheckpointMLN(File) - Static method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
Load the last (most recent) checkpoint from the specified root directory
- loadWeightsInto(INDArray) - Method in class org.deeplearning4j.nn.weights.embeddings.ArrayEmbeddingInitializer
-
- loadWeightsInto(INDArray) - Method in interface org.deeplearning4j.nn.weights.embeddings.EmbeddingInitializer
-
Load the weights into the specified INDArray
- LocalFileGraphSaver - Class in org.deeplearning4j.earlystopping.saver
-
Save the best (and latest/most recent)
ComputationGraph
s learned during early stopping training to the local file system.
Instances of this class will save 3 files for best (and optionally, latest) models:
(a) The network configuration: bestGraphConf.json
(b) The network parameters: bestGraphParams.bin
(c) The network updater: bestGraphUpdater.bin
NOTE: The model updater is an object that contains the internal state for training features such as AdaGrad, Momentum
and RMSProp.
The updater is
not required to use the network at test time; it is saved in case further training is required.
- LocalFileGraphSaver(String) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
Constructor that uses default character set for configuration (json) encoding
- LocalFileGraphSaver(String, Charset) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- LocalFileModelSaver - Class in org.deeplearning4j.earlystopping.saver
-
Save the best (and latest/most recent) models learned during early stopping training to the local file system.
Instances of this class will save 3 files for best (and optionally, latest) models:
(a) The network configuration: bestModelConf.json
(b) The network parameters: bestModelParams.bin
(c) The network updater: bestModelUpdater.bin
NOTE: The model updater is an object that contains the internal state for training features such as AdaGrad, Momentum
and RMSProp.
The updater is not required to use the network at test time; it is saved in case further training is required.
- LocalFileModelSaver(File) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- LocalFileModelSaver(String) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
Constructor that uses default character set for configuration (json) encoding
- LocalFileModelSaver(String, Charset) - Constructor for class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- LocalHandler - Class in org.deeplearning4j.optimize.solvers.accumulation
-
MessageHandler implementation suited for ParallelWrapper running on single box
PLEASE NOTE: This handler does NOT provide any network connectivity.
- LocalHandler() - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.LocalHandler
-
- LocallyConnected1D - Class in org.deeplearning4j.nn.conf.layers
-
SameDiff version of a 1D locally connected layer.
- LocallyConnected1D(LocallyConnected1D.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.LocallyConnected1D
-
- LocallyConnected1D.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- LocallyConnected2D - Class in org.deeplearning4j.nn.conf.layers
-
SameDiff version of a 2D locally connected layer.
- LocallyConnected2D(LocallyConnected2D.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.LocallyConnected2D
-
- LocallyConnected2D.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- LocalResponseNormalization - Class in org.deeplearning4j.nn.conf.layers
-
- LocalResponseNormalization - Class in org.deeplearning4j.nn.layers.normalization
-
Deep neural net normalization approach normalizes activations between layers
"brightness normalization"
Used for nets like AlexNet
- LocalResponseNormalization(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- LocalResponseNormalization.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- LocalResponseNormalizationHelper - Interface in org.deeplearning4j.nn.layers.normalization
-
Helper for the local response normalization layer.
- lock - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- lock - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- lockGammaBeta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- lockGammaBeta(boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
- lockGammaBeta - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- locks - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- log - Static variable in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- log - Static variable in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- log - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- LogNormalDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
A log-normal distribution, with two parameters: mean and standard deviation.
- LogNormalDistribution(double, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.LogNormalDistribution
-
Create a log-normal distribution
with the given mean and std
- logProb - Variable in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- logSaving(boolean) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
If true (the default) log a message every time a model is saved
- logTestMode(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- logTestMode(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- logTestMode(boolean) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- logTestMode(Layer.TrainingMode) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- logThresholdIfReq(boolean, int, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- lossClassPredictions(ILossFunction) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer.Builder
-
Loss function for the class predictions - defaults to L2 loss (i.e., sum of squared errors, as per the
paper), however Loss MCXENT could also be used (which is more common for classification).
- lossFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
Loss function for the output layer
- lossFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer
-
- lossFn - Variable in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer
-
- lossFn - Variable in class org.deeplearning4j.nn.conf.layers.CnnLossLayer
-
- lossFn - Variable in class org.deeplearning4j.nn.conf.layers.LossLayer
-
- lossFn - Variable in class org.deeplearning4j.nn.conf.layers.RnnLossLayer
-
- lossFunction(LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- lossFunction(ILossFunction) - Method in class org.deeplearning4j.nn.conf.layers.BaseOutputLayer.Builder
-
- lossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- lossFunction(LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- lossFunction - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- lossFunction(IActivation, LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Configure the VAE to use the specified loss function for the reconstruction, instead of a
ReconstructionDistribution.
- lossFunction(Activation, LossFunctions.LossFunction) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Configure the VAE to use the specified loss function for the reconstruction, instead of a
ReconstructionDistribution.
- lossFunction(IActivation, ILossFunction) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Configure the VAE to use the specified loss function for the reconstruction, instead of a
ReconstructionDistribution.
- lossFunctionExpectsProbability(ILossFunction) - Static method in class org.deeplearning4j.util.OutputLayerUtil
-
- LossFunctionWrapper - Class in org.deeplearning4j.nn.conf.layers.variational
-
LossFunctionWrapper allows training of a VAE model with a standard (possibly deterministic) neural network loss function
for the reconstruction, instead of using a
ReconstructionDistribution
as would normally be done with a VAE model.
- LossFunctionWrapper(IActivation, ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- LossFunctionWrapper(Activation, ILossFunction) - Constructor for class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- LossLayer - Class in org.deeplearning4j.nn.conf.layers
-
LossLayer is a flexible output layer that performs a loss function on an input without MLP logic.
LossLayer is
similar to
OutputLayer
in that both perform loss calculations for network outputs vs.
- LossLayer(LossLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.LossLayer
-
- LossLayer - Class in org.deeplearning4j.nn.layers
-
LossLayer is a flexible output "layer" that performs a loss function on
an input without MLP logic.
- LossLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.LossLayer
-
- LossLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- lossPositionScale(ILossFunction) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer.Builder
-
Loss function for position/scale component of the loss function
- LSTM - Class in org.deeplearning4j.nn.conf.layers
-
LSTM recurrent neural network layer without peephole connections.
- LSTM - Class in org.deeplearning4j.nn.layers.recurrent
-
LSTM layer implementation.
- LSTM(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- LSTM.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- LSTMHelper - Interface in org.deeplearning4j.nn.layers.recurrent
-
Helper for the recurrent LSTM layer (no peephole connections).
- LSTMHelpers - Class in org.deeplearning4j.nn.layers.recurrent
-
- LSTMParamInitializer - Class in org.deeplearning4j.nn.params
-
- LSTMParamInitializer() - Constructor for class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- maintenance() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
This method does maintenance of updates within
- mapper() - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Object mapper for serialization of configurations
- mapperYaml() - Static method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
Object mapper for serialization of configurations
- markExternalUpdates(boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- markExternalUpdates(boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- markExternalUpdates(boolean) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method allows to highlight early availability of updates
- mask - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- MASK_KEY - Static variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- maskArray - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- maskArray - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- maskArrays - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- maskedPoolingConvolution(PoolingType, INDArray, INDArray, int, DataType) - Static method in class org.deeplearning4j.util.MaskedReductionUtil
-
- maskedPoolingEpsilonCnn(PoolingType, INDArray, INDArray, INDArray, int, DataType) - Static method in class org.deeplearning4j.util.MaskedReductionUtil
-
- maskedPoolingEpsilonTimeSeries(PoolingType, INDArray, INDArray, INDArray, int) - Static method in class org.deeplearning4j.util.MaskedReductionUtil
-
- maskedPoolingTimeSeries(PoolingType, INDArray, INDArray, int, DataType) - Static method in class org.deeplearning4j.util.MaskedReductionUtil
-
- MaskedReductionUtil - Class in org.deeplearning4j.util
-
This is a TEMPORARY class for implementing global pooling with masking.
- MaskLayer - Class in org.deeplearning4j.nn.conf.layers.util
-
MaskLayer applies the mask array to the forward pass activations, and backward pass gradients, passing through
this layer.
- MaskLayer() - Constructor for class org.deeplearning4j.nn.conf.layers.util.MaskLayer
-
- MaskLayer - Class in org.deeplearning4j.nn.layers.util
-
MaskLayer applies the mask array to the forward pass activations, and backward pass gradients, passing through
this layer.
- MaskLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.util.MaskLayer
-
- maskShape - Variable in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- MaskState - Enum in org.deeplearning4j.nn.api
-
MaskState: specifies whether a mask should be applied or not.
- maskState - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- maskValue(double) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer.Builder
-
- MaskZeroLayer - Class in org.deeplearning4j.nn.conf.layers.util
-
Wrapper which masks timesteps with activation equal to the specified masking value (0.0 default).
- MaskZeroLayer(MaskZeroLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer
-
- MaskZeroLayer(Layer, double) - Constructor for class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer
-
- MaskZeroLayer - Class in org.deeplearning4j.nn.layers.recurrent
-
Masks timesteps with activation equal to the specified masking value, defaulting to 0.0.
- MaskZeroLayer(Layer, double) - Constructor for class org.deeplearning4j.nn.layers.recurrent.MaskZeroLayer
-
- MaskZeroLayer.Builder - Class in org.deeplearning4j.nn.conf.layers.util
-
- matthewsCorrelation(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Deprecated.
- maxAppliedIndexEverywhere() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- MaxEpochsTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Terminate training if the number of epochs exceeds the maximum number of epochs
- MaxEpochsTerminationCondition(int) - Constructor for class org.deeplearning4j.earlystopping.termination.MaxEpochsTerminationCondition
-
- MaxNormConstraint - Class in org.deeplearning4j.nn.conf.constraint
-
Constrain the maximum L2 norm of the incoming weights for each unit to be less than or equal to the specified value.
- MaxNormConstraint(double, Set<String>, int...) - Constructor for class org.deeplearning4j.nn.conf.constraint.MaxNormConstraint
-
- MaxNormConstraint(double, int...) - Constructor for class org.deeplearning4j.nn.conf.constraint.MaxNormConstraint
-
Apply to weights but not biases by default
- maxNumLineSearchIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- maxNumLineSearchIterations(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Maximum number of line search iterations.
- maxNumLineSearchIterations - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- maxNumLineSearchIterations(int) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- maxNumLineSearchIterations - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- MaxScoreIterationTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Iteration termination condition for terminating training if the minibatch score exceeds a certain value.
- MaxScoreIterationTerminationCondition(double) - Constructor for class org.deeplearning4j.earlystopping.termination.MaxScoreIterationTerminationCondition
-
- MaxTimeIterationTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Terminate training based on max time.
- MaxTimeIterationTerminationCondition(long, TimeUnit) - Constructor for class org.deeplearning4j.earlystopping.termination.MaxTimeIterationTerminationCondition
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.FrozenVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- maxVertexInputs() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- mds - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- mdsIterator - Variable in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- mdsIterator - Variable in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- memCellActivations - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- memCellState - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- memoryInfo(int, InputType...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Generate information regarding memory use for the network, for the given input types and minibatch size.
- memoryInfo(int, InputType) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Generate information regarding memory use for the network, for the given input type and minibatch size.
- memoryParameters(long, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
This method allows to define buffer memory parameters for this GradientsAccumulator
Default values: 100MB initialMemory, 5 queueSize
- MemoryReport - Class in org.deeplearning4j.nn.conf.memory
-
A MemoryReport is designed to represent the estimated memory usage of a model, as a function of:
- Training vs.
- MemoryReport() - Constructor for class org.deeplearning4j.nn.conf.memory.MemoryReport
-
- MemoryType - Enum in org.deeplearning4j.nn.conf.memory
-
Type of memory
- MemoryUseMode - Enum in org.deeplearning4j.nn.conf.memory
-
This simple enumeration defines the memory is used during inference or training.
- merge(ThresholdAlgorithmReducer) - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.FixedThresholdAlgorithm.FixedAlgorithmThresholdReducer
-
- merge(ThresholdAlgorithmReducer) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.encoding.ThresholdAlgorithmReducer
-
Combine two reducers and return the result
- MergeVertex - Class in org.deeplearning4j.nn.conf.graph
-
A MergeVertex is used to combine the activations of two or more layers/GraphVertex by means of concatenation/merging.
Exactly how this is done depends on the type of input.
For 2d (feed forward layer) inputs: MergeVertex([numExamples,layerSize1],[numExamples,layerSize2]) -> [numExamples,layerSize1 + layerSize2]
For 3d (time series) inputs: MergeVertex([numExamples,layerSize1,timeSeriesLength],[numExamples,layerSize2,timeSeriesLength])
-> [numExamples,layerSize1 + layerSize2,timeSeriesLength]
For 4d (convolutional) inputs: MergeVertex([numExamples,depth1,width,height],[numExamples,depth2,width,height])
-> [numExamples,depth1 + depth2,width,height]
- MergeVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- MergeVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
A MergeVertex is used to combine the activations of two or more layers/GraphVertex by means of concatenation/merging.
Exactly how this is done depends on the type of input.
For 2d (feed forward layer) inputs: MergeVertex([numExamples,layerSize1],[numExamples,layerSize2]) -> [numExamples,layerSize1 + layerSize2]
For 3d (time series) inputs: MergeVertex([numExamples,layerSize1,timeSeriesLength],[numExamples,layerSize2,timeSeriesLength])
-> [numExamples,layerSize1 + layerSize2,timeSeriesLength]
For 4d (convolutional) inputs: MergeVertex([numExamples,depth1,width,height],[numExamples,depth2,width,height])
-> [numExamples,depth1 + depth2,width,height]
- MergeVertex(ComputationGraph, String, int, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- MergeVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- messageHandler(MessageHandler) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
This method allows to specify MessageHandler instance
Default value: EncodingHandler
- MessageHandler - Interface in org.deeplearning4j.optimize.solvers.accumulation
-
This interface describes communication primitive for GradientsAccumulator
PLEASE NOTE: All implementations of this interface must be thread-safe.
- messages - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- metric - Variable in class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- metric - Variable in class org.deeplearning4j.earlystopping.scorecalc.ClassificationScoreCalculator
-
- metric - Variable in class org.deeplearning4j.earlystopping.scorecalc.RegressionScoreCalculator
-
- metric - Variable in class org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator
-
- metric - Variable in class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
- minibatch(boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
If doing minibatch training or not.
- miniBatch - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- miniBatch(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Process input as minibatch vs full dataset.
- miniBatch - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- miniBatch(boolean) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Whether scores and gradients should be divided by the minibatch size.
Most users should leave this ast he default value of true.
- miniBatch - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- minibatchCount - Variable in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- minimize() - Method in enum org.deeplearning4j.eval.RegressionEvaluation.Metric
-
Deprecated.
- minimize - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- minimize(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Objective function to minimize or maximize cost function
Default set to minimize true.
- minimize - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- minimize(boolean) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- minimize - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- minimizeScore() - Method in class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- minimizeScore() - Method in class org.deeplearning4j.earlystopping.scorecalc.ClassificationScoreCalculator
-
- minimizeScore() - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
- minimizeScore() - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculatorCG
-
Deprecated.
- minimizeScore() - Method in class org.deeplearning4j.earlystopping.scorecalc.RegressionScoreCalculator
-
- minimizeScore() - Method in class org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator
-
- minimizeScore() - Method in interface org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator
-
- minimizeScore() - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
- minimizeScore() - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- MinMaxNormConstraint - Class in org.deeplearning4j.nn.conf.constraint
-
Constrain the minimum AND maximum L2 norm of the incoming weights for each unit to be between the specified values.
- MinMaxNormConstraint(double, double, int...) - Constructor for class org.deeplearning4j.nn.conf.constraint.MinMaxNormConstraint
-
Apply to weights but not biases by default
- MinMaxNormConstraint(double, double, double, int...) - Constructor for class org.deeplearning4j.nn.conf.constraint.MinMaxNormConstraint
-
Apply to weights but not biases by default
- MinMaxNormConstraint(double, double, double, Set<String>, int...) - Constructor for class org.deeplearning4j.nn.conf.constraint.MinMaxNormConstraint
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.FrozenVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- minVertexInputs() - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- MKLDNNBatchNormHelper - Class in org.deeplearning4j.nn.layers.mkldnn
-
MKL-DNN batch normalization helper implementation
- MKLDNNBatchNormHelper(DataType) - Constructor for class org.deeplearning4j.nn.layers.mkldnn.MKLDNNBatchNormHelper
-
- MKLDNNConvHelper - Class in org.deeplearning4j.nn.layers.mkldnn
-
MKL-DNN Convolution (2d) helper
- MKLDNNConvHelper(DataType) - Constructor for class org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper
-
- mklDnnEnabled() - Static method in class org.deeplearning4j.nn.layers.mkldnn.BaseMKLDNNHelper
-
- MKLDNNLocalResponseNormalizationHelper - Class in org.deeplearning4j.nn.layers.mkldnn
-
MKL-DNN Local response normalization helper
- MKLDNNLocalResponseNormalizationHelper(DataType) - Constructor for class org.deeplearning4j.nn.layers.mkldnn.MKLDNNLocalResponseNormalizationHelper
-
- MKLDNNSubsamplingHelper - Class in org.deeplearning4j.nn.layers.mkldnn
-
MKL-DNN Subsampling (2d) helper
- MKLDNNSubsamplingHelper(DataType) - Constructor for class org.deeplearning4j.nn.layers.mkldnn.MKLDNNSubsamplingHelper
-
- mode(Bidirectional.Mode) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional.Builder
-
- model - Variable in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- Model - Interface in org.deeplearning4j.nn.api
-
A Model is meant for predicting something from data.
- model(Model) - Method in class org.deeplearning4j.optimize.Solver.Builder
-
- model - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- ModelAdapter<T> - Interface in org.deeplearning4j.nn.api
-
This interface describes abstraction that uses provided model to convert INDArrays to some specific output
- modelSaver(EarlyStoppingModelSaver<T>) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
How should models be saved? (Default: in memory)
- ModelSavingCallback - Class in org.deeplearning4j.optimize.listeners.callbacks
-
This callback will save model after each EvaluativeListener invocation.
- ModelSavingCallback(String) - Constructor for class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
This constructor will create ModelSavingCallback instance that will save models in current folder
PLEASE NOTE: Make sure you have write access to the current folder
- ModelSavingCallback(File, String) - Constructor for class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
This constructor will create ModelSavingCallback instance that will save models in specified folder
PLEASE NOTE: Make sure you have write access to the target folder
- ModelSerializer - Class in org.deeplearning4j.util
-
Utility class suited to save/restore neural net models
- movingAverage(INDArray, int) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Calculate a moving average given the length
- MultiDataSetIteratorAdapter - Class in org.deeplearning4j.datasets.iterator.impl
-
Iterator that adapts a DataSetIterator to a MultiDataSetIterator
- MultiDataSetIteratorAdapter(DataSetIterator) - Constructor for class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- MultiLayerConfiguration - Class in org.deeplearning4j.nn.conf
-
Configuration for a multi layer network
- MultiLayerConfiguration() - Constructor for class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- MultiLayerConfiguration.Builder - Class in org.deeplearning4j.nn.conf
-
- MultiLayerConfigurationDeserializer - Class in org.deeplearning4j.nn.conf.serde
-
- MultiLayerConfigurationDeserializer(JsonDeserializer<?>) - Constructor for class org.deeplearning4j.nn.conf.serde.MultiLayerConfigurationDeserializer
-
- MultiLayerNetwork - Class in org.deeplearning4j.nn.multilayer
-
MultiLayerNetwork is a neural network with multiple layers in a stack, and usually an output layer.
For neural networks with a more complex connection architecture, use
ComputationGraph
which allows for an arbitrary directed acyclic graph connection structure between layers.
- MultiLayerNetwork(MultiLayerConfiguration) - Constructor for class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- MultiLayerNetwork(String, INDArray) - Constructor for class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Initialize the network based on the configuration (a MultiLayerConfiguration in JSON format) and parameters array
- MultiLayerNetwork(MultiLayerConfiguration, INDArray) - Constructor for class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Initialize the network based on the configuration and parameters array
- MultiLayerUpdater - Class in org.deeplearning4j.nn.updater
-
MultiLayerUpdater: Gradient updater for MultiLayerNetworks.
- MultiLayerUpdater(MultiLayerNetwork) - Constructor for class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- MultiLayerUpdater(MultiLayerNetwork, INDArray) - Constructor for class org.deeplearning4j.nn.updater.MultiLayerUpdater
-
- n(double) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization.Builder
-
Number of adjacent kernel maps to use when doing LRN.
- n - Variable in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- name(String) - Method in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
Layer name assigns layer string name.
- name(String) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
- name(String) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.Builder
-
- name() - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer.OCNNLossFunction
-
- needsLabels() - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
Returns true if labels are required
for this output layer
- needsLabels() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- needsLabels() - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- needsLabels() - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- needsLabels() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- needsLabels() - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- needsLabels() - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
- needsLabels() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- needsLabels() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- NegativeDefaultStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Inverse step function
- NegativeDefaultStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.NegativeDefaultStepFunction
-
- NegativeDefaultStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
-
Inverse step function
- NegativeDefaultStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
-
- NegativeGradientStepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Subtract the line
- NegativeGradientStepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.NegativeGradientStepFunction
-
- NegativeGradientStepFunction - Class in org.deeplearning4j.optimize.stepfunctions
-
Subtract the line
- NegativeGradientStepFunction() - Constructor for class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.BernoulliReconstructionDistribution
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.CompositeReconstructionDistribution
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.ExponentialReconstructionDistribution
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.GaussianReconstructionDistribution
-
- negLogProbability(INDArray, INDArray, boolean) - Method in class org.deeplearning4j.nn.conf.layers.variational.LossFunctionWrapper
-
- negLogProbability(INDArray, INDArray, boolean) - Method in interface org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution
-
Calculate the negative log probability (summed or averaged over each example in the minibatch)
- network - Variable in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- networkInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- networkInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
List of inputs to the network, by name
- networkInputTypes - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- NetworkMemoryReport - Class in org.deeplearning4j.nn.conf.memory
-
Network memory reports is a class that is used to store/represent the memory requirements of a
MultiLayerNetwork
or
ComputationGraph
,
composed of multiple layers and/or vertices.
- NetworkMemoryReport(Map<String, MemoryReport>, Class<?>, String, InputType...) - Constructor for class org.deeplearning4j.nn.conf.memory.NetworkMemoryReport
-
- networkOutputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- networkOutputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
List of network outputs, by name
- NetworkUtils - Class in org.deeplearning4j.util
-
- NeuralNetConfiguration - Class in org.deeplearning4j.nn.conf
-
A Serializable configuration
for neural nets that covers per layer parameters
- NeuralNetConfiguration() - Constructor for class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- NeuralNetConfiguration.Builder - Class in org.deeplearning4j.nn.conf
-
NeuralNetConfiguration builder, used as a starting point for creating a MultiLayerConfiguration or
ComputationGraphConfiguration.
Note that values set here on the layer will be applied to all relevant layers - unless the value is overridden
on a layer's configuration
- NeuralNetConfiguration.ListBuilder - Class in org.deeplearning4j.nn.conf
-
Fluent interface for building a list of configurations
- NeuralNetConfiguration.ListBuilder.InputTypeBuilder - Class in org.deeplearning4j.nn.conf
-
Helper class for setting input types
- NeuralNetwork - Interface in org.deeplearning4j.nn.api
-
- newEval() - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseIEvaluationScoreCalculator
-
- newEval() - Method in class org.deeplearning4j.earlystopping.scorecalc.ClassificationScoreCalculator
-
- newEval() - Method in class org.deeplearning4j.earlystopping.scorecalc.RegressionScoreCalculator
-
- newEval() - Method in class org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator
-
- newReducer() - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.AdaptiveThresholdAlgorithm
-
- newReducer() - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.FixedThresholdAlgorithm
-
- newReducer() - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold.TargetSparsityThresholdAlgorithm
-
- newReducer() - Method in interface org.deeplearning4j.optimize.solvers.accumulation.encoding.ThresholdAlgorithm
-
Create a new ThresholdAlgorithmReducer.
- newShape - Variable in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- next(int) - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- next() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- nHeads(int) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
Number of Attention Heads
- nHeads(int) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer.Builder
-
Number of Attention Heads
- nHeads(int) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer.Builder
-
Number of Attention Heads
- nHeads(int) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer.Builder
-
Number of Attention Heads
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer.Builder
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer.Builder
-
- nIn - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
Number of inputs for the layer (usually the size of the last layer).
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
Number of inputs for the layer (usually the size of the last layer).
- nIn(long) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
Number of inputs for the layer (usually the size of the last layer).
- nIn - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer.Builder
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer.Builder
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer.Builder
-
- nIn(int) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer.Builder
-
- nInKeys(long) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
Size of Keys
- nInQueries(long) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
Size of Queries
- nInReplace(int, int, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a vertex layer by changing nIn of the specified layer.
Note that only the specified layer will be modified - all other layers will not be changed by this call.
- nInReplace(int, int, WeightInit, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a vertex layer by changing nIn of the specified layer.
Note that only the specified layer will be modified - all other layers will not be changed by this call.
- nInReplace(int, int, IWeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a vertex layer by changing nIn of the specified layer.
Note that only the specified layer will be modified - all other layers will not be changed by this call.
- nInReplace(String, int, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Modify the architecture of a vertex layer by changing nIn of the specified layer.
Note that only the specified layer will be modified - all other layers will not be changed by this call.
- nInReplace(String, int, WeightInit, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Modify the architecture of a vertex layer by changing nIn of the specified layer.
Note that only the specified layer will be modified - all other layers will not be changed by this call.
- nInReplace(String, int, IWeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Modify the architecture of a vertex layer by changing nIn of the specified layer.
Note that only the specified layer will be modified - all other layers will not be changed by this call.
- nInValues(long) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
Size of Values
- nms(List<DetectedObject>, double) - Static method in class org.deeplearning4j.nn.layers.objdetect.YoloUtils
-
Performs non-maximum suppression (NMS) on objects, using their IOU with threshold to match pairs.
- NO_PARAMS_MARKER - Static variable in class org.deeplearning4j.util.ModelSerializer
-
- noLeverageOverride - Variable in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- NonNegativeConstraint - Class in org.deeplearning4j.nn.conf.constraint
-
Constrain the parameters to be non-negative.
- NonNegativeConstraint() - Constructor for class org.deeplearning4j.nn.conf.constraint.NonNegativeConstraint
-
- NoOpResidualPostProcessor - Class in org.deeplearning4j.optimize.solvers.accumulation.encoding.residual
-
This residual post process is a "no op" post processor.
- NoOpResidualPostProcessor() - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.encoding.residual.NoOpResidualPostProcessor
-
- NoParamLayer - Class in org.deeplearning4j.nn.conf.layers
-
- NoParamLayer(Layer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.NoParamLayer
-
- NormalDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
A normal (Gaussian) distribution, with two parameters: mean and standard deviation
- NormalDistribution(double, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
Create a normal distribution
with the given mean and std
- NORMALIZER_BIN - Static variable in class org.deeplearning4j.util.ModelSerializer
-
- notifyDead() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- nOut(long) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
Output Size
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer.Builder
-
- nOut - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
Number of inputs for the layer (usually the size of the last layer).
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
Number of outputs - used to set the layer size (number of units/nodes for the current layer).
- nOut(long) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
Number of outputs - used to set the layer size (number of units/nodes for the current layer).
- nOut - Variable in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.LossLayer.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Sets the number of channels to use in the 2d convolution.
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer.Builder
-
- nOut(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Set the size of the VAE state Z.
- nOut(int) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
- nOutReplace(int, int, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
- nOutReplace(int, int, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
- nOutReplace(int, int, WeightInit, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(int, int, Distribution, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(int, int, WeightInit, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(int, int, Distribution, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(int, int, IWeightInit, IWeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Modify the architecture of a layer by changing nOut
Note this will also affect the layer that follows the layer specified, unless it is the output layer
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(String, int, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Modify the architecture of a vertex layer by changing nOut
Note this will also affect the vertex layer that follows the layer specified, unless it is the output layer
Currently does not support modifying nOut of layers that feed into non-layer vertices like merge, subset etc
To modify nOut for such vertices use remove vertex, followed by add vertex
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(String, int, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Modify the architecture of a vertex layer by changing nOut
Note this will also affect the vertex layer that follows the layer specified, unless it is the output layer
Currently does not support modifying nOut of layers that feed into non-layer vertices like merge, subset etc
To modify nOut for such vertices use remove vertex, followed by add vertex
Can specify different weight init schemes for the specified layer and the layer that follows it.
- nOutReplace(String, int, Distribution, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Modified nOut of specified layer.
- nOutReplace(String, int, WeightInit, Distribution) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- nOutReplace(String, int, Distribution, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- nOutReplace(String, int, WeightInit, WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- noWorkspaceFor(ArrayType) - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr.Builder
-
Specify that no workspace should be used for array of the specified type - i.e., these arrays should all
be scoped out.
- noWorkspaces(Map<String, Pointer>) - Static method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- noWorkspaces() - Static method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- noWorkspacesImmutable() - Static method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- nQueries(int) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer.Builder
-
Number of queries to learn
- nu - Variable in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
For nu definition see the paper
- nu(double) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
For nu definition see the paper
- NU_KEY - Static variable in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- numChannels - Variable in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- numChannels - Variable in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- numChannels(int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Returns the number of
feature maps for a given shape (must be at least 3 dimensions
- numElementsDrained - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- numElementsReady - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- numFeatureMap(NeuralNetConfiguration) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- numLabels() - Method in interface org.deeplearning4j.nn.api.Classifier
-
- numLabels() - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Returns the number of possible labels
- numLabels() - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- numLabels() - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- numLabels() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Returns the number of possible labels
- numLabels() - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- numLabels() - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- numLabels() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- numLabels() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- numParams() - Method in interface org.deeplearning4j.nn.api.Model
-
the number of parameters for the model
- numParams(boolean) - Method in interface org.deeplearning4j.nn.api.Model
-
the number of parameters for the model
- numParams(NeuralNetConfiguration) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
- numParams(Layer) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
- numParams() - Method in interface org.deeplearning4j.nn.api.Trainable
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.FrozenVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.L2NormalizeVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.L2Vertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.MergeVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.rnn.DuplicateToTimeSeriesVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.rnn.LastTimeStepVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.StackVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- numParams() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- numParams() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- numParams() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- numParams() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
The number of parameters for the model
- numParams(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
The number of parameters for the model
- numParams(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- numParams() - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
The number of parameters for the model, for backprop (i.e., excluding visible bias)
- numParams() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- numParams() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- numParams() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- numParams() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.recurrent.MaskZeroLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- numParams() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- numParams() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- numParams() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- numParams(boolean) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- numParams() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns the number of parameters in the network
- numParams(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns the number of parameters in the network
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.Convolution3DParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.Convolution3DParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.ElementWiseParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- numParams(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- numParams(Layer) - Method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- numSamples(int) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Set the number of samples per data point (from VAE state Z) used when doing pretraining.
- numSamples - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- oa - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- OCNNLossFunction() - Constructor for class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer.OCNNLossFunction
-
- OCNNOutputLayer - Class in org.deeplearning4j.nn.conf.ocnn
-
An implementation of one class neural networks from:
https://arxiv.org/pdf/1802.06360.pdf
The one class neural network approach is an extension of the standard output layer with a single set of weights, an
activation function, and a bias to: 2 sets of weights, a learnable "r" parameter that is held static 1 traditional
set of weights.
- OCNNOutputLayer(OCNNOutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer
-
- OCNNOutputLayer(int, double, IActivation, int, double, boolean) - Constructor for class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer
-
- OCNNOutputLayer - Class in org.deeplearning4j.nn.layers.ocnn
-
- OCNNOutputLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
- OCNNOutputLayer.Builder - Class in org.deeplearning4j.nn.conf.ocnn
-
- OCNNOutputLayer.OCNNLossFunction - Class in org.deeplearning4j.nn.layers.ocnn
-
- OCNNParamInitializer - Class in org.deeplearning4j.nn.layers.ocnn
-
- OCNNParamInitializer() - Constructor for class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- offer(E) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- offer(E, long, TimeUnit) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- oldScore - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- onBackwardPass(Model) - Method in class org.deeplearning4j.optimize.api.BaseTrainingListener
-
- onBackwardPass(Model) - Method in interface org.deeplearning4j.optimize.api.TrainingListener
-
Called once per iteration (backward pass) after gradients have been calculated, and updated
Gradients are available via
Model.gradient()
.
- onBackwardPass(Model) - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener
-
- onBackwardPass(Model) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- onCompletion(EarlyStoppingResult<T>) - Method in interface org.deeplearning4j.earlystopping.listener.EarlyStoppingListener
-
Method that is called at the end of early stopping training
- ONE_ON_2LOGE_10 - Static variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- onEpoch(int, double, EarlyStoppingConfiguration<T>, T) - Method in interface org.deeplearning4j.earlystopping.listener.EarlyStoppingListener
-
Method that is called at the end of each epoch completed during early stopping training
- onEpochEnd(Model) - Method in class org.deeplearning4j.optimize.api.BaseTrainingListener
-
- onEpochEnd(Model) - Method in interface org.deeplearning4j.optimize.api.TrainingListener
-
- onEpochEnd(Model) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener
-
- onEpochEnd(Model) - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- onEpochEnd(Model) - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener
-
- onEpochEnd(Model) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- onEpochStart(Model) - Method in class org.deeplearning4j.optimize.api.BaseTrainingListener
-
- onEpochStart(Model) - Method in interface org.deeplearning4j.optimize.api.TrainingListener
-
- onEpochStart(Model) - Method in class org.deeplearning4j.optimize.listeners.EvaluativeListener
-
- onEpochStart(Model) - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener
-
- onEpochStart(Model) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- onesMaskForInput(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
This method generates an "all ones" mask array for use in the SameDiff model when none is provided.
- onForwardPass(Model, List<INDArray>) - Method in class org.deeplearning4j.optimize.api.BaseTrainingListener
-
- onForwardPass(Model, Map<String, INDArray>) - Method in class org.deeplearning4j.optimize.api.BaseTrainingListener
-
- onForwardPass(Model, List<INDArray>) - Method in interface org.deeplearning4j.optimize.api.TrainingListener
-
Called once per iteration (forward pass) for activations (usually for a
MultiLayerNetwork
),
only at training time
- onForwardPass(Model, Map<String, INDArray>) - Method in interface org.deeplearning4j.optimize.api.TrainingListener
-
Called once per iteration (forward pass) for activations (usually for a
ComputationGraph
),
only at training time
- onForwardPass(Model, List<INDArray>) - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener
-
- onForwardPass(Model, Map<String, INDArray>) - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener
-
- onForwardPass(Model, List<INDArray>) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- onForwardPass(Model, Map<String, INDArray>) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- onGradientCalculation(Model) - Method in class org.deeplearning4j.optimize.api.BaseTrainingListener
-
- onGradientCalculation(Model) - Method in interface org.deeplearning4j.optimize.api.TrainingListener
-
Called once per iteration (backward pass)
before the gradients are updated
Gradients are available via
Model.gradient()
.
- onGradientCalculation(Model) - Method in class org.deeplearning4j.optimize.listeners.FailureTestingListener
-
- onGradientCalculation(Model) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- onStart(EarlyStoppingConfiguration<T>, T) - Method in interface org.deeplearning4j.earlystopping.listener.EarlyStoppingListener
-
Method to be called when early stopping training is first started
- op - Variable in class org.deeplearning4j.nn.conf.graph.ElementWiseVertex
-
- optimizationAlgo - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- optimizationAlgo(OptimizationAlgorithm) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Optimization algorithm to use.
- optimizationAlgo - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- optimizationAlgo(OptimizationAlgorithm) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- optimizationAlgo - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- OptimizationAlgorithm - Enum in org.deeplearning4j.nn.api
-
Optimization algorithm to use
- optimize(LayerWorkspaceMgr) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Calls optimize
- optimize(INDArray, INDArray, INDArray, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.optimize.api.LineOptimizer
-
Line optimizer
- optimize(LayerWorkspaceMgr) - Method in class org.deeplearning4j.optimize.Solver
-
- optimize(INDArray, INDArray, INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- optimize(LayerWorkspaceMgr) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
Optimize call.
- optimize(LayerWorkspaceMgr) - Method in class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
-
- optimizer - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- optimizer - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- Or(FailureTestingListener.FailureTrigger...) - Constructor for class org.deeplearning4j.optimize.listeners.FailureTestingListener.Or
-
- orderedLayers - Variable in class org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater
-
- ordering - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- org.deeplearning4j.datasets.iterator.impl - package org.deeplearning4j.datasets.iterator.impl
-
- org.deeplearning4j.earlystopping - package org.deeplearning4j.earlystopping
-
- org.deeplearning4j.earlystopping.listener - package org.deeplearning4j.earlystopping.listener
-
- org.deeplearning4j.earlystopping.saver - package org.deeplearning4j.earlystopping.saver
-
- org.deeplearning4j.earlystopping.scorecalc - package org.deeplearning4j.earlystopping.scorecalc
-
- org.deeplearning4j.earlystopping.scorecalc.base - package org.deeplearning4j.earlystopping.scorecalc.base
-
- org.deeplearning4j.earlystopping.termination - package org.deeplearning4j.earlystopping.termination
-
- org.deeplearning4j.earlystopping.trainer - package org.deeplearning4j.earlystopping.trainer
-
- org.deeplearning4j.eval - package org.deeplearning4j.eval
-
- org.deeplearning4j.eval.curves - package org.deeplearning4j.eval.curves
-
- org.deeplearning4j.eval.meta - package org.deeplearning4j.eval.meta
-
- org.deeplearning4j.exception - package org.deeplearning4j.exception
-
- org.deeplearning4j.gradientcheck - package org.deeplearning4j.gradientcheck
-
- org.deeplearning4j.nn.adapters - package org.deeplearning4j.nn.adapters
-
- org.deeplearning4j.nn.api - package org.deeplearning4j.nn.api
-
- org.deeplearning4j.nn.api.layers - package org.deeplearning4j.nn.api.layers
-
- org.deeplearning4j.nn.conf - package org.deeplearning4j.nn.conf
-
- org.deeplearning4j.nn.conf.constraint - package org.deeplearning4j.nn.conf.constraint
-
- org.deeplearning4j.nn.conf.distribution - package org.deeplearning4j.nn.conf.distribution
-
- org.deeplearning4j.nn.conf.distribution.serde - package org.deeplearning4j.nn.conf.distribution.serde
-
- org.deeplearning4j.nn.conf.dropout - package org.deeplearning4j.nn.conf.dropout
-
- org.deeplearning4j.nn.conf.graph - package org.deeplearning4j.nn.conf.graph
-
- org.deeplearning4j.nn.conf.graph.rnn - package org.deeplearning4j.nn.conf.graph.rnn
-
- org.deeplearning4j.nn.conf.inputs - package org.deeplearning4j.nn.conf.inputs
-
- org.deeplearning4j.nn.conf.layers - package org.deeplearning4j.nn.conf.layers
-
- org.deeplearning4j.nn.conf.layers.convolutional - package org.deeplearning4j.nn.conf.layers.convolutional
-
- org.deeplearning4j.nn.conf.layers.misc - package org.deeplearning4j.nn.conf.layers.misc
-
- org.deeplearning4j.nn.conf.layers.objdetect - package org.deeplearning4j.nn.conf.layers.objdetect
-
- org.deeplearning4j.nn.conf.layers.recurrent - package org.deeplearning4j.nn.conf.layers.recurrent
-
- org.deeplearning4j.nn.conf.layers.samediff - package org.deeplearning4j.nn.conf.layers.samediff
-
- org.deeplearning4j.nn.conf.layers.util - package org.deeplearning4j.nn.conf.layers.util
-
- org.deeplearning4j.nn.conf.layers.variational - package org.deeplearning4j.nn.conf.layers.variational
-
- org.deeplearning4j.nn.conf.layers.wrapper - package org.deeplearning4j.nn.conf.layers.wrapper
-
- org.deeplearning4j.nn.conf.memory - package org.deeplearning4j.nn.conf.memory
-
- org.deeplearning4j.nn.conf.misc - package org.deeplearning4j.nn.conf.misc
-
- org.deeplearning4j.nn.conf.module - package org.deeplearning4j.nn.conf.module
-
- org.deeplearning4j.nn.conf.ocnn - package org.deeplearning4j.nn.conf.ocnn
-
- org.deeplearning4j.nn.conf.preprocessor - package org.deeplearning4j.nn.conf.preprocessor
-
- org.deeplearning4j.nn.conf.serde - package org.deeplearning4j.nn.conf.serde
-
- org.deeplearning4j.nn.conf.serde.legacy - package org.deeplearning4j.nn.conf.serde.legacy
-
- org.deeplearning4j.nn.conf.stepfunctions - package org.deeplearning4j.nn.conf.stepfunctions
-
- org.deeplearning4j.nn.conf.weightnoise - package org.deeplearning4j.nn.conf.weightnoise
-
- org.deeplearning4j.nn.gradient - package org.deeplearning4j.nn.gradient
-
- org.deeplearning4j.nn.graph - package org.deeplearning4j.nn.graph
-
- org.deeplearning4j.nn.graph.util - package org.deeplearning4j.nn.graph.util
-
- org.deeplearning4j.nn.graph.vertex - package org.deeplearning4j.nn.graph.vertex
-
- org.deeplearning4j.nn.graph.vertex.impl - package org.deeplearning4j.nn.graph.vertex.impl
-
- org.deeplearning4j.nn.graph.vertex.impl.rnn - package org.deeplearning4j.nn.graph.vertex.impl.rnn
-
- org.deeplearning4j.nn.layers - package org.deeplearning4j.nn.layers
-
- org.deeplearning4j.nn.layers.convolution - package org.deeplearning4j.nn.layers.convolution
-
- org.deeplearning4j.nn.layers.convolution.subsampling - package org.deeplearning4j.nn.layers.convolution.subsampling
-
- org.deeplearning4j.nn.layers.convolution.upsampling - package org.deeplearning4j.nn.layers.convolution.upsampling
-
- org.deeplearning4j.nn.layers.feedforward - package org.deeplearning4j.nn.layers.feedforward
-
- org.deeplearning4j.nn.layers.feedforward.autoencoder - package org.deeplearning4j.nn.layers.feedforward.autoencoder
-
- org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive - package org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive
-
- org.deeplearning4j.nn.layers.feedforward.dense - package org.deeplearning4j.nn.layers.feedforward.dense
-
- org.deeplearning4j.nn.layers.feedforward.elementwise - package org.deeplearning4j.nn.layers.feedforward.elementwise
-
- org.deeplearning4j.nn.layers.feedforward.embedding - package org.deeplearning4j.nn.layers.feedforward.embedding
-
- org.deeplearning4j.nn.layers.mkldnn - package org.deeplearning4j.nn.layers.mkldnn
-
- org.deeplearning4j.nn.layers.normalization - package org.deeplearning4j.nn.layers.normalization
-
- org.deeplearning4j.nn.layers.objdetect - package org.deeplearning4j.nn.layers.objdetect
-
- org.deeplearning4j.nn.layers.ocnn - package org.deeplearning4j.nn.layers.ocnn
-
- org.deeplearning4j.nn.layers.pooling - package org.deeplearning4j.nn.layers.pooling
-
- org.deeplearning4j.nn.layers.recurrent - package org.deeplearning4j.nn.layers.recurrent
-
- org.deeplearning4j.nn.layers.samediff - package org.deeplearning4j.nn.layers.samediff
-
- org.deeplearning4j.nn.layers.training - package org.deeplearning4j.nn.layers.training
-
- org.deeplearning4j.nn.layers.util - package org.deeplearning4j.nn.layers.util
-
- org.deeplearning4j.nn.layers.variational - package org.deeplearning4j.nn.layers.variational
-
- org.deeplearning4j.nn.layers.wrapper - package org.deeplearning4j.nn.layers.wrapper
-
- org.deeplearning4j.nn.multilayer - package org.deeplearning4j.nn.multilayer
-
- org.deeplearning4j.nn.params - package org.deeplearning4j.nn.params
-
- org.deeplearning4j.nn.transferlearning - package org.deeplearning4j.nn.transferlearning
-
- org.deeplearning4j.nn.updater - package org.deeplearning4j.nn.updater
-
- org.deeplearning4j.nn.updater.graph - package org.deeplearning4j.nn.updater.graph
-
- org.deeplearning4j.nn.weights - package org.deeplearning4j.nn.weights
-
- org.deeplearning4j.nn.weights.embeddings - package org.deeplearning4j.nn.weights.embeddings
-
- org.deeplearning4j.nn.workspace - package org.deeplearning4j.nn.workspace
-
- org.deeplearning4j.optimize - package org.deeplearning4j.optimize
-
- org.deeplearning4j.optimize.api - package org.deeplearning4j.optimize.api
-
- org.deeplearning4j.optimize.listeners - package org.deeplearning4j.optimize.listeners
-
- org.deeplearning4j.optimize.listeners.callbacks - package org.deeplearning4j.optimize.listeners.callbacks
-
- org.deeplearning4j.optimize.solvers - package org.deeplearning4j.optimize.solvers
-
- org.deeplearning4j.optimize.solvers.accumulation - package org.deeplearning4j.optimize.solvers.accumulation
-
- org.deeplearning4j.optimize.solvers.accumulation.encoding - package org.deeplearning4j.optimize.solvers.accumulation.encoding
-
- org.deeplearning4j.optimize.solvers.accumulation.encoding.residual - package org.deeplearning4j.optimize.solvers.accumulation.encoding.residual
-
- org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold - package org.deeplearning4j.optimize.solvers.accumulation.encoding.threshold
-
- org.deeplearning4j.optimize.stepfunctions - package org.deeplearning4j.optimize.stepfunctions
-
- org.deeplearning4j.util - package org.deeplearning4j.util
-
- OrthogonalDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
- OrthogonalDistribution(double) - Constructor for class org.deeplearning4j.nn.conf.distribution.OrthogonalDistribution
-
Create a log-normal distribution
with the given mean and std
- output(Model, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- output(Model, INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- output(MultiLayerNetwork, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseMLNScoreCalculator
-
- output(MultiLayerNetwork, INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseMLNScoreCalculator
-
- output(T, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- output(T, INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- output(Model, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
- output(Model, INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
- output(Model, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
- output(Model, INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
- output(Model, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- output(Model, INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- output(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return an array of network outputs (predictions) at test time, given the specified network inputs
Network outputs are for output layers only.
- output(boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return an array of network outputs (predictions), given the specified network inputs
Network outputs are for output layers only.
- output(boolean, MemoryWorkspace, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return an array of network outputs (predictions), given the specified network inputs
Network outputs are for output layers only.
If no memory workspace is provided, the output will be detached (not in any workspace).
If a memory workspace is provided, the output activation array (i.e., the INDArray returned by this method)
will be placed in the specified workspace.
- output(boolean, INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return an array of network outputs (predictions), given the specified network inputs
Network outputs are for output layers only.
- output(boolean, INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return an array of network outputs (predictions), given the specified network inputs
Network outputs are for output layers only.
- output(INDArray[], INDArray[], INDArray[], OutputAdapter<T>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method uses provided OutputAdapter to return custom object built from INDArray
PLEASE NOTE: This method uses dedicated Workspace for output generation to avoid redundant allocations
- output(boolean, INDArray[], INDArray[], INDArray[], MemoryWorkspace) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Return an array of network outputs (predictions), given the specified network inputs
Network outputs are for output layers only.
If no memory workspace is provided, the output will be detached (not in any workspace).
If a memory workspace is provided, the output activation array (i.e., the INDArray returned by this method)
will be placed in the specified workspace.
- output(boolean, boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
An output method for the network, with optional clearing of the layer inputs.
Note: most users should use
ComputationGraph.output(boolean, INDArray...)
or similar methods, unless they are doing
non-standard operations (like providing the input arrays externally)
- output(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Generate the output for all examples/batches in the input iterator, and concatenate them into a single array
per network output
- output(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Generate the output for all examples/batches in the input iterator, and concatenate them into a single array
per network output
- output(List<String>, boolean, INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Get the activations for the specific layers only
- output(INDArray, Layer.TrainingMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform inference on the provided input/features - i.e., perform forward pass using the provided input/features
and return the output of the final layer.
- output(INDArray, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform inference on the provided input/features - i.e., perform forward pass using the provided input/features
and return the output of the final layer.
- output(INDArray, boolean, INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate the output of the network, with masking arrays.
- output(INDArray, boolean, MemoryWorkspace) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the network output, which is optionally placed in the specified memory workspace.
If no memory workspace is provided, the output will be detached (not in any workspace).
If a memory workspace is provided, the output activation array (i.e., the INDArray returned by this method)
will be placed in the specified workspace.
- output(INDArray, boolean, INDArray, INDArray, MemoryWorkspace) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the network output, which is optionally placed in the specified memory workspace.
If no memory workspace is provided, the output will be detached (not in any workspace).
If a memory workspace is provided, the output activation array (i.e., the INDArray returned by this method)
will be placed in the specified workspace.
- output(INDArray, INDArray, INDArray, OutputAdapter<T>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method uses provided OutputAdapter to return custom object built from INDArray
PLEASE NOTE: This method uses dedicated Workspace for output generation to avoid redundant allocations
- output(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform inference on the provided input/features - i.e., perform forward pass using the provided input/features
and return the output of the final layer.
- output(DataSetIterator, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Generate the output for all examples/batches in the input iterator, and concatenate them into a single array.
- output(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- output(Model, INDArray) - Static method in class org.deeplearning4j.util.NetworkUtils
-
- outputFromFeaturized(INDArray[]) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Use to get the output from a featurized input
- outputFromFeaturized(INDArray) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Use to get the output from a featurized input
- outputKey - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- outputKey - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- outputKey - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- OutputLayer - Class in org.deeplearning4j.nn.conf.layers
-
Output layer used for training via backpropagation based on labels and a specified loss function.
- OutputLayer(OutputLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.OutputLayer
-
- OutputLayer - Class in org.deeplearning4j.nn.layers
-
Output layer with different objective
incooccurrences for different objectives.
- OutputLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.OutputLayer
-
- OutputLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- OutputLayerUtil - Class in org.deeplearning4j.util
-
Utility methods for output layer configuration/validation
- outputOfLayerDetached(boolean, FwdPassType, int, INDArray, INDArray, INDArray, MemoryWorkspace) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Provide the output of the specified layer, detached from any workspace.
- outputOfLayersDetached(boolean, FwdPassType, int[], INDArray[], INDArray[], INDArray[], boolean, boolean, MemoryWorkspace) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Provide the output of the specified layers, detached from any workspace.
- outputSingle(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
A convenience method that returns a single INDArray, instead of an INDArray[].
- outputSingle(boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
A convenience method that returns a single INDArray, instead of an INDArray[].
- outputSingle(boolean, boolean, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- outputSingle(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Generate the output for all examples/batches in the input iterator, and concatenate them into a single array.
- outputSingle(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Generate the output for all examples/batches in the input iterator, and concatenate them into a single array.
- outputVar - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- outputVar - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- outputVar - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- outputVertex - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- outputVertices - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
A representation of the vertices that this vertex is connected to (outputs duing forward pass)
Specifically, if outputVertices[X].getVertexIndex() = Y, and outputVertices[X].getVertexEdgeNumber() = Z
then the output of this vertex (there is only one output) is connected to the Zth input of vertex Y
- overlap(double, double, double, double) - Static method in class org.deeplearning4j.nn.layers.objdetect.YoloUtils
-
Returns overlap between lines [x1, x2] and [x3.
- ownCounter - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- oz - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- padding(int) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
Padding value for the convolution.
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
Set padding size for 3D convolutions in (depth, height, width) order
- padding - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- padding - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
Padding of the convolution in rows/columns (height/width) dimensions
- padding(int) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Sets the padding of the 2d convolution
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
Padding - rows/columns (height/width)
- padding - Variable in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
A 2d array, with format [[padTop, padBottom], [padLeft, padRight]]
- padding(int[][]) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
- padding - Variable in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- padding(int) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
Padding
- padding - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
Padding
- padding - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- padding - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- padding(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
Padding
- padding - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- ParamAndGradientIterationListener - Class in org.deeplearning4j.optimize.listeners
-
- ParamAndGradientIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
-
Deprecated.
Default constructor for output to console only every iteration, tab delimited
- ParamAndGradientIterationListener(int, boolean, boolean, boolean, boolean, boolean, boolean, boolean, File, String) - Constructor for class org.deeplearning4j.optimize.listeners.ParamAndGradientIterationListener
-
Deprecated.
Full constructor with all options.
- ParamInitializer - Interface in org.deeplearning4j.nn.api
-
Param initializer for a layer
- paramKeys(Layer) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
Get a list of all parameter keys given the layer configuration
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- paramKeys(Layer) - Method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- paramReshapeOrder(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
Returns the memory layout ('c' or 'f' order - i.e., row/column major) of the parameters.
- paramReshapeOrder(String) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- params() - Method in interface org.deeplearning4j.nn.api.Model
-
Parameters of the model (if any)
- params() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method returns model parameters as single INDArray
- params() - Method in interface org.deeplearning4j.nn.api.Trainable
-
- params - Variable in class org.deeplearning4j.nn.conf.constraint.BaseConstraint
-
- params(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- params() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- params() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- params() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- params() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- params() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
Returns the parameters of the neural network as a flattened row vector
- params() - Method in class org.deeplearning4j.nn.layers.ActivationLayer
-
- params - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
Returns the parameters of the neural network as a flattened row vector
- params() - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- params() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- params() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- params() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- params() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- params() - Method in class org.deeplearning4j.nn.layers.DropoutLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- params() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- params - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- params() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- params - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
Returns the parameters of the neural network as a flattened row vector
- params - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- params() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
Returns the parameters of the neural network as a flattened row vector
- params - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- params() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- params() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- params(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- params() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns a 1 x m vector where the vector is composed of a flattened vector of all of the parameters in the network.
See
MultiLayerNetwork.getParam(String)
and
MultiLayerNetwork.paramTable()
for a more useful/interpretable representation of the parameters.
Note that the parameter vector is not a copy, and changes to the returned INDArray will impact the network parameters.
- PARAMS_KEY - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- paramsFlattened - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- paramsFlattened - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- paramsOrder - Variable in class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- paramsShape - Variable in class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- ParamState() - Constructor for class org.deeplearning4j.nn.updater.UpdaterBlock.ParamState
-
- paramTable() - Method in interface org.deeplearning4j.nn.api.Model
-
The param table
- paramTable(boolean) - Method in interface org.deeplearning4j.nn.api.Model
-
Table of parameters by key, for backprop
For many models (dense layers, etc) - all parameters are backprop parameters
- paramTable(boolean) - Method in interface org.deeplearning4j.nn.api.Trainable
-
- paramTable() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- paramTable(boolean) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Get the parameter table for the vertex
- paramTable(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- paramTable - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- paramTable - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- paramTable - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- paramTable() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- paramTable(boolean) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- paramTable() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Return a map of all parameters in the network.
- paramTable(boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Returns a map of all parameters in the network as per
MultiLayerNetwork.paramTable()
.
Optionally (with backpropParamsOnly=true) only the 'backprop' parameters are returned - that is, any parameters
involved only in unsupervised layerwise pretraining not standard inference/backprop are excluded from the returned list.
- parent(Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
Returns the parent of the passed in tree via traversal
- parent() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- parties - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- parties - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- parties - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- peek() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- PerformanceListener - Class in org.deeplearning4j.optimize.listeners
-
Simple IterationListener that tracks time spend on training per iteration.
- PerformanceListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.PerformanceListener
-
- PerformanceListener(int, boolean) - Constructor for class org.deeplearning4j.optimize.listeners.PerformanceListener
-
- PerformanceListener(int, boolean, boolean) - Constructor for class org.deeplearning4j.optimize.listeners.PerformanceListener
-
- PerformanceListener.Builder - Class in org.deeplearning4j.optimize.listeners
-
- pnorm(int) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
P-norm constant.
- pnorm - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- pnorm(int) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- pnorm - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- Point(int, double, double, double) - Constructor for class org.deeplearning4j.eval.curves.PrecisionRecallCurve.Point
-
Deprecated.
- POINT_WISE_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- pointWiseConstraints - Variable in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
Set constraints to be applied to the point-wise convolution weight parameters of this layer.
- poll() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- poll(long, TimeUnit) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- poll() - Method in class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- PoolHelperVertex - Class in org.deeplearning4j.nn.conf.graph
-
Removes the first column and row from an input.
- PoolHelperVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.PoolHelperVertex
-
- PoolHelperVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
A custom layer for removing the first column and row from an input.
- PoolHelperVertex(ComputationGraph, String, int, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- PoolHelperVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- Pooling1D - Class in org.deeplearning4j.nn.conf.layers
-
1D Pooling (subsampling) layer.
- Pooling1D() - Constructor for class org.deeplearning4j.nn.conf.layers.Pooling1D
-
- Pooling2D - Class in org.deeplearning4j.nn.conf.layers
-
2D Pooling (subsampling) layer.
- Pooling2D() - Constructor for class org.deeplearning4j.nn.conf.layers.Pooling2D
-
- poolingDimensions(int...) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
Pooling dimensions.
- poolingType(PoolingType) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
- PoolingType - Enum in org.deeplearning4j.nn.conf.layers
-
Pooling type:
MAX: Max pooling - output is the maximum value of the input values
AVG: Average pooling - output is the average value of the input values
SUM: Sum pooling - output is the sum of the input values
PNORM: P-norm pooling
- poolingType - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- poolingType(Subsampling3DLayer.PoolingType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- poolingType(PoolingType) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- poolingType - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- poolingType - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- poolingType(SubsamplingLayer.PoolingType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- poolingType(PoolingType) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- poolingType - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- positions - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- postFirstStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- postStep(INDArray) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
After the step has been made, do an action
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
Post step to update searchDirection with new gradient and parameter information
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.ConjugateGradient
-
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.LBFGS
-
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.LineGradientDescent
-
- postStep(INDArray) - Method in class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
-
- preApply(Trainable, Gradient, int) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
Pre-apply: Apply gradient normalization/clipping
- precision(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Deprecated.
- PrecisionRecallCurve - Class in org.deeplearning4j.eval.curves
-
- PrecisionRecallCurve(double[], double[], double[], int[], int[], int[], int) - Constructor for class org.deeplearning4j.eval.curves.PrecisionRecallCurve
-
- PrecisionRecallCurve.Confusion - Class in org.deeplearning4j.eval.curves
-
Deprecated.
- PrecisionRecallCurve.Point - Class in org.deeplearning4j.eval.curves
-
Deprecated.
- predict(INDArray) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Takes in a list of examples
For each row, returns a label
- predict(DataSet) - Method in interface org.deeplearning4j.nn.api.Classifier
-
Takes in a DataSet of examples
For each row, returns a label
- predict(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Returns the predictions for each example in the dataset
- predict(DataSet) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
Return predicted label names
- predict(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- predict(DataSet) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- predict(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- predict(DataSet) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- predict(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Returns the predictions for each example in the dataset
- predict(DataSet) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
Return predicted label names
- predict(INDArray) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- predict(DataSet) - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- predict(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- predict(DataSet) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- predict(INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- predict(DataSet) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- predict(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Usable only for classification networks in conjunction with OutputLayer.
- predict(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- Prediction - Class in org.deeplearning4j.eval.meta
-
- Prediction(int, int, Object) - Constructor for class org.deeplearning4j.eval.meta.Prediction
-
Deprecated.
- prediction() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- PReLU - Class in org.deeplearning4j.nn.layers.feedforward
-
Parametrized Rectified Linear Unit (PReLU)
f(x) = alpha * x for x < 0, f(x) = x for x >= 0
alpha has the same shape as x and is a learned parameter.
- PReLU(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.feedforward.PReLU
-
- PReLULayer - Class in org.deeplearning4j.nn.conf.layers
-
Parametrized Rectified Linear Unit (PReLU)
- PReLULayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- PReLUParamInitializer - Class in org.deeplearning4j.nn.params
-
PReLU weight initializer.
- PReLUParamInitializer(long[], long[]) - Constructor for class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- preOutput - Variable in class org.deeplearning4j.nn.layers.AbstractLayer
-
- preOutput(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- preOutput(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution3DLayer
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution3DLayer
-
- preOutput(INDArray, INDArray, INDArray, int[], int[], int[], ConvolutionLayer.AlgoMode, ConvolutionLayer.FwdAlgo, ConvolutionMode, int[], LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.convolution.ConvolutionHelper
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
instead of being calculated again.
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Deconvolution2DLayer
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.DepthwiseConvolution2DLayer
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.SeparableConvolution2DLayer
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling1D
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- preOutput(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.elementwise.ElementWiseMultiplicationLayer
-
- preOutput(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingLayer
-
- preOutput(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer
-
- preOutput(INDArray, boolean, int[], INDArray, INDArray, INDArray, INDArray, double, double, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNBatchNormHelper
-
- preOutput(INDArray, INDArray, INDArray, int[], int[], int[], ConvolutionLayer.AlgoMode, ConvolutionLayer.FwdAlgo, ConvolutionMode, int[], LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper
-
- preOutput(INDArray, Layer.TrainingMode, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- preOutput(INDArray, boolean, int[], INDArray, INDArray, INDArray, INDArray, double, double, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.layers.normalization.BatchNormalizationHelper
-
- preOutput(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- preOutput(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- preOutput2d(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- preOutput2d(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
- preOutput2d(boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- preOutput4d(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.Convolution1DLayer
-
- preOutput4d(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard
non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying
the public API
- preOutputWithPreNorm(boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.conf.InputPreProcessor
-
Pre preProcess input/activations for a multi layer network
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.Cnn3DToFeedForwardPreProcessor
-
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToFeedForwardPreProcessor
-
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.CnnToRnnPreProcessor
-
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.ComposableInputPreProcessor
-
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnn3DPreProcessor
-
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor
-
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.FeedForwardToRnnPreProcessor
-
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- preProcess(INDArray, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- preProcessLine() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Pre preProcess a line before an iteration
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
Pre preProcess to setup initial searchDirection approximation
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.ConjugateGradient
-
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.LBFGS
-
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.LineGradientDescent
-
- preProcessLine() - Method in class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
-
- PREPROCESSOR_BIN - Static variable in class org.deeplearning4j.util.ModelSerializer
-
- PreprocessorVertex - Class in org.deeplearning4j.nn.conf.graph
-
PreprocessorVertex is a simple adaptor class that allows a
InputPreProcessor
to be used in a ComputationGraph
GraphVertex, without it being associated with a layer.
- PreprocessorVertex(InputPreProcessor) - Constructor for class org.deeplearning4j.nn.conf.graph.PreprocessorVertex
-
- PreprocessorVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
PreprocessorVertex is a simple adaptor class that allows a
InputPreProcessor
to be used in a ComputationGraph
GraphVertex, without it being associated with a layer.
- PreprocessorVertex(ComputationGraph, String, int, InputPreProcessor, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- PreprocessorVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], InputPreProcessor, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- pretrain(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- pretrain(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- pretrain() - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- pretrain(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- pretrain(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingGraphTrainer
-
- pretrain(DataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- pretrain(MultiDataSet) - Method in class org.deeplearning4j.earlystopping.trainer.EarlyStoppingTrainer
-
- pretrain() - Method in interface org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer
-
- pretrain(DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- pretrain(DataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Pretrain network with a single input and single output.
- pretrain(MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Pretrain network with multiple inputs and/or outputs
- pretrain(MultiDataSetIterator, int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Pretrain network with multiple inputs and/or outputs
This method performs layerwise pretraining on all pre-trainable layers in the network (VAEs, Autoencoders, etc), for the specified
number of epochs each.
- pretrain(DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- pretrain(DataSetIterator, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform layerwise unsupervised training on all pre-trainable layers in the network (VAEs, Autoencoders, etc), for the specified
number of epochs each.
- pretrain(boolean) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- pretrain - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- pretrainLayer(String, DataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Pretrain a specified layer with the given DataSetIterator
- pretrainLayer(String, MultiDataSetIterator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Pretrain a specified layer with the given MultiDataSetIterator
- pretrainLayer(int, DataSetIterator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- pretrainLayer(int, DataSetIterator, int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform layerwise unsupervised training on a single pre-trainable layer in the network (VAEs, Autoencoders, etc)
for the specified number of epochs
If the specified layer index (0 to numLayers - 1) is not a pretrainable layer, this is a no-op.
- pretrainLayer(int, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Perform layerwise unsupervised training on a single pre-trainable layer in the network (VAEs, Autoencoders, etc)
If the specified layer index (0 to numLayers - 1) is not a pretrainable layer, this is a no-op.
- PretrainParamInitializer - Class in org.deeplearning4j.nn.params
-
Pretrain weight initializer.
- PretrainParamInitializer() - Constructor for class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- prevAct - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- prevMemCell - Variable in class org.deeplearning4j.nn.layers.recurrent.FwdPassReturn
-
- PrimaryCapsules - Class in org.deeplearning4j.nn.conf.layers
-
An implementation of the PrimaryCaps layer from Dynamic Routing Between Capsules
Is a reshaped 2D convolution, and the input should be 2D convolutional ([mb, c, h, w]).
- PrimaryCapsules(PrimaryCapsules.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.PrimaryCapsules
-
- PrimaryCapsules.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- processResidual(int, int, double, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.residual.NoOpResidualPostProcessor
-
- processResidual(int, int, double, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.encoding.residual.ResidualClippingPostProcessor
-
- processResidual(int, int, double, INDArray) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.encoding.ResidualPostProcessor
-
- projectInput(boolean) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
Toggle to enable / disable projection of inputs (key, values, queries).
- projectInput(boolean) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer.Builder
-
Project input before applying attention or not.
- projectInput(boolean) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer.Builder
-
Project input before applying attention or not.
- projectInput(boolean) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer.Builder
-
Project input before applying attention or not.
- pullLastTimeSteps(INDArray, INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Extract out the last time steps (2d array from 3d array input) accounting for the mask layer, if present.
- pullLastTimeSteps(INDArray, INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Extract out the last time steps (2d array from 3d array input) accounting for the mask layer, if present.
- purge() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- put(E) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- put(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
This mehtod adds update, with optional collapse
- put(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- PXZ_B - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for bias parameters connecting the last decoder layer and p(data|z) (according to whatever
ReconstructionDistribution
is set for the VAE)
- PXZ_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- PXZ_W - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for weight parameters connecting the last decoder layer and p(data|z) (according to whatever
ReconstructionDistribution
is set for the VAE)
- PZX_LOGSTD2_B - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for bias parameters for log(sigma^2) in p(z|data)
- PZX_LOGSTD2_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- PZX_LOGSTD2_W - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for weight parameters connecting the last encoder layer and the log(sigma^2) values for p(z|data)
- PZX_MEAN_B - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for bias parameters for the mean values for p(z|data)
- PZX_MEAN_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- PZX_MEAN_W - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
Key for weight parameters connecting the last encoder layer and the mean values for p(z|data)
- PZX_PREFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- pzxActivationFn(IActivation) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Activation function for the input to P(z|data).
Care should be taken with this, as some activation
functions (relu, etc) are not suitable due to being bounded in range [0,infinity).
- pzxActivationFn - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- pzxActivationFunction(Activation) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Activation function for the input to P(z|data).
Care should be taken with this, as some activation
functions (relu, etc) are not suitable due to being bounded in range [0,infinity).
- R_KEY - Static variable in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- RandomProb(FailureTestingListener.CallType, double) - Constructor for class org.deeplearning4j.optimize.listeners.FailureTestingListener.RandomProb
-
- rebuildUpdaterStateArray(INDArray, List<UpdaterBlock>, List<UpdaterBlock>) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Rebuild the updater state after a learning rate change.
- recall(EvaluationAveraging) - Method in class org.deeplearning4j.eval.Evaluation
-
Deprecated.
- receiveUpdate(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method accepts updates suitable for StepFunction and puts them to the queue, which is used in backpropagation loop
PLEASE NOTE: array is expected to be ready for use and match params dimensionality
- receiveUpdate(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method accepts updates suitable for StepFunction and puts them to the queue, which is used in backpropagation loop
- receiveUpdate(INDArray) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method accepts updates suitable for StepFunction and puts them to the queue, which is used in backpropagation loop
PLEASE NOTE: array is expected to be ready for use and match params dimensionality
- ReconstructionDistribution - Interface in org.deeplearning4j.nn.conf.layers.variational
-
The ReconstructionDistribution is used with variational autoencoders
VariationalAutoencoder
to specify the form of the distribution p(data|x).
- reconstructionDistribution(ReconstructionDistribution) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
The reconstruction distribution for the data given the hidden state - i.e., P(data|Z).
This should be
selected carefully based on the type of data being modelled.
- reconstructionDistribution - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- ReconstructionDistributionMixin() - Constructor for class org.deeplearning4j.nn.conf.serde.legacy.LegacyJsonFormat.ReconstructionDistributionMixin
-
- reconstructionError(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- reconstructionLogProbability(INDArray, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- reconstructionProbability(INDArray, int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
Calculate the reconstruction probability, as described in An & Cho, 2015 - "Variational Autoencoder based
Anomaly Detection using Reconstruction Probability" (Algorithm 4)
The authors describe it as follows: "This is essentially the probability of the data being generated from a given
latent variable drawn from the approximate posterior distribution."
Specifically, for each example x in the input, calculate p(x).
- reconstructionProbNumSamples - Variable in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- recurrent(long) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
InputType for recurrent neural network (time series) data
- recurrent(long, long) - Static method in class org.deeplearning4j.nn.conf.inputs.InputType
-
InputType for recurrent neural network (time series) data
- recurrent(int) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder.InputTypeBuilder
-
- RECURRENT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
Weights for previous time step -> current time step connections
- RECURRENT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
Weights for previous time step -> current time step connections
- RECURRENT_WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- RECURRENT_WEIGHT_KEY_BACKWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- RECURRENT_WEIGHT_KEY_FORWARDS - Static variable in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
Weights for previous time step -> current time step connections
- RecurrentAttentionLayer - Class in org.deeplearning4j.nn.conf.layers
-
Implements Recurrent Dot Product Attention
Takes in RNN style input in the shape of [batchSize, features, timesteps]
and applies dot product attention using the hidden state as the query and
all time steps as keys/values.
- RecurrentAttentionLayer(RecurrentAttentionLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- RecurrentAttentionLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- recurrentConstraints - Variable in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
Set constraints to be applied to the RNN recurrent weight parameters of this layer.
- RecurrentLayer - Interface in org.deeplearning4j.nn.api.layers
-
Created by Alex on 28/08/2016.
- Registerable - Interface in org.deeplearning4j.optimize.solvers.accumulation
-
- registerConsumers(int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- registerConsumers(int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- registerConsumers(int) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.Registerable
-
This method notifies producer about number of consumers for the current consumption cycle
- registered - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- Regression2dAdapter - Class in org.deeplearning4j.nn.adapters
-
This OutputAdapter implementation takes single 2D nn output in, and returns JVM double[][] array
- Regression2dAdapter() - Constructor for class org.deeplearning4j.nn.adapters.Regression2dAdapter
-
- RegressionEvaluation - Class in org.deeplearning4j.eval
-
- RegressionEvaluation() - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
- RegressionEvaluation(long) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
- RegressionEvaluation(long, long) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
- RegressionEvaluation(String...) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
- RegressionEvaluation(List<String>) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
- RegressionEvaluation(List<String>, long) - Constructor for class org.deeplearning4j.eval.RegressionEvaluation
-
- RegressionEvaluation.Metric - Enum in org.deeplearning4j.eval
-
- RegressionScoreCalculator - Class in org.deeplearning4j.earlystopping.scorecalc
-
Calculate the regression score of the network (MultiLayerNetwork or ComputationGraph) on a test set, using the
specified regression metric -
RegressionEvaluation.Metric
- RegressionScoreCalculator(RegressionEvaluation.Metric, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.RegressionScoreCalculator
-
- regularization - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Regularization for the parameters (excluding biases).
- regularization(List<Regularization>) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Set the regularization for the parameters (excluding biases) - for example
WeightDecay
- regularization - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- regularization - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
- regularization(List<Regularization>) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
Set the regularization for the parameters (excluding biases) - for example
WeightDecay
- regularization - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- regularization - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- regularization - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- regularization(List<Regularization>) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set the regularization for the parameters (excluding biases) - for example
WeightDecay
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- regularization - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- regularization - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- regularizationBias - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Regularization for the bias parameters only
- regularizationBias(List<Regularization>) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Set the regularization for the biases only - for example
WeightDecay
- regularizationBias - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- regularizationBias - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
- regularizationBias(List<Regularization>) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
Set the regularization for the biases only - for example
WeightDecay
- regularizationBias - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- regularizationBias - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- regularizationBias - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- regularizationBias(List<Regularization>) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set the regularization for the biases only - for example
WeightDecay
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- regularizationBias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- regularizationBias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- ReliabilityDiagram - Class in org.deeplearning4j.eval.curves
-
- ReliabilityDiagram(String, double[], double[]) - Constructor for class org.deeplearning4j.eval.curves.ReliabilityDiagram
-
- relocatable - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- remainingCapacity() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- remove() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- remove() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- remove(Object) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- removeAll(Collection<?>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- removeInstances(List<?>, Class<?>) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Remove any instances of the specified type from the list.
- removeInstancesWithWarning(List<?>, Class<?>, String) - Static method in class org.deeplearning4j.util.NetworkUtils
-
- removeL1 - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- removeL1 - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- removeL1Bias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- removeL1Bias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- removeL2 - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- removeL2 - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- removeL2Bias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- removeL2Bias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- removeLayersFromOutput(int) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Remove last "n" layers of the net
At least an output layer must be added back in
- removeOutputLayer() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Helper method to remove the outputLayer of the net.
- removeVertex(String) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Intended for use with the transfer learning API.
- removeVertex(String, boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Intended for use with the transfer learning API.
- removeVertexAndConnections(String) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Remove specified vertex and it's connections from the computation graph
- removeVertexKeepConnections(String) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Remove the specified vertex from the computation graph but keep it's connections.
- removeWD - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- removeWD - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- removeWDBias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- removeWDBias - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- RepeatVector - Class in org.deeplearning4j.nn.conf.layers.misc
-
RepeatVector layer configuration.
- RepeatVector(RepeatVector.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.misc.RepeatVector
-
- RepeatVector - Class in org.deeplearning4j.nn.layers
-
RepeatVector layer.
- RepeatVector(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.RepeatVector
-
- RepeatVector.Builder<T extends RepeatVector.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers.misc
-
- repetitionFactor(int) - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector.Builder
-
Set repetition factor for RepeatVector layer
- reportBatch(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if batches/sec should be reported together with other data
- reportETL(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if ETL time per iteration should be reported together with other data
- reportIteration(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if iteration number should be reported together with other data
- reportSample(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if samples/sec should be reported together with other data
- reportScore(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if score should be reported together with other data
- reportTime(boolean) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
This method defines, if time per iteration should be reported together with other data
- requiresActivationFromLegacy(Layer[]) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- requiresDropoutFromLegacy(Layer[]) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- requiresIUpdaterFromLegacy(Layer[]) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- requiresLegacyLossHandling(Layer[]) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- requiresRegularizationFromLegacy(Layer[]) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- requiresWeightInitFromLegacy(Layer[]) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- reset() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- reset() - Method in class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- reset() - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- reset() - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
- reset() - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
- reset() - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- reset() - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- reset() - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method resets all accumulated updates (if any)
- reset() - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method resets all accumulated updates (if any)
- reset() - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method resets all accumulated updates (if any)
- resetLayerDefaultConfig() - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
Reset the learning related configs of the layer to default.
- resetLayerDefaultConfig() - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Reset the learning related configs of the layer to default.
- resetSupported() - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- reshape2dTo3d(INDArray, int) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
- reshape2dTo3d(INDArray, int, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
- reshape2dTo4d(INDArray, int[], LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- reshape2dTo5d(Convolution3D.DataFormat, INDArray, int, int, int, int, int, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- reshape3dMask(INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- reshape3dTo2d(INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
- reshape3dTo2d(INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
- reshape4dMask(INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- reshape4dTo2d(INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- reshape5dTo2d(Convolution3D.DataFormat, INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- reshapeCnn3dMask(Convolution3D.DataFormat, INDArray, INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- reshapeCnnMaskToTimeSeriesMask(INDArray, int) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reshape CNN-style 4d mask array of shape [seqLength*minibatch,1,1,1] to time series mask [mb,seqLength]
This should match the assumptions (f order, etc) in RnnOutputLayer
- reshapeMaskIfRequired(INDArray, INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- reshapeOrder - Variable in class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- reshapePerOutputTimeSeriesMaskTo2d(INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
- reshapePerOutputTimeSeriesMaskTo2d(INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
- reshapeTimeSeriesMaskToCnn4dMask(INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reshape time series mask arrays.
- reshapeTimeSeriesMaskToVector(INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reshape time series mask arrays.
- reshapeTimeSeriesMaskToVector(INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reshape time series mask arrays.
- reshapeVectorToTimeSeriesMask(INDArray, int) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reshape time series mask arrays.
- ReshapeVertex - Class in org.deeplearning4j.nn.conf.graph
-
Adds the ability to reshape and flatten the tensor in the computation graph.
NOTE: This class should only be used if you know exactly what you are doing with reshaping activations.
- ReshapeVertex(int...) - Constructor for class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
Reshape with the default reshape order of 'c'
- ReshapeVertex(char, int[], int[]) - Constructor for class org.deeplearning4j.nn.conf.graph.ReshapeVertex
-
- ReshapeVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
Adds the ability to reshape and flatten the tensor in the computation graph.
- ReshapeVertex(ComputationGraph, String, int, char, int[], int[], DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- ReshapeVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], char, int[], int[], DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- reshapeWeights(int[], INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Reshape the parameters view, without modifying the paramsView array values.
- reshapeWeights(long[], INDArray) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Reshape the parameters view, without modifying the paramsView array values.
- reshapeWeights(int[], INDArray, char) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Reshape the parameters view, without modifying the paramsView array values.
- reshapeWeights(long[], INDArray, char) - Static method in class org.deeplearning4j.nn.weights.WeightInitUtil
-
Reshape the parameters view, without modifying the paramsView array values.
- ResidualClippingPostProcessor - Class in org.deeplearning4j.optimize.solvers.accumulation.encoding.residual
-
Residual clipping post processor clips the values of a residual every N iterations as follows:
For residual vector R, and C = thresholdMultipleClipValue, T is the current encoding threshold
R[i] = C*T
if R[i] > C*T
R[i] = -C*T
if R[i] < -C*T
R[i]
is unmodified otherwise
Note: Regarding the frequency, a value around 5 is suggested as a good balance between applying frequently enough,
and minimizing the computational overhead.
- ResidualClippingPostProcessor(double, int) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.encoding.residual.ResidualClippingPostProcessor
-
- residualDebugOutputIfRequired(INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- residualPostProcessor - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
- residualPostProcessor(ResidualPostProcessor) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
Set the residual post processor
- ResidualPostProcessor - Interface in org.deeplearning4j.optimize.solvers.accumulation.encoding
-
ResidualPostProcessor: is (as the name suggests) is used to post process the residual vector for DL4J's gradient
sharing implementation.
- residualPostProcessor - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
- resolve(DeserializationContext) - Method in class org.deeplearning4j.nn.conf.serde.BaseNetConfigDeserializer
-
- restoreComputationGraph(String) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a file
- restoreComputationGraph(String, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a file
- restoreComputationGraph(InputStream, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a InputStream
- restoreComputationGraph(InputStream) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a InputStream
- restoreComputationGraph(File) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a file
- restoreComputationGraph(File, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a computation graph from a file
- restoreComputationGraphAndNormalizer(InputStream, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Restore a ComputationGraph and Normalizer (if present - null if not) from the InputStream.
- restoreComputationGraphAndNormalizer(File, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Restore a ComputationGraph and Normalizer (if present - null if not) from a File
- restoreMultiLayerNetwork(File) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a multi layer network from a file
- restoreMultiLayerNetwork(File, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a multi layer network from a file
- restoreMultiLayerNetwork(InputStream, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a MultiLayerNetwork from InputStream from an input stream
Note: the input stream is read fully and closed by this method.
- restoreMultiLayerNetwork(InputStream) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Restore a multi layer network from an input stream
* Note: the input stream is read fully and closed by this method.
- restoreMultiLayerNetwork(String) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a MultilayerNetwork model from a file
- restoreMultiLayerNetwork(String, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Load a MultilayerNetwork model from a file
- restoreMultiLayerNetworkAndNormalizer(InputStream, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Restore a MultiLayerNetwork and Normalizer (if present - null if not) from the InputStream.
- restoreMultiLayerNetworkAndNormalizer(File, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Restore a MultiLayerNetwork and Normalizer (if present - null if not) from a File
- restoreNormalizerFromFile(File) - Static method in class org.deeplearning4j.util.ModelSerializer
-
This method restores normalizer from a given persisted model file
PLEASE NOTE: File should be model file saved earlier with ModelSerializer with addNormalizerToModel being called
- restoreNormalizerFromInputStream(InputStream) - Static method in class org.deeplearning4j.util.ModelSerializer
-
This method restores the normalizer form a persisted model file.
- retainAll(Collection<?>) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- reverseTimeSeries(INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reverse an input time series along the time dimension
- reverseTimeSeries(INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reverse an input time series along the time dimension
- reverseTimeSeriesMask(INDArray) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reverse a (per time step) time series mask, with shape [minibatch, timeSeriesLength]
- reverseTimeSeriesMask(INDArray, LayerWorkspaceMgr, ArrayType) - Static method in class org.deeplearning4j.util.TimeSeriesUtils
-
Reverse a (per time step) time series mask, with shape [minibatch, timeSeriesLength]
- ReverseTimeSeriesVertex - Class in org.deeplearning4j.nn.conf.graph.rnn
-
ReverseTimeSeriesVertex is used in recurrent neural networks to revert the order of time series.
- ReverseTimeSeriesVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
Creates a new ReverseTimeSeriesVertex that doesn't pay attention to masks
- ReverseTimeSeriesVertex(String) - Constructor for class org.deeplearning4j.nn.conf.graph.rnn.ReverseTimeSeriesVertex
-
Creates a new ReverseTimeSeriesVertex that uses the mask array of a given input
- ReverseTimeSeriesVertex - Class in org.deeplearning4j.nn.graph.vertex.impl.rnn
-
ReverseTimeSeriesVertex is used in recurrent neural networks to revert the order of time series.
- ReverseTimeSeriesVertex(ComputationGraph, String, int, String, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.rnn.ReverseTimeSeriesVertex
-
- rnnActivateUsingStoredState(INDArray, boolean, boolean, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Similar to rnnTimeStep, this method is used for activations using the state
stored in the stateMap as the initialization.
- rnnActivateUsingStoredState(INDArray[], boolean, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Similar to rnnTimeStep and feedForward() methods.
- rnnActivateUsingStoredState(INDArray, boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- rnnActivateUsingStoredState(INDArray, boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- rnnActivateUsingStoredState(INDArray, boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- rnnActivateUsingStoredState(INDArray, boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- rnnActivateUsingStoredState(INDArray, boolean, boolean, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.SimpleRnn
-
- rnnActivateUsingStoredState(INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Similar to rnnTimeStep and feedForward() methods.
- rnnClearPreviousState() - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Reset/clear the stateMap for rnnTimeStep() and tBpttStateMap for rnnActivateUsingStoredState()
- rnnClearPreviousState() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnClearPreviousState() - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
Reset/clear the stateMap for rnnTimeStep() and tBpttStateMap for rnnActivateUsingStoredState()
- rnnClearPreviousState() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- rnnClearPreviousState() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Clear the previous state of the RNN layers (if any).
- rnnGetPreviousState() - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Returns a shallow copy of the RNN stateMap (that contains the stored history for use in methods such
as rnnTimeStep
- rnnGetPreviousState(int) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnGetPreviousState(String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnGetPreviousState() - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
Returns a shallow copy of the stateMap
- rnnGetPreviousState() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- rnnGetPreviousState(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Get the state of the RNN layer, as used in rnnTimeStep().
- rnnGetPreviousStates() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnGetTBPTTState() - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Get the RNN truncated backpropagations through time (TBPTT) state for the recurrent layer.
- rnnGetTBPTTState() - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
- rnnGetTBPTTState() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- rnnLayer(Layer) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional.Builder
-
- RnnLossLayer - Class in org.deeplearning4j.nn.conf.layers
-
Recurrent Neural Network Loss Layer.
Handles calculation of gradients etc for various objective (loss)
functions.
Note: Unlike
RnnOutputLayer
this RnnLossLayer does not have any parameters - i.e., there is no
time distributed dense component here.
- RnnLossLayer - Class in org.deeplearning4j.nn.layers.recurrent
-
Recurrent Neural Network Loss Layer.
Handles calculation of gradients etc for various objective functions.
NOTE: Unlike
RnnOutputLayer
this RnnLossLayer does not have any parameters - i.e., there is no time
distributed dense component here.
- RnnLossLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- RnnLossLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- RnnOutputLayer - Class in org.deeplearning4j.nn.conf.layers
-
A version of
OutputLayer
for recurrent neural networks.
- RnnOutputLayer - Class in org.deeplearning4j.nn.layers.recurrent
-
Recurrent Neural Network Output Layer.
Handles calculation of gradients etc for various objective functions.
Functionally the same as OutputLayer, but handles output and label reshaping
automatically.
Input and output activations are same as other RNN layers: 3 dimensions with shape
[miniBatchSize,nIn,timeSeriesLength] and [miniBatchSize,nOut,timeSeriesLength] respectively.
- RnnOutputLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- RnnOutputLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- rnnSetPreviousState(Map<String, INDArray>) - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Set the stateMap (stored history).
- rnnSetPreviousState(int, Map<String, INDArray>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnSetPreviousState(String, Map<String, INDArray>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnSetPreviousState(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
Set the state map.
- rnnSetPreviousState(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- rnnSetPreviousState(int, Map<String, INDArray>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the state of the RNN layer.
- rnnSetPreviousStates(Map<String, Map<String, INDArray>>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- rnnSetTBPTTState(Map<String, INDArray>) - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Set the RNN truncated backpropagations through time (TBPTT) state for the recurrent layer.
- rnnSetTBPTTState(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
- rnnSetTBPTTState(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- rnnTimeStep(INDArray, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.layers.RecurrentLayer
-
Do one or more time steps using the previous time step state stored in stateMap.
Can be used to efficiently do forward pass one or n-steps at a time (instead of doing
forward pass always from t=0)
If stateMap is empty, default initialization (usually zeros) is used
Implementations also update stateMap at the end of this method
- rnnTimeStep(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
If this ComputationGraph contains one or more RNN layers: conduct forward pass (prediction)
but using previous stored state for any RNN layers.
- rnnTimeStep(MemoryWorkspace, INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
See
ComputationGraph.rnnTimeStep(INDArray...)
for details.
If no memory workspace is provided, the output will be detached (not in any workspace).
If a memory workspace is provided, the output activation array (i.e., the INDArray returned by this method)
will be placed in the specified workspace.
- rnnTimeStep(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- rnnTimeStep(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM
-
- rnnTimeStep(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- rnnTimeStep(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- rnnTimeStep(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.SimpleRnn
-
- rnnTimeStep(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
If this MultiLayerNetwork contains one or more RNN layers: conduct forward pass (prediction)
but using previous stored state for any RNN layers.
- rnnTimeStep(INDArray, MemoryWorkspace) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
See
MultiLayerNetwork.rnnTimeStep(INDArray)
for details
If no memory workspace is provided, the output will be detached (not in any workspace).
If a memory workspace is provided, the output activation array (i.e., the INDArray returned by this method)
will be placed in the specified workspace.
- RnnToCnnPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow RNN and CNN layers to be used together
For example, time series (video) input -> ConvolutionLayer, or conceivable GravesLSTM -> ConvolutionLayer
Functionally equivalent to combining RnnToFeedForwardPreProcessor + FeedForwardToCnnPreProcessor
Specifically, this does two things:
(a) Reshape 3d activations out of RNN layer, with shape [miniBatchSize, numChannels*inputHeight*inputWidth, timeSeriesLength])
into 4d (CNN) activations (with shape [numExamples*timeSeriesLength, numChannels, inputWidth, inputHeight])
(b) Reshapes 4d epsilons (weights.*deltas) out of CNN layer (with shape
[numExamples*timeSeriesLength, numChannels, inputHeight, inputWidth]) into 3d epsilons with shape
[miniBatchSize, numChannels*inputHeight*inputWidth, timeSeriesLength] suitable to feed into CNN layers.
- RnnToCnnPreProcessor(int, int, int) - Constructor for class org.deeplearning4j.nn.conf.preprocessor.RnnToCnnPreProcessor
-
- RnnToFeedForwardPreProcessor - Class in org.deeplearning4j.nn.conf.preprocessor
-
A preprocessor to allow RNN and feed-forward network layers to be used together.
For example, GravesLSTM -> OutputLayer or GravesLSTM -> DenseLayer
This does two things:
(a) Reshapes activations out of RNN layer (which is 3D with shape
[miniBatchSize,layerSize,timeSeriesLength]) into 2d activations (with shape
[miniBatchSize*timeSeriesLength,layerSize]) suitable for use in feed-forward layers.
(b) Reshapes 2d epsilons (weights*deltas from feed forward layer, with shape
[miniBatchSize*timeSeriesLength,layerSize]) into 3d epsilons (with shape
[miniBatchSize,layerSize,timeSeriesLength]) for use in RNN layer
- RnnToFeedForwardPreProcessor() - Constructor for class org.deeplearning4j.nn.conf.preprocessor.RnnToFeedForwardPreProcessor
-
- rnnUpdateStateWithTBPTTState() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Update the internal state of RNN layers after a truncated BPTT fit call
- ROC - Class in org.deeplearning4j.eval
-
- ROC() - Constructor for class org.deeplearning4j.eval.ROC
-
- ROC(int) - Constructor for class org.deeplearning4j.eval.ROC
-
- ROC(int, boolean) - Constructor for class org.deeplearning4j.eval.ROC
-
- ROC(int, boolean, int) - Constructor for class org.deeplearning4j.eval.ROC
-
- ROC.CountsForThreshold - Class in org.deeplearning4j.eval
-
- ROCBinary - Class in org.deeplearning4j.eval
-
- ROCBinary() - Constructor for class org.deeplearning4j.eval.ROCBinary
-
- ROCBinary(int) - Constructor for class org.deeplearning4j.eval.ROCBinary
-
- ROCBinary(int, boolean) - Constructor for class org.deeplearning4j.eval.ROCBinary
-
- RocCurve - Class in org.deeplearning4j.eval.curves
-
- RocCurve(double[], double[], double[]) - Constructor for class org.deeplearning4j.eval.curves.RocCurve
-
- ROCMultiClass - Class in org.deeplearning4j.eval
-
- ROCMultiClass() - Constructor for class org.deeplearning4j.eval.ROCMultiClass
-
- ROCMultiClass(int) - Constructor for class org.deeplearning4j.eval.ROCMultiClass
-
- ROCMultiClass(int, boolean) - Constructor for class org.deeplearning4j.eval.ROCMultiClass
-
- ROCScoreCalculator - Class in org.deeplearning4j.earlystopping.scorecalc
-
Calculate ROC AUC (area under ROC curve) or AUCPR (area under precision recall curve) for a MultiLayerNetwork or
ComputationGraph
- ROCScoreCalculator(ROCScoreCalculator.ROCType, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator
-
- ROCScoreCalculator(ROCScoreCalculator.ROCType, MultiDataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator
-
- ROCScoreCalculator(ROCScoreCalculator.ROCType, ROCScoreCalculator.Metric, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator
-
- ROCScoreCalculator(ROCScoreCalculator.ROCType, ROCScoreCalculator.Metric, MultiDataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator
-
- ROCScoreCalculator.Metric - Enum in org.deeplearning4j.earlystopping.scorecalc
-
- ROCScoreCalculator.ROCType - Enum in org.deeplearning4j.earlystopping.scorecalc
-
- rootFolder - Variable in class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
- routings(int) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer.Builder
-
Set the number of dynamic routing iterations to use.
- sameDiff - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- sameDiff - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- sameDiff - Variable in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- SameDiffGraphVertex - Class in org.deeplearning4j.nn.layers.samediff
-
Implementation of a SameDiff graph vertex.
- SameDiffGraphVertex(SameDiffVertex, ComputationGraph, String, int, INDArray, boolean, DataType) - Constructor for class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- SameDiffLambdaLayer - Class in org.deeplearning4j.nn.conf.layers.samediff
-
SameDiffLambdaLayer is defined to be used as the base class for implementing lambda layers using SameDiff
Lambda layers are layers without parameters - and as a result, have a much simpler API - users need only
extend SameDiffLambdaLayer and implement a single method
- SameDiffLambdaLayer() - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer
-
- SameDiffLambdaVertex - Class in org.deeplearning4j.nn.conf.layers.samediff
-
SameDiffLambdaVertex is defined to be used as the base class for implementing lambda vertices using SameDiff
Lambda vertices are vertices without parameters - and as a result, have a much simpler API - users need only
extend SameDiffLambdaVertex and implement a single method to define their vertex
- SameDiffLambdaVertex() - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex
-
- SameDiffLambdaVertex.VertexInputs - Class in org.deeplearning4j.nn.conf.layers.samediff
-
- SameDiffLayer - Class in org.deeplearning4j.nn.conf.layers.samediff
-
A base layer used for implementing Deeplearning4j layers using SameDiff.
- SameDiffLayer(SameDiffLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
-
- SameDiffLayer() - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
-
- SameDiffLayer - Class in org.deeplearning4j.nn.layers.samediff
-
- SameDiffLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- SameDiffLayer.Builder<T extends SameDiffLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers.samediff
-
- SameDiffLayerUtils - Class in org.deeplearning4j.nn.conf.layers.samediff
-
Utility methods for DL4J SameDiff layers
- SameDiffOutputLayer - Class in org.deeplearning4j.nn.conf.layers.samediff
-
A base layer used for implementing Deeplearning4j Output layers using SameDiff.
- SameDiffOutputLayer() - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SameDiffOutputLayer
-
- SameDiffOutputLayer - Class in org.deeplearning4j.nn.layers.samediff
-
- SameDiffOutputLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- SameDiffParamInitializer - Class in org.deeplearning4j.nn.params
-
- SameDiffParamInitializer() - Constructor for class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- SameDiffVertex - Class in org.deeplearning4j.nn.conf.layers.samediff
-
A SameDiff-based GraphVertex.
- SameDiffVertex() - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
Sample the hidden distribution given the visible
- sampleHiddenGivenVisible(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
Sample the visible distribution given the hidden
- sampleVisibleGivenHidden(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.AutoEncoder
-
- save(File) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Save the ComputationGraph to a file.
- save(File, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Save the ComputationGraph to a file.
- save(File) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Save the MultiLayerNetwork to a file.
- save(File, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Save the MultiLayerNetwork to a file.
- save(Model, String) - Method in class org.deeplearning4j.optimize.listeners.callbacks.ModelSavingCallback
-
This method saves model
- saveBestModel(T, double) - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
-
Save the best model (so far) learned during early stopping training
- saveBestModel(T, double) - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- saveBestModel(ComputationGraph, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- saveBestModel(MultiLayerNetwork, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- saveEvery(long, TimeUnit) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
Save a model periodically
- saveEvery(long, TimeUnit, boolean) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
Save a model periodically (if sinceLast == false), or if the specified amount of time has elapsed since
the last model was saved (if sinceLast == true)
- saveEveryEpoch() - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
Save a model at the end of every epoch
- saveEveryNEpochs(int) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
Save a model at the end of every N epochs
- saveEveryNIterations(int) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
Save a model every N iterations
- saveEveryNIterations(int, boolean) - Method in class org.deeplearning4j.optimize.listeners.CheckpointListener.Builder
-
Save a model every N iterations (if sinceLast == false), or if N iterations have passed since
the last model vas saved (if sinceLast == true)
- saveLastModel(boolean) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Save the last model? If true: save the most recent model at each epoch, in addition to the best
model (whenever the best model improves).
- saveLatestModel(T, double) - Method in interface org.deeplearning4j.earlystopping.EarlyStoppingModelSaver
-
Save the latest (most recent) model learned during early stopping
- saveLatestModel(T, double) - Method in class org.deeplearning4j.earlystopping.saver.InMemoryModelSaver
-
- saveLatestModel(ComputationGraph, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileGraphSaver
-
- saveLatestModel(MultiLayerNetwork, double) - Method in class org.deeplearning4j.earlystopping.saver.LocalFileModelSaver
-
- scale(int) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport
-
Multiply all memory usage by the specified scaling factor
- scaleFactor - Variable in class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- ScaleVertex - Class in org.deeplearning4j.nn.conf.graph
-
A ScaleVertex is used to scale the size of activations of a single layer: this is simply multiplication by a
fixed scalar value
For example, ResNet activations can be scaled in repeating blocks to keep variance under control.
- ScaleVertex(double) - Constructor for class org.deeplearning4j.nn.conf.graph.ScaleVertex
-
- ScaleVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
A ScaleVertex is used to scale the size of activations of a single layer
For example, ResNet activations can be scaled in repeating blocks to keep variance
under control.
- ScaleVertex(ComputationGraph, String, int, double, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- ScaleVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], double, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- score() - Method in interface org.deeplearning4j.nn.api.Model
-
The score for the model
- score - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- score(DataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Sets the input and labels and returns a score for the prediction with respect to the true labels
This is equivalent to
ComputationGraph.score(DataSet, boolean)
with training==true.
NOTE: this version of the score function can only be used with ComputationGraph networks that have
a single input and a single output.
- score(DataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Sets the input and labels and returns a score for the prediction with respect to the true labels
NOTE: this version of the score function can only be used with ComputationGraph networks that have
a single input and a single output.
- score(MultiDataSet) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Score the network given the MultiDataSet, at test time
- score(MultiDataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Sets the input and labels and returns a score for the prediction with respect to the true labels
- score() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- score() - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- score - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- score() - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
Objective function: the specified objective
- score() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- score() - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- score() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- score() - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- score() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- score() - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- score() - Method in class org.deeplearning4j.nn.layers.objdetect.Yolo2OutputLayer
-
- score() - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- score() - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- score - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- score() - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- score() - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- score - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- score(DataSet) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Sets the input and labels and calculates the score (value of the output layer loss function plus l1/l2 if applicable)
for the prediction with respect to the true labels
This is equivalent to
MultiLayerNetwork.score(DataSet, boolean)
with training==false.
- score(DataSet, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Sets the input and labels and calculates the score (value of the output layer loss function plus l1/l2 if applicable)
for the prediction with respect to the true labels
- score() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Score of the model (relative to the objective function) - previously calculated on the last minibatch
- score() - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
The score for the optimizer so far
- score - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- score() - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- SCORE_KEY - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- scoreCalculator(ScoreCalculator) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Score calculator.
- scoreCalculator(Supplier<ScoreCalculator>) - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration.Builder
-
Score calculator.
- ScoreCalculator<T extends Model> - Interface in org.deeplearning4j.earlystopping.scorecalc
-
ScoreCalculator interface is used to calculate a score for a neural network.
- scoreExamples(DataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the score for each example in a DataSet individually.
- scoreExamples(MultiDataSet, boolean) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Calculate the score for each example in a DataSet individually.
- scoreExamples(DataSetIterator, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- scoreExamples(DataSet, boolean) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Calculate the score for each example in a DataSet individually.
- scoreForMetric(Evaluation.Metric) - Method in class org.deeplearning4j.eval.Evaluation
-
- scoreForMetric(RegressionEvaluation.Metric) - Method in class org.deeplearning4j.eval.RegressionEvaluation
-
- ScoreImprovementEpochTerminationCondition - Class in org.deeplearning4j.earlystopping.termination
-
Terminate training if best model score does not improve for N epochs
- ScoreImprovementEpochTerminationCondition(int) - Constructor for class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
-
- ScoreImprovementEpochTerminationCondition(int, double) - Constructor for class org.deeplearning4j.earlystopping.termination.ScoreImprovementEpochTerminationCondition
-
- ScoreIterationListener - Class in org.deeplearning4j.optimize.listeners
-
Score iteration listener.
- ScoreIterationListener(int) - Constructor for class org.deeplearning4j.optimize.listeners.ScoreIterationListener
-
- ScoreIterationListener() - Constructor for class org.deeplearning4j.optimize.listeners.ScoreIterationListener
-
Default constructor printing every 10 iterations
- scoreMinibatch(Model, INDArray, INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- scoreMinibatch(Model, INDArray[], INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.AutoencoderScoreCalculator
-
- scoreMinibatch(MultiLayerNetwork, INDArray[], INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseMLNScoreCalculator
-
- scoreMinibatch(T, INDArray, INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- scoreMinibatch(T, INDArray[], INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- scoreMinibatch(Model, INDArray[], INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.DataSetLossCalculator
-
- scoreMinibatch(Model, INDArray, INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
- scoreMinibatch(Model, INDArray[], INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
- scoreMinibatch(Model, INDArray, INDArray, INDArray, INDArray, INDArray) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- scoreMinibatch(Model, INDArray[], INDArray[], INDArray[], INDArray[], INDArray[]) - Method in class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
- scoreSum - Variable in class org.deeplearning4j.earlystopping.scorecalc.base.BaseScoreCalculator
-
- SDLayerParams - Class in org.deeplearning4j.nn.conf.layers.samediff
-
SDLayerParams is used to define the parameters for a Deeplearning4j SameDiff layer
- SDLayerParams(Map<String, long[]>, Map<String, long[]>) - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams
-
- SDVertexParams - Class in org.deeplearning4j.nn.conf.layers.samediff
-
SDVertexParams is used to define the inputs - and the parameters - for a SameDiff vertex
- SDVertexParams() - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SDVertexParams
-
- SEARCH_DIR - Static variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- searchState - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- secondary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- secondary - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- seed - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- seed(long) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Random number generator seed.
- seed - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- seed(long) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
RNG seed for reproducibility
- seed(int) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
RNG seed for reproducibility
- seed - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- SelfAttentionLayer - Class in org.deeplearning4j.nn.conf.layers
-
Implements Dot Product Self Attention
Takes in RNN style input in the shape of [batchSize, features, timesteps]
and applies dot product attention using each timestep as the query.
- SelfAttentionLayer(SelfAttentionLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer
-
- SelfAttentionLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- sendMessage(INDArray, int, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodingHandler
-
This method does loops encoded data back to updates queue
- SeparableConvolution2D - Class in org.deeplearning4j.nn.conf.layers
-
2D Separable convolution layer configuration.
- SeparableConvolution2D(SeparableConvolution2D.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D
-
SeparableConvolution2D layer nIn in the input layer is the number of channels nOut is the number of filters to be
used in the net or in other words the channels The builder specifies the filter/kernel size, the stride and
padding The pooling layer takes the kernel size
- SeparableConvolution2D.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- SeparableConvolution2DLayer - Class in org.deeplearning4j.nn.layers.convolution
-
2D Separable convolution layer implementation
Separable convolutions split a regular convolution operation into two
simpler operations, which are usually computationally more efficient.
- SeparableConvolution2DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.SeparableConvolution2DLayer
-
- SeparableConvolutionParamInitializer - Class in org.deeplearning4j.nn.params
-
Initialize separable convolution params.
- SeparableConvolutionParamInitializer() - Constructor for class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- setAbsTolx(double) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
Sets the tolerance of absolute diff in function value.
- setBackpropGradientsViewArray(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the gradients array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.InputVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2NormalizeVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.L2Vertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.MergeVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PoolHelperVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.PreprocessorVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ReshapeVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.DuplicateToTimeSeriesVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.LastTimeStepVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.rnn.ReverseTimeSeriesVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ScaleVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffGraphVertex
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setBackpropGradientsViewArray(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setBatchSize(int) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Set the batch size for the optimizer
- setBatchSize(int) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setBegin(int) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setBlocks(int...) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
- setCacheMode(CacheMode) - Method in interface org.deeplearning4j.nn.api.Layer
-
This method sets given CacheMode for current layer
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method sets specified CacheMode for all layers within network
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setCacheMode(CacheMode) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method sets specified CacheMode for all layers within network
- setConf(NeuralNetConfiguration) - Method in interface org.deeplearning4j.nn.api.Model
-
Setter for the configuration
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setConf(NeuralNetConfiguration) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setConstraints(List<LayerConstraint>) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- setConstraints(List<LayerConstraint>) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- setCropping(int...) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D.Builder
-
- setCropping(int...) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D.Builder
-
- setCropping(int...) - Method in class org.deeplearning4j.nn.conf.layers.convolutional.Cropping3D.Builder
-
- setDataType(DataType) - Method in interface org.deeplearning4j.nn.api.TrainingConfig
-
- setDataType(DataType) - Method in class org.deeplearning4j.nn.conf.graph.GraphVertex
-
- setDataType(DataType) - Method in class org.deeplearning4j.nn.conf.graph.LayerVertex
-
- setDataType(DataType) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
- setDataType(DataType) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- setDataType(DataType) - Method in class org.deeplearning4j.nn.conf.misc.DummyConfig
-
- setDecoderLayerSizes(int...) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Size of the decoder layers, in units.
- setDepth(long) - Method in class org.deeplearning4j.nn.conf.inputs.InputType.InputTypeConvolutional
-
Deprecated.
- setDilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- setDilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
Set dilation size for 3D convolutions in (depth, height, width) order
- setDilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Set dilation size for 3D convolutions in (depth, height, width) order
- setDilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- setDilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
- setDilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- setDilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- setDilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- setDilation(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
Dilation
- setDilation(int[]) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- setEncoderLayerSizes(int...) - Method in class org.deeplearning4j.nn.conf.layers.variational.VariationalAutoencoder.Builder
-
Size of the encoder layers, in units.
- setEnd(int) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setEpochCount(int) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set the current epoch count (number of epochs passed ) for the layer/network
- setEpochCount(int) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- setEpochCount(int) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setEpochCount(int) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setEpochCount(int) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setEpochCount(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setEps(double) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- setEpsilon(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setEpsilon(INDArray) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- setEpsilon(INDArray) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Set the errors (epsilon - aka dL/dActivation) for this GraphVertex
- setError(double) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setExternalSource(IndexedTail) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- setExternalSource(IndexedTail) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method allows to pass external updates to accumulator, they will be populated across all workers using this GradientsAccumulator instance
- setExternalSource(IndexedTail) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method allows to pass external updates to accumulator, they will be populated across all workers using this GradientsAccumulator instance
- setFeatureExtractor(int) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Specify a layer to set as a "feature extractor"
The specified layer and the layers preceding it will be "frozen" with parameters staying constant
- setFeatureExtractor(String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Specify a layer vertex to set as a "feature extractor"
The specified layer vertex and the layers on the path from an input vertex to it will be "frozen" with parameters staying constant
- setFrequency(int) - Method in class org.deeplearning4j.optimize.listeners.PerformanceListener.Builder
-
Desired TrainingListener activation frequency
- setGoldLabel(int) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setGradientFor(String, INDArray) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- setGradientFor(String, INDArray, Character) - Method in class org.deeplearning4j.nn.gradient.DefaultGradient
-
- setGradientFor(String, INDArray) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Update gradient for the given variable
- setGradientFor(String, INDArray, Character) - Method in interface org.deeplearning4j.nn.gradient.Gradient
-
Update gradient for the given variable; also (optionally) specify the order in which the array should be flattened
to a row vector
- setGradientsAccumulator(GradientsAccumulator) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method allows you to specificy GradientsAccumulator instance to be used with this model
- setGradientsAccumulator(GradientsAccumulator) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method allows you to specificy GradientsAccumulator instance to be used with this model
PLEASE NOTE: Do not use this method unless you understand how to use GradientsAccumulator & updates sharing.
PLEASE NOTE: Do not use this method on standalone model
- setGradientsAccumulator(GradientsAccumulator) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
This method specifies GradientsAccumulator instance to be used for updates sharing across multiple models
- setGradientsAccumulator(GradientsAccumulator) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setHeadWord(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setHelperWorkspace(String, Pointer) - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
Set the pointer to the helper memory.
- setIndex(int) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set the layer index.
- setIndex(int) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setIndex(int) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- setIndex(int) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setIndex(int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setIndex(int) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setIndex(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setInput(INDArray, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set the layer input.
- setInput(int, INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the specified input for the ComputationGraph
- setInput(int, INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setInput(int, INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- setInput(int, INDArray, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Set the input activations.
- setInput(int, INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- setInput(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setInput(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setInput(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setInput(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setInput(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the input array for the network
- setInput(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setInputMiniBatchSize(int) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set current/last input mini-batch size.
Used for score and gradient calculations.
- setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setInputMiniBatchSize(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setInputPreProcessor(int, InputPreProcessor) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
Specify the preprocessor for the added layers
for cases where they cannot be inferred automatically.
- setInputs(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set all inputs for the ComputationGraph network
- setInputs(INDArray...) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- setInputs(INDArray...) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Set all inputs for this GraphVertex
- setInputs(String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Sets new inputs for the computation graph.
- setInputSize(int) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
Set input filter size for this locally connected 1D layer
- setInputSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
Set input filter size (h,w) for this locally connected 2D layer
- setInputType(InputType) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- setInputType(InputType) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.ListBuilder
-
- setInputTypes(InputType...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Specify the types of inputs to the network, so that:
(a) preprocessors can be automatically added, and
(b) the nIns (input size) for each layer can be automatically calculated and set
The order here is the same order as .addInputs().
- setInputTypes(InputType...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Sets the input type of corresponding inputs.
- setInputVertices(VertexIndices[]) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setInputVertices(VertexIndices[]) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- setInputVertices(VertexIndices[]) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Sets the input vertices.
- setIterationCount(int) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set the current iteration count (number of parameter updates) for the layer/network
- setIterationCount(int) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setIterationCount(int) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setIterationCount(int) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setIWM - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- setKernel(int...) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
Set kernel size for 3D convolutions in (depth, height, width) order
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Set kernel size for 3D convolutions in (depth, height, width) order
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
Kernel size
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
- setKernelSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- setLabel(int, INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the specified label for the ComputationGraph
- setLabel(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setLabels(INDArray) - Method in interface org.deeplearning4j.nn.api.layers.IOutputLayer
-
Set the labels array for this output layer
- setLabels(INDArray...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set all labels for the ComputationGraph network
- setLabels(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- setLabels(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- setLabels(INDArray) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
- setLabels(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setLastEtlTime(long) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
This method allows to set ETL field time, useful for performance tracking
- setLastEtlTime(long) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the last ETL time in milliseconds, for informational/reporting purposes.
- setLayer(Layer) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional.Builder
-
- setLayerAsFrozen() - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setLayerAsFrozen() - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- setLayerAsFrozen() - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Only applies to layer vertices.
- setLayerAsFrozen() - Method in class org.deeplearning4j.nn.graph.vertex.impl.LayerVertex
-
- setLayerMaskArrays(INDArray[], INDArray[]) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the mask arrays for features and labels.
- setLayerMaskArrays(INDArray, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the mask arrays for features and labels.
- setLayerName(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- setLayerName(String) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayerWithBackprop
-
- setLayerName(String) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- setLayerName(String) - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- setLayers(Layer[]) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setLayerWiseConfigurations(MultiLayerConfiguration) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
This method is intended for internal/developer use only.
- setLearningRate(double) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the learning rate for all layers in the network to the specified value.
- setLearningRate(ISchedule) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the learning rate schedule for all layers in the network to the specified schedule.
- setLearningRate(String, double) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the learning rate for a single layer in the network to the specified value.
- setLearningRate(String, ISchedule) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the learning rate schedule for a single layer in the network to the specified value.
Note also that
ComputationGraph.setLearningRate(ISchedule)
should also be used in preference, when all layers need
to be set to a new LR schedule.
This schedule will replace any/all existing schedules, and also any fixed learning rate values.
Note also that the iteration/epoch counts will
not be reset.
- setLearningRate(double) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the learning rate for all layers in the network to the specified value.
- setLearningRate(ISchedule) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the learning rate schedule for all layers in the network to the specified schedule.
- setLearningRate(int, double) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the learning rate for a single layer in the network to the specified value.
- setLearningRate(int, ISchedule) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the learning rate schedule for a single layer in the network to the specified value.
Note also that
MultiLayerNetwork.setLearningRate(ISchedule)
should also be used in preference, when all layers need
to be set to a new LR schedule.
This schedule will replace any/all existing schedules, and also any fixed learning rate values.
Note also that the iteration/epoch counts will
not be reset.
- setLearningRate(MultiLayerNetwork, double) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Set the learning rate for all layers in the network to the specified value.
- setLearningRate(MultiLayerNetwork, ISchedule) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Set the learning rate schedule for all layers in the network to the specified schedule.
- setLearningRate(MultiLayerNetwork, int, double) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Set the learning rate for a single layer in the network to the specified value.
- setLearningRate(MultiLayerNetwork, int, ISchedule) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Set the learning rate schedule for a single layer in the network to the specified value.
Note also that
NetworkUtils.setLearningRate(MultiLayerNetwork, ISchedule)
should also be used in preference, when all layers need
to be set to a new LR schedule.
This schedule will replace any/all existing schedules, and also any fixed learning rate values.
Note also that the iteration/epoch counts will
not be reset.
- setLearningRate(ComputationGraph, double) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Set the learning rate for all layers in the network to the specified value.
- setLearningRate(ComputationGraph, ISchedule) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Set the learning rate schedule for all layers in the network to the specified schedule.
- setLearningRate(ComputationGraph, String, double) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Set the learning rate for a single layer in the network to the specified value.
- setLearningRate(ComputationGraph, String, ISchedule) - Static method in class org.deeplearning4j.util.NetworkUtils
-
Set the learning rate schedule for a single layer in the network to the specified value.
Note also that
NetworkUtils.setLearningRate(ComputationGraph, ISchedule)
should also be used in preference, when all
layers need to be set to a new LR schedule.
This schedule will replace any/all existing schedules, and also any fixed learning rate values.
Note also that the iteration/epoch counts will
not be reset.
- setListener(EarlyStoppingListener<T>) - Method in class org.deeplearning4j.earlystopping.trainer.BaseEarlyStoppingTrainer
-
- setListener(EarlyStoppingListener<T>) - Method in interface org.deeplearning4j.earlystopping.trainer.IEarlyStoppingTrainer
-
Set the early stopping listener
- setListeners(TrainingListener...) - Method in interface org.deeplearning4j.nn.api.Layer
-
- setListeners(Collection<TrainingListener>) - Method in interface org.deeplearning4j.nn.api.Layer
-
- setListeners(Collection<TrainingListener>) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the trainingListeners for the ComputationGraph (and all layers in the network)
- setListeners(TrainingListener...) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the trainingListeners for the ComputationGraph (and all layers in the network)
- setListeners(Collection<TrainingListener>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the trainingListeners for the ComputationGraph (and all layers in the network)
- setListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the trainingListeners for the ComputationGraph (and all layers in the network)
- setListeners(Collection<TrainingListener>) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- setListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setListeners(Collection<TrainingListener>) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setListeners(Collection<TrainingListener>) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setListeners(Collection<TrainingListener>) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setListeners(Collection<TrainingListener>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setListeners(TrainingListener...) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setListeners(Collection<TrainingListener>) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- setListeners(Collection<TrainingListener>) - Method in class org.deeplearning4j.optimize.Solver
-
- setListeners(Collection<TrainingListener>) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setMask(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setMaskArray(INDArray) - Method in interface org.deeplearning4j.nn.api.Layer
-
Set the mask array.
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.Cnn3DLossLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.CnnLossLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnLossLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setMaskArray(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setMaskValue(double) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer.Builder
-
- setMaxIterations(int) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- setMean(double) - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ActivationLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.CapsuleLayer
-
- setNIn(int) - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer.Builder
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer
-
- setNIn(int) - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer.Builder
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.DropoutLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Layer
-
Set the nIn value (number of inputs, or input channels for CNNs) based on the given input
type
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.LearnedSelfAttentionLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.LocalResponseNormalization
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.NoParamLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- setNIn(int) - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer.Builder
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.RnnOutputLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.SelfAttentionLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer
-
- setNIn(InputType, boolean) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer
-
- setNoLeverageOverride(String) - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- setNOut(int) - Method in class org.deeplearning4j.nn.conf.layers.Cnn3DLossLayer.Builder
-
- setNOut(int) - Method in class org.deeplearning4j.nn.conf.layers.CnnLossLayer.Builder
-
- setNOut(int) - Method in class org.deeplearning4j.nn.conf.layers.RnnLossLayer.Builder
-
- setNOut(int) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
- setOutputs(String...) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Set the network output labels.
- setOutputs(String...) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
Set outputs to the computation graph, will add to ones that are existing
Also determines the order, like in ComputationGraphConfiguration
- setOutputVertex(boolean) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- setOutputVertex(boolean) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
Set the GraphVertex to be an output vertex
- setOutputVertices(VertexIndices[]) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- setOutputVertices(VertexIndices[]) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- setOutputVertices(VertexIndices[]) - Method in interface org.deeplearning4j.nn.graph.vertex.GraphVertex
-
set the output vertices.
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
Set padding size for 3D convolutions in (depth, height, width) order
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Set padding size for 3D convolutions in (depth, height, width) order
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
- setPadding(int[][]) - Method in class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer.Builder
-
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
Padding
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
Padding
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer.Builder
-
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPadding3DLayer.Builder
-
[padLeftD, padRightD, padLeftH, padRightH, padLeftW, padRightW]
- setPadding(int...) - Method in class org.deeplearning4j.nn.conf.layers.ZeroPaddingLayer.Builder
-
- setParam(String, INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the parameter with a new ndarray
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setParam(String, INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the values of a single parameter.
- setParameters(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setParams(Set<String>) - Method in interface org.deeplearning4j.nn.api.layers.LayerConstraint
-
Set the parameters that this layer constraint should be applied to
- setParams(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the parameters for this model.
- setParams(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParams(INDArray, char) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParams(INDArray, char) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.normalization.LocalResponseNormalization
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- setParams(INDArray, char) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- setParams(INDArray, char) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setParams(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the parameters for this model.
- setParamsViewArray(INDArray) - Method in interface org.deeplearning4j.nn.api.Model
-
Set the initial parameters array as a view of the full (backprop) network parameters
NOTE: this is intended to be used internally in MultiLayerNetwork and ComputationGraph, not by users.
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setParamsViewArray(INDArray) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- setParamTable(Map<String, INDArray>) - Method in interface org.deeplearning4j.nn.api.Model
-
Setter for the param table
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffLayer
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- setParamTable(Map<String, INDArray>) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the parameters of the netowrk.
- setParent(Tree) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setParse(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setPnorm(int) - Method in class org.deeplearning4j.nn.conf.layers.GlobalPoolingLayer.Builder
-
- setPnorm(int) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- setPrediction(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setPreProcessor(MultiDataSetPreProcessor) - Method in class org.deeplearning4j.datasets.iterator.impl.MultiDataSetIteratorAdapter
-
- setProbabilityOfSuccess(double) - Method in class org.deeplearning4j.nn.conf.distribution.BinomialDistribution
-
- setRelTolx(double) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
Sets the tolerance of relative diff in function value.
- setRepetitionFactor(int) - Method in class org.deeplearning4j.nn.conf.layers.misc.RepeatVector.Builder
-
Set repetition factor for RepeatVector layer
- setScore(double) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- setScore(double) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Intended for developer/internal use
- setScoreFor(INDArray, LayerWorkspaceMgr) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.BaseOutputLayer
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.BasePretrainNetwork
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.LossLayer
-
- setScoreWithZ(INDArray) - Method in class org.deeplearning4j.nn.layers.training.CenterLossOutputLayer
-
- setSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling1D.Builder
-
- setSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling2D.Builder
-
- setSize(int...) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D.Builder
-
- setStateViewArray(Trainable, INDArray, boolean) - Method in interface org.deeplearning4j.nn.api.Updater
-
Set the internal (historical) state view array for this updater
- setStateViewArray(INDArray) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
Set the view array.
- setStateViewArray(Trainable, INDArray, boolean) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- setStd(double) - Method in class org.deeplearning4j.nn.conf.distribution.NormalDistribution
-
- setStepMax(double) - Method in class org.deeplearning4j.optimize.solvers.BackTrackLineSearch
-
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
Set stride size for 3D convolutions in (depth, height, width) order
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
Set stride size for 3D convolutions in (depth, height, width) order
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
Stride
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
Stride
- setStride(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
- setTags(List<String>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setTokens(List<String>) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setTWM - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- setType(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setUnderlying(Layer) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer.Builder
-
- setUpdater(ComputationGraphUpdater) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
Set the computationGraphUpdater for the network
- setUpdater(Updater) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Set the updater for the MultiLayerNetwork
- setUpdater(Updater) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- setUpdater(Updater) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setUpdaterComputationGraph(ComputationGraphUpdater) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
- setUpdaterComputationGraph(ComputationGraphUpdater) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- setupSearchState(Pair<Gradient, Double>) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Based on the gradient and score
setup a search state
- setupSearchState(Pair<Gradient, Double>) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
Setup the initial search state
- setupSearchState(Pair<Gradient, Double>) - Method in class org.deeplearning4j.optimize.solvers.LBFGS
-
- setValue(String) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setVector(INDArray) - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- setWeightInitFn(IWeightInit) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer.Builder
-
- setWorkspaceMode(WorkspaceMode) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- shape() - Method in class org.deeplearning4j.nn.weights.embeddings.WeightInitEmbedding
-
- shape - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- shape - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- sharedAxes(long...) - Method in class org.deeplearning4j.nn.conf.layers.PReLULayer.Builder
-
Set the broadcasting axes of PReLU's alpha parameter.
- SharedGradient - Class in org.deeplearning4j.optimize.listeners
-
- SharedGradient() - Constructor for class org.deeplearning4j.optimize.listeners.SharedGradient
-
- shiftFactor - Variable in class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- ShiftVertex - Class in org.deeplearning4j.nn.conf.graph
-
A ShiftVertex is used to shift the activations of a single layer.
- ShiftVertex(double) - Constructor for class org.deeplearning4j.nn.conf.graph.ShiftVertex
-
- ShiftVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
A ShiftVertex is used to shift the activations of a single layer
One could use it to add a bias or as part of some other calculation.
- ShiftVertex(ComputationGraph, String, int, double, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- ShiftVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], double, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.ShiftVertex
-
- SimpleRnn - Class in org.deeplearning4j.nn.conf.layers.recurrent
-
Simple RNN - aka "vanilla" RNN is the simplest type of recurrent neural network layer.
- SimpleRnn(SimpleRnn.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.recurrent.SimpleRnn
-
- SimpleRnn - Class in org.deeplearning4j.nn.layers.recurrent
-
Simple RNN - aka "vanilla" RNN is the simplest type of recurrent neural network layer.
- SimpleRnn(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.recurrent.SimpleRnn
-
- SimpleRnn.Builder - Class in org.deeplearning4j.nn.conf.layers.recurrent
-
- SimpleRnnParamInitializer - Class in org.deeplearning4j.nn.params
-
- SimpleRnnParamInitializer() - Constructor for class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- size - Variable in class org.deeplearning4j.nn.conf.layers.BaseUpsamplingLayer
-
- size - Variable in class org.deeplearning4j.nn.conf.layers.BaseUpsamplingLayer.UpsamplingBuilder
-
An int array to specify upsampling dimensions, the length of which has to equal to the number of spatial
dimensions (e.g.
- size(int) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling1D.Builder
-
Upsampling size
- size(int[]) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling1D.Builder
-
Upsampling size int array with a single element.
- size - Variable in class org.deeplearning4j.nn.conf.layers.Upsampling1D
-
- size(int) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling2D.Builder
-
Upsampling size int, used for both height and width
- size(int[]) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling2D.Builder
-
Upsampling size array
- size - Variable in class org.deeplearning4j.nn.conf.layers.Upsampling2D
-
- size(int) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D.Builder
-
Upsampling size as int, so same upsampling size is used for depth, width and height
- size(int[]) - Method in class org.deeplearning4j.nn.conf.layers.Upsampling3D.Builder
-
Upsampling size as int, so same upsampling size is used for depth, width and height
- size - Variable in class org.deeplearning4j.nn.conf.layers.Upsampling3D
-
- size() - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- skipDueToPretrainConfig(boolean) - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- sleep(long) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- sleep(AtomicLong, long) - Method in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- sleepMode - Variable in class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- SleepyTrainingListener - Class in org.deeplearning4j.optimize.listeners
-
This TrainingListener implementation provides a way to "sleep" during specific Neural Network training phases.
Suitable for debugging/testing purposes only.
- SleepyTrainingListener() - Constructor for class org.deeplearning4j.optimize.listeners.SleepyTrainingListener
-
- SleepyTrainingListener.SleepMode - Enum in org.deeplearning4j.optimize.listeners
-
- SleepyTrainingListener.TimeMode - Enum in org.deeplearning4j.optimize.listeners
-
- smartDecompress(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- smartDecompress(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- SmartFancyBlockingQueue - Class in org.deeplearning4j.optimize.solvers.accumulation
-
This class provides additional functionality to FancyBlockingQueue: it tracks memory use of stored compressed INDArrays, and if their size becomes too big, it:
a) decompresses them into single INDArray
b) removes original updates messages
c) keeps updating single INDArray until it gets consumed
d) once that happened - it automatically switches back to original behavior
- SmartFancyBlockingQueue(int, INDArray) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- SmartFancyBlockingQueue(int, BlockingQueue<INDArray>, INDArray) - Constructor for class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- smartLock - Variable in class org.deeplearning4j.optimize.solvers.accumulation.SmartFancyBlockingQueue
-
- softmax(SameDiff, SDVariable, int, int) - Static method in class org.deeplearning4j.util.CapsuleUtils
-
Compute softmax along a given dimension
- solver - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- solver - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- solver - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- solver - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- Solver - Class in org.deeplearning4j.optimize
-
Generic purpose solver
- Solver() - Constructor for class org.deeplearning4j.optimize.Solver
-
- Solver.Builder - Class in org.deeplearning4j.optimize
-
- SpaceToBatch - Class in org.deeplearning4j.nn.layers.convolution
-
Space to batch utility layer for convolutional input types.
- SpaceToBatch(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- SpaceToBatchLayer - Class in org.deeplearning4j.nn.conf.layers
-
Space to batch utility layer configuration for convolutional input types.
- SpaceToBatchLayer(SpaceToBatchLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.SpaceToBatchLayer
-
- SpaceToBatchLayer.Builder<T extends SpaceToBatchLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- SpaceToDepth - Class in org.deeplearning4j.nn.layers.convolution
-
Space to channels utility layer for convolutional input types.
- SpaceToDepth(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- SpaceToDepthLayer - Class in org.deeplearning4j.nn.conf.layers
-
Space to channels utility layer configuration for convolutional input types.
- SpaceToDepthLayer(SpaceToDepthLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer
-
- SpaceToDepthLayer.Builder<T extends SpaceToDepthLayer.Builder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- SpaceToDepthLayer.DataFormat - Enum in org.deeplearning4j.nn.conf.layers
-
- sparsity(double) - Method in class org.deeplearning4j.nn.conf.layers.AutoEncoder.Builder
-
Autoencoder sparity parameter
- sparsity - Variable in class org.deeplearning4j.nn.conf.layers.AutoEncoder
-
- SpatialDropout - Class in org.deeplearning4j.nn.conf.dropout
-
Spatial dropout: can only be applied to 3D (time series), 4D (convolutional 2D) or 5D (convolutional 3D) activations.
- SpatialDropout(double) - Constructor for class org.deeplearning4j.nn.conf.dropout.SpatialDropout
-
- SpatialDropout(ISchedule) - Constructor for class org.deeplearning4j.nn.conf.dropout.SpatialDropout
-
- SpatialDropout(double, ISchedule) - Constructor for class org.deeplearning4j.nn.conf.dropout.SpatialDropout
-
- squash(SameDiff, SDVariable, int) - Static method in class org.deeplearning4j.util.CapsuleUtils
-
Compute the squash operation used in CapsNet
The formula is (||s||^2 / (1 + ||s||^2)) * (s / ||s||).
- stackSize - Variable in class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- StackVertex - Class in org.deeplearning4j.nn.conf.graph
-
StackVertex allows for stacking of inputs so that they may be forwarded through a network.
- StackVertex() - Constructor for class org.deeplearning4j.nn.conf.graph.StackVertex
-
- StackVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
StackVertex allows for stacking of inputs so that they may be forwarded through
a network.
- StackVertex(ComputationGraph, String, int, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- StackVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.StackVertex
-
- standardMemory(long, long) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
Report the standard memory
- state - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- STATE_KEY_PREV_ACTIVATION - Static variable in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- STATE_KEY_PREV_ACTIVATION - Static variable in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- STATE_KEY_PREV_ACTIVATION - Static variable in class org.deeplearning4j.nn.layers.recurrent.SimpleRnn
-
- STATE_KEY_PREV_MEMCELL - Static variable in class org.deeplearning4j.nn.layers.recurrent.GravesLSTM
-
Deprecated.
- STATE_KEY_PREV_MEMCELL - Static variable in class org.deeplearning4j.nn.layers.recurrent.LSTM
-
- stateMap - Variable in class org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer
-
stateMap stores the INDArrays needed to do rnnTimeStep() forward pass.
- std - Variable in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- step(INDArray, INDArray, double) - Method in interface org.deeplearning4j.optimize.api.StepFunction
-
Step with the given parameters
- step(INDArray, INDArray) - Method in interface org.deeplearning4j.optimize.api.StepFunction
-
Step with no parameters
- step() - Method in interface org.deeplearning4j.optimize.api.StepFunction
-
- step - Variable in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- step - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
-
Does x = x + stepSize * line
- step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
-
- step() - Method in class org.deeplearning4j.optimize.stepfunctions.DefaultStepFunction
-
- step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
-
- step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
-
- step() - Method in class org.deeplearning4j.optimize.stepfunctions.GradientStepFunction
-
- step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
-
- step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
-
- step() - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeDefaultStepFunction
-
- step(INDArray, INDArray, double) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
-
- step(INDArray, INDArray) - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
-
- step() - Method in class org.deeplearning4j.optimize.stepfunctions.NegativeGradientStepFunction
-
- stepFunction - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- stepFunction(StepFunction) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Deprecated.
- stepFunction - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- StepFunction - Class in org.deeplearning4j.nn.conf.stepfunctions
-
Custom step function for line search.
- StepFunction() - Constructor for class org.deeplearning4j.nn.conf.stepfunctions.StepFunction
-
- stepFunction(StepFunction) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- stepFunction - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- StepFunction - Interface in org.deeplearning4j.optimize.api
-
Custom step function for line search
- stepFunction - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- StepFunctions - Class in org.deeplearning4j.optimize.stepfunctions
-
- stepMax - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- StochasticGradientDescent - Class in org.deeplearning4j.optimize.solvers
-
Stochastic Gradient Descent
Standard fix step size
No line search
- StochasticGradientDescent(NeuralNetConfiguration, StepFunction, Collection<TrainingListener>, Model) - Constructor for class org.deeplearning4j.optimize.solvers.StochasticGradientDescent
-
- storage - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- storeUpdate(INDArray, int, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
This method accepts updates suitable for StepFunction, and accumulates/propagates it across all workers
- storeUpdate(INDArray, int, int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
This method accepts updates suitable for StepFunction, and accumulates/propagates it across all workers
- storeUpdate(INDArray, int, int) - Method in interface org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator
-
This method accepts updates suitable for StepFunction, and accumulates/propagates it across all workers
- stride(int) - Method in class org.deeplearning4j.nn.conf.layers.Convolution1DLayer.Builder
-
Stride for the convolution.
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.Convolution3D.Builder
-
Set stride size for 3D convolutions in (depth, height, width) order
- stride - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BaseConvBuilder
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder
-
- stride - Variable in class org.deeplearning4j.nn.conf.layers.ConvolutionLayer
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.Deconvolution2D.Builder
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.DepthwiseConvolution2D.Builder
-
Stride of the convolution in rows/columns (height/width) dimensions
- stride(int) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected1D.Builder
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.LocallyConnected2D.Builder
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Sets the stride of the 2d convolution
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.SeparableConvolution2D.Builder
-
Stride of the convolution rows/columns (height/width)
- stride(int) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling1DLayer.Builder
-
Stride
- stride - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.BaseSubsamplingBuilder
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.Builder
-
Stride
- stride - Variable in class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- stride - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.BaseSubsamplingBuilder
-
- stride(int...) - Method in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder
-
Stride
- stride - Variable in class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- Subsampling1DLayer - Class in org.deeplearning4j.nn.conf.layers
-
1D (temporal) subsampling layer - also known as pooling layer.
Expects input of shape [minibatch, nIn,
sequenceLength]
.
- Subsampling1DLayer - Class in org.deeplearning4j.nn.layers.convolution.subsampling
-
1D (temporal) subsampling layer.
- Subsampling1DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer
-
- Subsampling1DLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- Subsampling3DLayer - Class in org.deeplearning4j.nn.conf.layers
-
3D subsampling / pooling layer for convolutional neural networks
- Subsampling3DLayer(Subsampling3DLayer.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
-
- Subsampling3DLayer - Class in org.deeplearning4j.nn.layers.convolution.subsampling
-
Subsampling 3D layer, used for downsampling a 3D convolution
- Subsampling3DLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- Subsampling3DLayer.BaseSubsamplingBuilder<T extends Subsampling3DLayer.BaseSubsamplingBuilder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- Subsampling3DLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- Subsampling3DLayer.PoolingType - Enum in org.deeplearning4j.nn.conf.layers
-
- SubsamplingHelper - Interface in org.deeplearning4j.nn.layers.convolution.subsampling
-
Helper for the subsampling layer.
- SubsamplingLayer - Class in org.deeplearning4j.nn.conf.layers
-
Subsampling layer also referred to as pooling in convolution neural nets
Supports the following pooling types: MAX, AVG, SUM, PNORM
- SubsamplingLayer(SubsamplingLayer.BaseSubsamplingBuilder) - Constructor for class org.deeplearning4j.nn.conf.layers.SubsamplingLayer
-
- SubsamplingLayer - Class in org.deeplearning4j.nn.layers.convolution.subsampling
-
Subsampling layer.
- SubsamplingLayer(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- SubsamplingLayer.BaseSubsamplingBuilder<T extends SubsamplingLayer.BaseSubsamplingBuilder<T>> - Class in org.deeplearning4j.nn.conf.layers
-
- SubsamplingLayer.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- SubsamplingLayer.PoolingType - Enum in org.deeplearning4j.nn.conf.layers
-
- subsetAndReshape(List<String>, Map<String, long[]>, INDArray, AbstractSameDiffLayer, SameDiffVertex) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- SubsetVertex - Class in org.deeplearning4j.nn.conf.graph
-
SubsetVertex is used to select a subset of the activations out of another GraphVertex.
For example, a subset of the activations out of a layer.
Note that this subset is specifying by means of an interval of the original activations.
- SubsetVertex(int, int) - Constructor for class org.deeplearning4j.nn.conf.graph.SubsetVertex
-
- SubsetVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
SubsetVertex is used to select a subset of the activations out of another GraphVertex.
For example, a subset of the activations out of a layer.
Note that this subset is specifying by means of an interval of the original activations.
- SubsetVertex(ComputationGraph, String, int, int, int, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- SubsetVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], int, int, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.SubsetVertex
-
- summary() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
String detailing the architecture of the computation graph.
- summary(InputType...) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
String detailing the architecture of the computation graph.
- summary() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
String detailing the architecture of the multilayernetwork.
- summary(InputType) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
String detailing the architecture of the multilayernetwork.
- synchronize(int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- synchronize(int, boolean) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- synchronize(int) - Method in class org.deeplearning4j.optimize.solvers.accumulation.FancyBlockingQueue
-
- synchronizeIterEpochCounts() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- synchronizeIterEpochCounts() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- underlying(Layer) - Method in class org.deeplearning4j.nn.conf.layers.util.MaskZeroLayer.Builder
-
- underlying - Variable in class org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer
-
- underlying - Variable in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- underlying - Variable in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- unfrozenGraph() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Returns the unfrozen subset of the original computation graph as a computation graph
Note that with each call to featurizedFit the parameters to the original computation graph are also updated
- unfrozenMLN() - Method in class org.deeplearning4j.nn.transferlearning.TransferLearningHelper
-
Returns the unfrozen layers of the MultiLayerNetwork as a multilayernetwork
Note that with each call to featurizedFit the parameters to the original MLN are also updated
- UniformDistribution - Class in org.deeplearning4j.nn.conf.distribution
-
A uniform distribution, with two parameters: lower and upper - i.e., U(lower,upper)
- UniformDistribution(double, double) - Constructor for class org.deeplearning4j.nn.conf.distribution.UniformDistribution
-
Create a uniform real distribution using the given lower and upper
bounds.
- UnitNormConstraint - Class in org.deeplearning4j.nn.conf.constraint
-
Constrain the L2 norm of the incoming weights for each unit to be 1.0
- UnitNormConstraint(int...) - Constructor for class org.deeplearning4j.nn.conf.constraint.UnitNormConstraint
-
Apply to weights but not biases by default
- UnitNormConstraint(Set<String>, int...) - Constructor for class org.deeplearning4j.nn.conf.constraint.UnitNormConstraint
-
- units(int) - Method in class org.deeplearning4j.nn.conf.layers.FeedForwardLayer.Builder
-
- UnstackVertex - Class in org.deeplearning4j.nn.conf.graph
-
UnstackVertex allows for unstacking of inputs so that they may be forwarded through
a network.
- UnstackVertex(int, int) - Constructor for class org.deeplearning4j.nn.conf.graph.UnstackVertex
-
- UnstackVertex - Class in org.deeplearning4j.nn.graph.vertex.impl
-
UnstackVertex allows for unstacking of inputs so that they may be forwarded through
a network.
- UnstackVertex(ComputationGraph, String, int, int, int, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- UnstackVertex(ComputationGraph, String, int, VertexIndices[], VertexIndices[], int, int, DataType) - Constructor for class org.deeplearning4j.nn.graph.vertex.impl.UnstackVertex
-
- update(Gradient) - Method in interface org.deeplearning4j.nn.api.Model
-
Update layer weights and biases with gradient change
- update(INDArray, String) - Method in interface org.deeplearning4j.nn.api.Model
-
Perform one update applying the gradient
- update(Trainable, Gradient, int, int, int, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.nn.api.Updater
-
Updater: updates the model
- update(INDArray, String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- update(Gradient) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- update(Gradient) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- update(Gradient) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.BaseLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToBatch
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.convolution.SpaceToDepth
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- update(Gradient) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.FrozenLayer
-
- update(Gradient) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.FrozenLayerWithBackprop
-
- update(Gradient) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.RepeatVector
-
- update(Gradient) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- update(Gradient) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- update(INDArray, String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- update(Gradient) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- update(Task) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- update(Trainable, Gradient, int, int, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- update(Gradient, int, int, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
Update the gradient for the model.
- update(int, int) - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
Update the gradient for this block
- updateBuilder(ComputationGraphConfiguration.GraphBuilder, String, int, int[][], String) - Method in interface org.deeplearning4j.nn.conf.module.GraphBuilderModule
-
Add a layer to the collection of layers being generated by this module.
- updateExternalGradient(int, int, INDArray, INDArray) - Method in class org.deeplearning4j.nn.updater.UpdaterBlock
-
- updateGradientAccordingToParams(Gradient, Model, int, LayerWorkspaceMgr) - Method in interface org.deeplearning4j.optimize.api.ConvexOptimizer
-
Update the gradient according to the configuration such as adagrad, momentum, and sparsity
- updateGradientAccordingToParams(Gradient, Model, int, LayerWorkspaceMgr) - Method in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- Updater - Interface in org.deeplearning4j.nn.api
-
Update the model
- updater(Updater) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Deprecated.
- updater(IUpdater) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Gradient updater.
- updater - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
Gradient updater.
- updater(IUpdater) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
Gradient updater.
- updater - Variable in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- updater - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
- updater(Updater) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- updater(IUpdater) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Gradient updater configuration.
- Updater - Enum in org.deeplearning4j.nn.conf
-
All the possible different updaters
- updater(IUpdater) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Gradient updater configuration.
- updater(Updater) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- updater - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- updater - Variable in class org.deeplearning4j.optimize.solvers.BaseOptimizer
-
- UPDATER_BIN - Static variable in class org.deeplearning4j.util.ModelSerializer
-
- UpdaterBlock - Class in org.deeplearning4j.nn.updater
-
- UpdaterBlock(int, int, int, int, List<UpdaterBlock.ParamState>) - Constructor for class org.deeplearning4j.nn.updater.UpdaterBlock
-
- UpdaterBlock.ParamState - Class in org.deeplearning4j.nn.updater
-
- updaterBlocks - Variable in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- updaterConfigurationsEquals(Trainable, String, Trainable, String) - Static method in class org.deeplearning4j.nn.updater.UpdaterUtils
-
- UpdaterCreator - Class in org.deeplearning4j.nn.updater
-
- updaterDivideByMinibatch(String) - Method in interface org.deeplearning4j.nn.api.Trainable
-
DL4J layers typically produce the sum of the gradients during the backward pass for each layer, and if required
(if minibatch=true) then divide by the minibatch size.
However, there are some exceptions, such as the batch norm mean/variance estimate parameters: these "gradients"
are actually not gradients, but are updates to be applied directly to the parameter vector.
- updaterDivideByMinibatch(String) - Method in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- updaterDivideByMinibatch(String) - Method in class org.deeplearning4j.nn.graph.vertex.BaseWrapperVertex
-
- updaterDivideByMinibatch(String) - Method in class org.deeplearning4j.nn.layers.AbstractLayer
-
- updaterDivideByMinibatch(String) - Method in class org.deeplearning4j.nn.layers.normalization.BatchNormalization
-
- updaterDivideByMinibatch(String) - Method in class org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer
-
- updaterDivideByMinibatch(String) - Method in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- updaterDivideByMinibatch(String) - Method in class org.deeplearning4j.nn.layers.wrapper.BaseWrapperLayer
-
- updaterDivideByMinibatch(String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Intended for internal use
- updateRnnStateWithTBPTTState() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Intended for internal/developer use
- updaterState() - Method in interface org.deeplearning4j.nn.api.NeuralNetwork
-
This method returns updater state (if applicable), null otherwise
- updaterState() - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- updaterState() - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- updaterStateViewArray - Variable in class org.deeplearning4j.nn.updater.BaseMultiLayerUpdater
-
- UpdaterUtils - Class in org.deeplearning4j.nn.updater
-
Created by Alex on 14/04/2017.
- UpdaterUtils() - Constructor for class org.deeplearning4j.nn.updater.UpdaterUtils
-
- updates - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- updates - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- updatesApplied - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- updatesBoundary(double) - Method in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator.Builder
-
This method enables optional limit for max number of updates per message
Default value: 1.0 (no limit)
- updatesCounter - Variable in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
- updatesLock - Variable in class org.deeplearning4j.optimize.solvers.accumulation.BasicGradientsAccumulator
-
- updatesSize() - Method in class org.deeplearning4j.optimize.solvers.accumulation.IndexedTail
-
This method returns actual number of updates stored within tail
- Upsampling1D - Class in org.deeplearning4j.nn.conf.layers
-
Upsampling 1D layer
Repeats each step size
times along the temporal/sequence axis (dimension 2)
For
input shape [minibatch, channels, sequenceLength]
output has shape [minibatch, channels, size *
sequenceLength]
Example:
- Upsampling1D(BaseUpsamplingLayer.UpsamplingBuilder) - Constructor for class org.deeplearning4j.nn.conf.layers.Upsampling1D
-
- Upsampling1D - Class in org.deeplearning4j.nn.layers.convolution.upsampling
-
1D Upsampling layer.
- Upsampling1D(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling1D
-
- Upsampling1D.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- Upsampling2D - Class in org.deeplearning4j.nn.conf.layers
-
Upsampling 2D layer
Repeats each value (or rather, set of depth values) in the height and width dimensions by
size[0] and size[1] times respectively.
If input has shape [minibatch, channels, height, width]
then
output has shape [minibatch, channels, height*size[0], width*size[1]]
Example:
- Upsampling2D(BaseUpsamplingLayer.UpsamplingBuilder) - Constructor for class org.deeplearning4j.nn.conf.layers.Upsampling2D
-
- Upsampling2D - Class in org.deeplearning4j.nn.layers.convolution.upsampling
-
2D Upsampling layer.
- Upsampling2D(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D
-
- Upsampling2D.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- Upsampling3D - Class in org.deeplearning4j.nn.conf.layers
-
Upsampling 3D layer
Repeats each value (all channel values for each x/y/z location) by size[0], size[1] and
size[2]
If input has shape [minibatch, channels, depth, height, width]
then output has shape [minibatch, channels, size[0] * depth, size[1] * height, size[2] * width]
- Upsampling3D(Upsampling3D.Builder) - Constructor for class org.deeplearning4j.nn.conf.layers.Upsampling3D
-
- Upsampling3D - Class in org.deeplearning4j.nn.layers.convolution.upsampling
-
3D Upsampling layer.
- Upsampling3D(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D
-
- Upsampling3D.Builder - Class in org.deeplearning4j.nn.conf.layers
-
- UpsamplingBuilder(int) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseUpsamplingLayer.UpsamplingBuilder
-
A single size integer is used for upsampling in all spatial dimensions
- UpsamplingBuilder(int[]) - Constructor for class org.deeplearning4j.nn.conf.layers.BaseUpsamplingLayer.UpsamplingBuilder
-
An int array to specify upsampling dimensions, the length of which has to equal to the number of spatial
dimensions (e.g.
- useLeakyReLU(double) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Use a LeakyReLU activation on the 2d convolution
- useLogStd - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
How should the moving average of variance be stored? Two different parameterizations are supported.
- useLogStd(boolean) - Method in class org.deeplearning4j.nn.conf.layers.BatchNormalization.Builder
-
How should the moving average of variance be stored? Two different parameterizations are supported.
- useLogStd - Variable in class org.deeplearning4j.nn.conf.layers.BatchNormalization
-
- useReLU(boolean) - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Whether to use a ReLU activation on the 2d convolution
- useReLU() - Method in class org.deeplearning4j.nn.conf.layers.PrimaryCapsules.Builder
-
Use a ReLU activation on the 2d convolution
- UserNameTrigger(String) - Constructor for class org.deeplearning4j.optimize.listeners.FailureTestingListener.UserNameTrigger
-
- V_KEY - Static variable in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- VAEReconErrorScoreCalculator - Class in org.deeplearning4j.earlystopping.scorecalc
-
Score function for variational autoencoder reconstruction error for a MultiLayerNetwork or ComputationGraph.
VariationalAutoencoder layer must be first layer in the network
- VAEReconErrorScoreCalculator(RegressionEvaluation.Metric, DataSetIterator) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.VAEReconErrorScoreCalculator
-
Constructor for reconstruction *ERROR*
- VAEReconProbScoreCalculator - Class in org.deeplearning4j.earlystopping.scorecalc
-
Score calculator for variational autoencoder reconstruction probability or reconstruction log probability for a
MultiLayerNetwork or ComputationGraph.
- VAEReconProbScoreCalculator(DataSetIterator, int, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
Constructor for average reconstruction probability
- VAEReconProbScoreCalculator(DataSetIterator, int, boolean, boolean) - Constructor for class org.deeplearning4j.earlystopping.scorecalc.VAEReconProbScoreCalculator
-
Constructor for reconstruction probability
- validate() - Method in class org.deeplearning4j.earlystopping.EarlyStoppingConfiguration
-
- validate() - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Check the configuration, make sure it is valid
- validate(boolean, boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
Check the configuration, make sure it is valid
- validate1(int[], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 1 array.
- validate1NonNegative(int[], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 1 array and checks that all values are >= 0.
- validate2(int[], boolean, String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 2 array.
- validate2NonNegative(int[], boolean, String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 2 array and checks that all values are >= 0.
- validate2x2(int[][], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a 2x2 array.
- validate2x2NonNegative(int[][], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a 2x2 array and checks that all values are >= 0.
- validate3(int[], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 3 array.
- validate3NonNegative(int[], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 3 array and checks that all values >= 0.
- validate4(int[], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 4 array.
- validate4NonNegative(int[], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 4 array and checks that all values >= 0.
- validate6(int[], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 6 array.
- validate6NonNegative(int[], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Reformats the input array to a length 6 array and checks that all values >= 0.
- validateArrayLocation(ArrayType, INDArray, boolean, boolean) - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr
-
- validateArrayWorkspaces(LayerWorkspaceMgr, INDArray, ArrayType, String, boolean, String) - Method in class org.deeplearning4j.nn.graph.ComputationGraph
-
- validateArrayWorkspaces(LayerWorkspaceMgr, INDArray, ArrayType, int, boolean, String) - Method in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- validateCnn1DKernelStridePadding(int, int, int) - Static method in class org.deeplearning4j.util.Convolution1DUtils
-
Perform validation on the CNN layer kernel/stride/padding.
- validateCnn3DKernelStridePadding(int[], int[], int[]) - Static method in class org.deeplearning4j.util.Convolution3DUtils
-
Perform validation on the CNN3D layer kernel/stride/padding.
- validateCnnKernelStridePadding(int[], int[], int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Perform validation on the CNN layer kernel/stride/padding.
- validateComputationGraph(File) - Static method in class org.deeplearning4j.util.DL4JModelValidator
-
- validateConvolutionModePadding(ConvolutionMode, int) - Static method in class org.deeplearning4j.util.Convolution1DUtils
-
Check that the convolution mode is consistent with the padding specification
- validateConvolutionModePadding(ConvolutionMode, int[]) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
Check that the convolution mode is consistent with the padding specification
- validateInput(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.RecurrentAttentionLayer
-
- validateInput(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
-
Validate input arrays to confirm that they fulfill the assumptions of the layer.
- validateInput(INDArray[]) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
-
Validate input arrays to confirm that they fulfill the assumptions of the layer.
- validateInputDepth(int) - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- validateInputRank() - Method in class org.deeplearning4j.nn.layers.convolution.ConvolutionLayer
-
- validateMultiLayerNetwork(File) - Static method in class org.deeplearning4j.util.DL4JModelValidator
-
- validateNonNegative(int, String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Checks that the values is >= 0.
- validateNonNegative(double, String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Checks that the values is >= 0.
- validateNonNegative(int[], String) - Static method in class org.deeplearning4j.util.ValidationUtils
-
Checks that all values are >= 0.
- validateOutputConfig - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- validateOutputConfig - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- validateOutputLayer(String, Layer) - Static method in class org.deeplearning4j.util.OutputLayerUtil
-
Validate the output layer (or loss layer) configuration, to detect invalid consfiugrations.
- validateOutputLayerConfig(boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Enabled by default.
- validateOutputLayerConfig - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- validateOutputLayerConfig(boolean) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
Enabled by default.
- validateOutputLayerConfig - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration
-
- validateOutputLayerConfig(boolean) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.Builder
-
- validateOutputLayerConfig(boolean) - Method in class org.deeplearning4j.nn.transferlearning.TransferLearning.GraphBuilder
-
- validateOutputLayerConfiguration(String, long, boolean, IActivation, ILossFunction) - Static method in class org.deeplearning4j.util.OutputLayerUtil
-
Validate the output layer (or loss layer) configuration, to detect invalid consfiugrations.
- validateOutputLayerForClassifierEvaluation(Layer, Class<? extends IEvaluation>) - Static method in class org.deeplearning4j.util.OutputLayerUtil
-
Validates if the output layer configuration is valid for classifier evaluation.
- validateShapes(INDArray, int, int, int, ConvolutionMode, int, int, boolean) - Static method in class org.deeplearning4j.util.Convolution1DUtils
-
- validateShapes(INDArray, int[], int[], int[], ConvolutionMode, int[], int[], boolean) - Static method in class org.deeplearning4j.util.ConvolutionUtils
-
- validateTbpttConfig - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- validateTbpttConfig(boolean) - Method in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Enabled by default.
- validateTbpttConfig - Variable in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
- validateTbpttConfig(boolean) - Method in class org.deeplearning4j.nn.conf.MultiLayerConfiguration.Builder
-
Enabled by default.
- ValidationUtils - Class in org.deeplearning4j.util
-
Validation methods for array sizes/shapes and value non-negativeness
- value() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- valueOf(String) - Static method in enum org.deeplearning4j.earlystopping.EarlyStoppingResult.TerminationReason
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator.Metric
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator.ROCType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.eval.Evaluation.Metric
-
Deprecated.
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.eval.EvaluationAveraging
-
Deprecated.
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.eval.RegressionEvaluation.Metric
-
Deprecated.
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.api.FwdPassType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.api.Layer.TrainingMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.api.Layer.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.api.MaskState
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.api.OptimizationAlgorithm
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.BackpropType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.CacheMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.ConvolutionMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.GradientNormalization
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.graph.ElementWiseVertex.Op
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.inputs.InputType.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.Convolution3D.DataFormat
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.AlgoMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdDataAlgo
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdFilterAlgo
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.FwdAlgo
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.PoolingType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional.Mode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.DataFormat
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.PoolingType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.memory.MemoryType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.memory.MemoryUseMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.Updater
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.conf.WorkspaceMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.weights.WeightInit
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.nn.workspace.ArrayType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.optimize.api.InvocationType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.optimize.listeners.FailureTestingListener.CallType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.optimize.listeners.FailureTestingListener.FailureMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.optimize.listeners.SleepyTrainingListener.SleepMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.deeplearning4j.optimize.listeners.SleepyTrainingListener.TimeMode
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum org.deeplearning4j.earlystopping.EarlyStoppingResult.TerminationReason
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator.Metric
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.earlystopping.scorecalc.ROCScoreCalculator.ROCType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.eval.Evaluation.Metric
-
Deprecated.
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.eval.EvaluationAveraging
-
Deprecated.
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.eval.RegressionEvaluation.Metric
-
Deprecated.
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.api.FwdPassType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.api.Layer.TrainingMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.api.Layer.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.api.MaskState
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.api.OptimizationAlgorithm
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.BackpropType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.CacheMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.ConvolutionMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.GradientNormalization
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.graph.ElementWiseVertex.Op
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.inputs.InputType.Type
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.Convolution3D.DataFormat
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.AlgoMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdDataAlgo
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.BwdFilterAlgo
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.ConvolutionLayer.FwdAlgo
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.PoolingType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.recurrent.Bidirectional.Mode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.SpaceToDepthLayer.DataFormat
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.Subsampling3DLayer.PoolingType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.layers.SubsamplingLayer.PoolingType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.memory.MemoryType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.memory.MemoryUseMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.Updater
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.conf.WorkspaceMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex.Op
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.weights.WeightInit
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.nn.workspace.ArrayType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.optimize.api.InvocationType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.optimize.listeners.FailureTestingListener.CallType
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.optimize.listeners.FailureTestingListener.FailureMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.optimize.listeners.SleepyTrainingListener.SleepMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- values() - Static method in enum org.deeplearning4j.optimize.listeners.SleepyTrainingListener.TimeMode
-
Returns an array containing the constants of this enum type, in
the order they are declared.
- variables - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- variables() - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- variables(boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration
-
- VariationalAutoencoder - Class in org.deeplearning4j.nn.conf.layers.variational
-
Variational Autoencoder layer
- VariationalAutoencoder - Class in org.deeplearning4j.nn.layers.variational
-
Variational Autoencoder layer
- VariationalAutoencoder(NeuralNetConfiguration, DataType) - Constructor for class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- VariationalAutoencoder.Builder - Class in org.deeplearning4j.nn.conf.layers.variational
-
- VariationalAutoencoderParamInitializer - Class in org.deeplearning4j.nn.params
-
Parameter initializer for the Variational Autoencoder model.
- VariationalAutoencoderParamInitializer() - Constructor for class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- vector() - Method in class org.deeplearning4j.nn.layers.feedforward.autoencoder.recursive.Tree
-
- vectorSize() - Method in class org.deeplearning4j.nn.weights.embeddings.ArrayEmbeddingInitializer
-
- vectorSize() - Method in interface org.deeplearning4j.nn.weights.embeddings.EmbeddingInitializer
-
- vertexIndex - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
The index of this vertex
- VertexIndices - Class in org.deeplearning4j.nn.graph.vertex
-
VertexIndices defines a pair of integers: the index of a vertex, and the edge number of that vertex.
- VertexIndices() - Constructor for class org.deeplearning4j.nn.graph.vertex.VertexIndices
-
- vertexInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
Key: graph node.
- vertexInputs - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- VertexInputs(SameDiff) - Constructor for class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex.VertexInputs
-
- vertexName - Variable in class org.deeplearning4j.nn.graph.vertex.BaseGraphVertex
-
- vertices - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder
-
- vertices - Variable in class org.deeplearning4j.nn.conf.ComputationGraphConfiguration
-
- vertices - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
All GraphVertex objects in the network.
- verticesMap - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
Map of vertices by name
- VISIBLE_BIAS_KEY - Static variable in class org.deeplearning4j.nn.params.PretrainParamInitializer
-
- visibleBiasInit - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- visibleBiasInit(double) - Method in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork.Builder
-
- visibleBiasInit - Variable in class org.deeplearning4j.nn.conf.layers.BasePretrainNetwork
-
- vocabSize() - Method in class org.deeplearning4j.nn.weights.embeddings.ArrayEmbeddingInitializer
-
- vocabSize() - Method in interface org.deeplearning4j.nn.weights.embeddings.EmbeddingInitializer
-
- W_KEY - Static variable in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.CenterLossParamInitializer
-
- WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.Convolution3DParamInitializer
-
- WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- WEIGHT_KEY - Static variable in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- WEIGHT_KEY_SUFFIX - Static variable in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- weightConstraints - Variable in class org.deeplearning4j.nn.conf.layers.Layer.Builder
-
- weightConstraints - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- weightDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Add weight decay regularization for the network parameters (excluding biases).
This applies weight decay
with multiplying the learning rate - see
WeightDecay
for more details.
- weightDecay(double, boolean) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Add weight decay regularization for the network parameters (excluding biases).
- weightDecay(double) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
Add weight decay regularization for the network parameters (excluding biases).
This applies weight decay
with multiplying the learning rate - see
WeightDecay
for more details.
- weightDecay(double, boolean) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
Add weight decay regularization for the network parameters (excluding biases).
- weightDecay(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Add weight decay regularization for the network parameters (excluding biases).
This applies weight decay
with multiplying the learning rate - see
WeightDecay
for more details.
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- weightDecay(double, boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Add weight decay regularization for the network parameters (excluding biases).
- weightDecay(double) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Add weight decay regularization for the network parameters (excluding biases).
This applies weight decay
with multiplying the learning rate - see
WeightDecay
for more details.
- weightDecay(double, boolean) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Add weight decay regularization for the network parameters (excluding biases).
- weightDecayBias(double) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- weightDecayBias(double, boolean) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- weightDecayBias(double) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
- weightDecayBias(double, boolean) - Method in class org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer.Builder
-
- weightDecayBias(double) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- weightDecayBias(double, boolean) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Weight decay for the biases only - see
NeuralNetConfiguration.Builder.weightDecay(double)
for more details
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- weightDecayBias(double) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- weightDecayBias(double, boolean) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- weightInit - Variable in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
Weight initialization scheme
- weightInit(WeightInit) - Method in class org.deeplearning4j.nn.conf.graph.AttentionVertex.Builder
-
Weight initialization scheme
- weightInit - Variable in class org.deeplearning4j.nn.conf.graph.AttentionVertex
-
- weightInit(IWeightInit) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Weight initialization scheme to use, for initial weight values
- weightInit(WeightInit) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Weight initialization scheme to use, for initial weight values
- weightInit(Distribution) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Set weight initialization scheme to random sampling via the specified distribution.
- weightInit(IWeightInit) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
-
- weightInit(EmbeddingInitializer) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
-
Initialize the embedding layer using the specified EmbeddingInitializer - such as a Word2Vec instance
- weightInit(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingLayer.Builder
-
Initialize the embedding layer using values from the specified array.
- weightInit(IWeightInit) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer.Builder
-
- weightInit(EmbeddingInitializer) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer.Builder
-
Initialize the embedding layer using the specified EmbeddingInitializer - such as a Word2Vec instance
- weightInit(INDArray) - Method in class org.deeplearning4j.nn.conf.layers.EmbeddingSequenceLayer.Builder
-
Initialize the embedding layer using values from the specified array.
- weightInit - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer.Builder
-
- weightInit(WeightInit) - Method in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer.Builder
-
- weightInit - Variable in class org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
-
- weightInit(IWeightInit) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Weight initialization scheme to use, for initial weight values
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- weightInit(WeightInit) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Weight initialization scheme to use, for initial weight values
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- weightInit(Distribution) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set weight initialization scheme to random sampling via the specified distribution.
- weightInit(IWeightInit) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Weight initialization scheme to use, for initial weight values
- weightInit(WeightInit) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Weight initialization scheme to use, for initial weight values
- weightInit(Distribution) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
Set weight initialization scheme to random sampling via the specified distribution.
- WeightInit - Enum in org.deeplearning4j.nn.weights
-
Weight initialization scheme
- WeightInitConstant - Class in org.deeplearning4j.nn.weights
-
Initialize to a constant value (deafult 0).
- WeightInitConstant() - Constructor for class org.deeplearning4j.nn.weights.WeightInitConstant
-
- WeightInitConstant(double) - Constructor for class org.deeplearning4j.nn.weights.WeightInitConstant
-
- WeightInitDistribution - Class in org.deeplearning4j.nn.weights
-
- WeightInitDistribution(Distribution) - Constructor for class org.deeplearning4j.nn.weights.WeightInitDistribution
-
- WeightInitEmbedding - Class in org.deeplearning4j.nn.weights.embeddings
-
Weight initialization for initializing the parameters of an EmbeddingLayer from a
EmbeddingInitializer
Note: WeightInitEmbedding supports both JSON serializable and non JSON serializable initializations.
- WeightInitEmbedding(EmbeddingInitializer) - Constructor for class org.deeplearning4j.nn.weights.embeddings.WeightInitEmbedding
-
- WeightInitEmbedding(EmbeddingInitializer, EmbeddingInitializer) - Constructor for class org.deeplearning4j.nn.weights.embeddings.WeightInitEmbedding
-
- weightInitFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
Weight initialization scheme to use, for initial weight values
- weightInitFn - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- weightInitFn - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- weightInitFn - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- weightInitFnRecurrent - Variable in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
Set the weight initialization for the recurrent weights.
- weightInitFnRecurrent - Variable in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer
-
- WeightInitIdentity - Class in org.deeplearning4j.nn.weights
-
Weights are set to an identity matrix.
- WeightInitIdentity() - Constructor for class org.deeplearning4j.nn.weights.WeightInitIdentity
-
- WeightInitLecunUniform - Class in org.deeplearning4j.nn.weights
-
Uniform U[-a,a] with a=3/sqrt(fanIn).
- WeightInitLecunUniform() - Constructor for class org.deeplearning4j.nn.weights.WeightInitLecunUniform
-
- WeightInitNormal - Class in org.deeplearning4j.nn.weights
-
Normal/Gaussian distribution, with mean 0 and standard deviation 1/sqrt(fanIn).
- WeightInitNormal() - Constructor for class org.deeplearning4j.nn.weights.WeightInitNormal
-
- weightInitRecurrent(IWeightInit) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
Set the weight initialization for the recurrent weights.
- weightInitRecurrent(WeightInit) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
Set the weight initialization for the recurrent weights.
- weightInitRecurrent(Distribution) - Method in class org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer.Builder
-
Set the weight initialization for the recurrent weights, based on the specified distribution.
- WeightInitRelu - Class in org.deeplearning4j.nn.weights
-
: He et al.
- WeightInitRelu() - Constructor for class org.deeplearning4j.nn.weights.WeightInitRelu
-
- WeightInitReluUniform - Class in org.deeplearning4j.nn.weights
-
He et al.
- WeightInitReluUniform() - Constructor for class org.deeplearning4j.nn.weights.WeightInitReluUniform
-
- WeightInitSigmoidUniform - Class in org.deeplearning4j.nn.weights
-
- WeightInitSigmoidUniform() - Constructor for class org.deeplearning4j.nn.weights.WeightInitSigmoidUniform
-
- WeightInitUniform - Class in org.deeplearning4j.nn.weights
-
Uniform U[-a,a] with a=1/sqrt(fanIn).
- WeightInitUniform() - Constructor for class org.deeplearning4j.nn.weights.WeightInitUniform
-
- WeightInitUtil - Class in org.deeplearning4j.nn.weights
-
Weight initialization utility
- WeightInitVarScalingNormalFanAvg - Class in org.deeplearning4j.nn.weights
-
Gaussian distribution with mean 0, variance 1.0/((fanIn + fanOut)/2)
- WeightInitVarScalingNormalFanAvg() - Constructor for class org.deeplearning4j.nn.weights.WeightInitVarScalingNormalFanAvg
-
- WeightInitVarScalingNormalFanIn - Class in org.deeplearning4j.nn.weights
-
Gaussian distribution with mean 0, variance 1.0/(fanIn)
- WeightInitVarScalingNormalFanIn() - Constructor for class org.deeplearning4j.nn.weights.WeightInitVarScalingNormalFanIn
-
- WeightInitVarScalingNormalFanOut - Class in org.deeplearning4j.nn.weights
-
Gaussian distribution with mean 0, variance 1.0/(fanOut)
- WeightInitVarScalingNormalFanOut() - Constructor for class org.deeplearning4j.nn.weights.WeightInitVarScalingNormalFanOut
-
- WeightInitVarScalingUniformFanAvg - Class in org.deeplearning4j.nn.weights
-
Uniform U[-a,a] with a=3.0/((fanIn + fanOut)/2)
- WeightInitVarScalingUniformFanAvg() - Constructor for class org.deeplearning4j.nn.weights.WeightInitVarScalingUniformFanAvg
-
- WeightInitVarScalingUniformFanIn - Class in org.deeplearning4j.nn.weights
-
Uniform U[-a,a] with a=3.0/(fanIn)
- WeightInitVarScalingUniformFanIn() - Constructor for class org.deeplearning4j.nn.weights.WeightInitVarScalingUniformFanIn
-
- WeightInitVarScalingUniformFanOut - Class in org.deeplearning4j.nn.weights
-
Uniform U[-a,a] with a=3.0/(fanOut)
- WeightInitVarScalingUniformFanOut() - Constructor for class org.deeplearning4j.nn.weights.WeightInitVarScalingUniformFanOut
-
- WeightInitXavier - Class in org.deeplearning4j.nn.weights
-
As per Glorot and Bengio 2010: Gaussian distribution with mean 0, variance 2.0/(fanIn + fanOut)
- WeightInitXavier() - Constructor for class org.deeplearning4j.nn.weights.WeightInitXavier
-
- WeightInitXavierLegacy - Class in org.deeplearning4j.nn.weights
-
Xavier weight init in DL4J up to 0.6.0.
- WeightInitXavierLegacy() - Constructor for class org.deeplearning4j.nn.weights.WeightInitXavierLegacy
-
- WeightInitXavierUniform - Class in org.deeplearning4j.nn.weights
-
As per Glorot and Bengio 2010: Uniform distribution U(-s,s) with s = sqrt(6/(fanIn + fanOut))
- WeightInitXavierUniform() - Constructor for class org.deeplearning4j.nn.weights.WeightInitXavierUniform
-
- weightKeys(Layer) - Method in interface org.deeplearning4j.nn.api.ParamInitializer
-
Weight parameter keys given the layer configuration
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.layers.ocnn.OCNNParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.BatchNormalizationParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.BidirectionalParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.ConvolutionParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.DefaultParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.EmptyParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.FrozenLayerParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.FrozenLayerWithBackpropParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.GravesLSTMParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.LSTMParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.PReLUParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.SameDiffParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.SimpleRnnParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.VariationalAutoencoderParamInitializer
-
- weightKeys(Layer) - Method in class org.deeplearning4j.nn.params.WrapperLayerParamInitializer
-
- weightNoise - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- weightNoise(IWeightNoise) - Method in class org.deeplearning4j.nn.conf.layers.BaseLayer.Builder
-
- weightNoise - Variable in class org.deeplearning4j.nn.conf.layers.BaseLayer
-
- weightNoise - Variable in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
- weightNoise(IWeightNoise) - Method in class org.deeplearning4j.nn.conf.NeuralNetConfiguration.Builder
-
Set the weight noise (such as
DropConnect
and
WeightNoise
) for the layers in this network.
Note: values set by this method will be applied to all applicable layers in the network, unless a different
value is explicitly set on a given layer.
- WeightNoise - Class in org.deeplearning4j.nn.conf.weightnoise
-
Apply noise of the specified distribution to the weights at training time.
- WeightNoise(Distribution) - Constructor for class org.deeplearning4j.nn.conf.weightnoise.WeightNoise
-
- WeightNoise(Distribution, boolean) - Constructor for class org.deeplearning4j.nn.conf.weightnoise.WeightNoise
-
- WeightNoise(Distribution, boolean, boolean) - Constructor for class org.deeplearning4j.nn.conf.weightnoise.WeightNoise
-
- weightNoise(IWeightNoise) - Method in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration.Builder
-
- weightNoise - Variable in class org.deeplearning4j.nn.transferlearning.FineTuneConfiguration
-
- weightNoiseParams - Variable in class org.deeplearning4j.nn.layers.BaseLayer
-
- weightNoiseParams - Variable in class org.deeplearning4j.nn.layers.variational.VariationalAutoencoder
-
- windowSize - Variable in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
The number of examples to use for computing the quantile for the r value update.
- windowSize(int) - Method in class org.deeplearning4j.nn.conf.ocnn.OCNNOutputLayer.Builder
-
The number of examples to use for computing the quantile for the r value update.
- with(ArrayType, String, WorkspaceConfiguration) - Method in class org.deeplearning4j.nn.workspace.LayerWorkspaceMgr.Builder
-
Configure the workspace (name, configuration) for the specified array type
- workersCounter - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- workingMemory(long, long, long, long) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
Report the working memory size, for both inference and training
- workingMemory(long, long, Map<CacheMode, Long>, Map<CacheMode, Long>) - Method in class org.deeplearning4j.nn.conf.memory.LayerMemoryReport.Builder
-
Report the working memory requirements, for both inference and training.
- WorkspaceMode - Enum in org.deeplearning4j.nn.conf
-
Workspace mode to use.
- workspaces - Variable in class org.deeplearning4j.optimize.solvers.accumulation.EncodedGradientsAccumulator
-
- WrapperLayerParamInitializer - Class in org.deeplearning4j.nn.params
-
- writeMemoryCrashDump(Model, Throwable) - Static method in class org.deeplearning4j.util.CrashReportingUtil
-
Generate and write the crash dump to the crash dump root directory (by default, the working directory).
- writeModel(Model, File, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Write a model to a file
- writeModel(Model, File, boolean, DataNormalization) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Write a model to a file
- writeModel(Model, String, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Write a model to a file path
- writeModel(Model, OutputStream, boolean) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Write a model to an output stream
- writeModel(Model, OutputStream, boolean, DataNormalization) - Static method in class org.deeplearning4j.util.ModelSerializer
-
Write a model to an output stream
- WS_ALL_LAYERS_ACT - Static variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
Workspace for storing all layers' activations - used only to store activations (layer inputs) as part of backprop
Not used for inference
- WS_ALL_LAYERS_ACT - Static variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Workspace for storing all layers' activations - used only to store activations (layer inputs) as part of backprop
Not used for inference
- WS_ALL_LAYERS_ACT_CONFIG - Static variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- WS_ALL_LAYERS_ACT_CONFIG - Static variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- WS_LAYER_ACT_1 - Static variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Next 2 workspaces: used for:
(a) Inference: holds activations for one layer only
(b) Backprop: holds activation gradients for one layer only
In both cases, they are opened and closed on every second layer
- WS_LAYER_ACT_2 - Static variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- WS_LAYER_ACT_X_CONFIG - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- WS_LAYER_ACT_X_CONFIG - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- WS_LAYER_WORKING_MEM - Static variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
Workspace for working memory for a single layer: forward pass and backward pass
Note that this is opened/closed once per op (activate/backpropGradient call)
- WS_LAYER_WORKING_MEM - Static variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Workspace for working memory for a single layer: forward pass and backward pass
Note that this is opened/closed once per op (activate/backpropGradient call)
- WS_LAYER_WORKING_MEM_CONFIG - Variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- WS_LAYER_WORKING_MEM_CONFIG - Variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
- WS_OUTPUT_MEM - Static variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
Workspace for output methods that use OutputAdapter
- WS_OUTPUT_MEM - Static variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Workspace for output methods that use OutputAdapter
- WS_RNN_LOOP_WORKING_MEM - Static variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
Workspace for working memory in RNNs - opened and closed once per RNN time step
- WS_RNN_LOOP_WORKING_MEM - Static variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-
Workspace for working memory in RNNs - opened and closed once per RNN time step
- WS_RNN_LOOP_WORKING_MEM_CONFIG - Static variable in class org.deeplearning4j.nn.graph.ComputationGraph
-
- WS_RNN_LOOP_WORKING_MEM_CONFIG - Static variable in class org.deeplearning4j.nn.multilayer.MultiLayerNetwork
-