public class OCNNOutputLayer extends BaseOutputLayer<OCNNOutputLayer>
OCNNOutputLayer
See OCNNOutputLayer
for details.Modifier and Type | Class and Description |
---|---|
class |
OCNNOutputLayer.OCNNLossFunction |
Layer.TrainingMode, Layer.Type
inputMaskArray, inputMaskArrayState, labels
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, weightNoiseParams
cacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners
Constructor and Description |
---|
OCNNOutputLayer(NeuralNetConfiguration conf,
org.nd4j.linalg.api.buffer.DataType dataType) |
Modifier and Type | Method and Description |
---|---|
INDArray |
activate(boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the last set input
|
INDArray |
activate(INDArray input,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Perform forward pass and return the activations array with the specified input
|
Pair<Gradient,INDArray> |
backpropGradient(INDArray epsilon,
LayerWorkspaceMgr workspaceMgr)
Calculate the gradient relative to the error in the next layer
|
double |
computeScore(double fullNetRegTerm,
boolean training,
LayerWorkspaceMgr workspaceMgr)
Compute score after labels and input have been set.
|
INDArray |
computeScoreForExamples(double fullNetRegTerm,
LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.
|
double |
f1Score(INDArray examples,
INDArray labels)
Returns the f1 score for the given examples.
|
protected INDArray |
getLabels2d(LayerWorkspaceMgr workspaceMgr,
ArrayType arrayType) |
boolean |
needsLabels()
Returns true if labels are required
for this output layer
|
protected INDArray |
preOutput2d(boolean training,
LayerWorkspaceMgr workspaceMgr) |
void |
setLabels(INDArray labels)
Set the labels array for this output layer
|
Layer.Type |
type()
Returns the layer type
|
applyMask, clear, computeGradientAndScore, f1Score, fit, fit, fit, fit, fit, getLabels, gradient, gradientAndScore, hasBias, isPretrainLayer, numLabels, predict, predict, setScoreWithZ
calcRegularizationScore, clearNoiseWeightParams, clone, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, hasLayerNorm, layerConf, numParams, params, paramTable, paramTable, preOutput, preOutputWithPreNorm, score, setBackpropGradientsViewArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, toString, update, update
addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, assertInputSet, backpropDropOutIfPresent, batchSize, conf, feedForwardMaskArray, getConfig, getEpochCount, getHelper, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, init, input, layerId, numParams, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, updaterDivideByMinibatch
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
allowInputModification, calcRegularizationScore, clearNoiseWeightParams, feedForwardMaskArray, getEpochCount, getHelper, getIndex, getInputMiniBatchSize, getIterationCount, getListeners, getMaskArray, setCacheMode, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setIterationCount, setListeners, setListeners, setMaskArray
getConfig, getGradientsViewArray, numParams, params, paramTable, updaterDivideByMinibatch
addListeners, applyConstraints, batchSize, conf, fit, getGradientsViewArray, getOptimizer, getParam, init, input, numParams, numParams, params, paramTable, paramTable, score, setBackpropGradientsViewArray, setConf, setParam, setParams, setParamsViewArray, setParamTable, update, update
public OCNNOutputLayer(NeuralNetConfiguration conf, org.nd4j.linalg.api.buffer.DataType dataType)
public void setLabels(INDArray labels)
IOutputLayer
setLabels
in interface IOutputLayer
setLabels
in class BaseOutputLayer<OCNNOutputLayer>
labels
- Labels array to setpublic double computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)
computeScore
in interface IOutputLayer
computeScore
in class BaseOutputLayer<OCNNOutputLayer>
fullNetRegTerm
- Regularization score term for the entire networktraining
- whether score should be calculated at train or test time (this affects things like application of
dropout, etc)public boolean needsLabels()
IOutputLayer
needsLabels
in interface IOutputLayer
needsLabels
in class BaseOutputLayer<OCNNOutputLayer>
public Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Layer
backpropGradient
in interface Layer
backpropGradient
in class BaseOutputLayer<OCNNOutputLayer>
epsilon
- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C
is cost function a=sigma(z) is activation.workspaceMgr
- Workspace managerArrayType.ACTIVATION_GRAD
workspace via the workspace managerpublic INDArray activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
Layer
activate
in interface Layer
activate
in class BaseOutputLayer<OCNNOutputLayer>
input
- the input to usetraining
- train or test modeworkspaceMgr
- Workspace manager.ArrayType.ACTIVATIONS
workspace via the workspace managerpublic double f1Score(INDArray examples, INDArray labels)
f1Score
in interface Classifier
f1Score
in class BaseOutputLayer<OCNNOutputLayer>
examples
- te the examples to classify (one example in each row)labels
- the true labelspublic Layer.Type type()
Layer
type
in interface Layer
type
in class AbstractLayer<OCNNOutputLayer>
protected INDArray preOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr)
preOutput2d
in class BaseOutputLayer<OCNNOutputLayer>
protected INDArray getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
getLabels2d
in class BaseOutputLayer<OCNNOutputLayer>
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Layer
activate
in interface Layer
activate
in class BaseLayer<OCNNOutputLayer>
training
- training or test modeworkspaceMgr
- Workspace managerArrayType.ACTIVATIONS
workspace via the workspace managerpublic INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
computeScoreForExamples
in interface IOutputLayer
computeScoreForExamples
in class BaseOutputLayer<OCNNOutputLayer>
fullNetRegTerm
- Regularization score term for the entire network (or, 0.0 to not include regularization)Copyright © 2019. All rights reserved.