trait Bifunctor[F[_, _]] extends AnyRef
A type giving rise to two unrelated scalaz.Functors.
- Self Type
- Bifunctor[F]
- Source
- Bifunctor.scala
- Alphabetic
- By Inheritance
- Bifunctor
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Abstract Value Members
- abstract def bimap[A, B, C, D](fab: F[A, B])(f: (A) => C, g: (B) => D): F[C, D]
map
over both type parameters.
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- val bifunctorSyntax: BifunctorSyntax[F]
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]
The composition of Bifunctors
F
andG
,[x,y]F[G[x,y],G[x,y]]
, is a Bifunctor - def embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]
Embed two Functors , one on each side
- def embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]
Embed one Functor to the left
- def embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]
Embed one Functor to the right
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def leftFunctor[X]: Functor[[α$0$]F[α$0$, X]]
Extract the Functor on the first param.
- def leftMap[A, B, C](fab: F[A, B])(f: (A) => C): F[C, B]
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]
The product of Bifunctors
F
andG
,[x,y](F[x,y], G[x,y])
, is a Bifunctor - def rightFunctor[X]: Functor[[β$1$]F[X, β$1$]]
Extract the Functor on the second param.
- def rightMap[A, B, D](fab: F[A, B])(g: (B) => D): F[A, D]
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- def uFunctor: Functor[[α]F[α, α]]
Unify the functor over both params.
- def umap[A, B](faa: F[A, A])(f: (A) => B): F[B, B]
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- def widen[A, B, C >: A, D >: B](fab: F[A, B]): F[C, D]
Bifunctors are covariant by nature