Packages

trait Nondeterminism[F[_]] extends Monad[F]

A context supporting nondeterministic choice. Unlike Monad.bind, which imposes a total order on the sequencing of effects throughout a computation, the choose and chooseAny operations let us partially order the sequencing of effects. Canonical instances are concurrent.Future and concurrent.Task, which run their arguments in parallel, returning whichever comes back 'first'.

TODO - laws

Self Type
Nondeterminism[F]
Source
Nondeterminism.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Nondeterminism
  2. Monad
  3. Bind
  4. Applicative
  5. InvariantApplicative
  6. Apply
  7. Functor
  8. InvariantFunctor
  9. AnyRef
  10. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Type Members

  1. trait ApplicativeLaw extends ApplyLaw
    Definition Classes
    Applicative
  2. trait ApplyLaw extends FunctorLaw
    Definition Classes
    Apply
  3. trait FlippedApply extends Apply[F]
    Attributes
    protected[this]
    Definition Classes
    Apply
  4. trait BindLaw extends ApplyLaw
    Definition Classes
    Bind
  5. trait FunctorLaw extends InvariantFunctorLaw
    Definition Classes
    Functor
  6. trait InvariantFunctorLaw extends AnyRef
    Definition Classes
    InvariantFunctor
  7. trait MonadLaw extends ApplicativeLaw with BindLaw
    Definition Classes
    Monad

Abstract Value Members

  1. abstract def bind[A, B](fa: F[A])(f: (A) => F[B]): F[B]

    Equivalent to join(map(fa)(f)).

    Equivalent to join(map(fa)(f)).

    Definition Classes
    Bind
  2. abstract def chooseAny[A](head: F[A], tail: IList[F[A]]): F[(A, IList[F[A]])]
  3. abstract def point[A](a: => A): F[A]
    Definition Classes
    Applicative

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  4. def aggregate[A](fs: IList[F[A]])(implicit arg0: Monoid[A]): F[A]

    Nondeterministically sequence fs, collecting the results using a Monoid.

  5. def aggregate1[A](fs: NonEmptyList[F[A]])(implicit arg0: Semigroup[A]): F[A]
  6. def aggregateCommutative[A](fs: IList[F[A]])(implicit arg0: Monoid[A]): F[A]

    Nondeterministically sequence fs, collecting the results using a commutative Monoid.

  7. def aggregateCommutative1[A](fs: NonEmptyList[F[A]])(implicit arg0: Semigroup[A]): F[A]
  8. def ap[A, B](fa: => F[A])(f: => F[(A) => B]): F[B]

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    BindApply
  9. def ap2[A, B, C](fa: => F[A], fb: => F[B])(f: F[(A, B) => C]): F[C]
    Definition Classes
    Apply
  10. def ap3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: F[(A, B, C) => D]): F[D]
    Definition Classes
    Apply
  11. def ap4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: F[(A, B, C, D) => E]): F[E]
    Definition Classes
    Apply
  12. def ap5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: F[(A, B, C, D, E) => R]): F[R]
    Definition Classes
    Apply
  13. def ap6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: F[(A, B, C, D, E, FF) => R]): F[R]
    Definition Classes
    Apply
  14. def ap7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: F[(A, B, C, D, E, FF, G) => R]): F[R]
    Definition Classes
    Apply
  15. def ap8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: F[(A, B, C, D, E, FF, G, H) => R]): F[R]
    Definition Classes
    Apply
  16. def apF[A, B](f: => F[(A) => B]): (F[A]) => F[B]

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  17. def applicativeLaw: ApplicativeLaw
    Definition Classes
    Applicative
  18. val applicativeSyntax: ApplicativeSyntax[F]
    Definition Classes
    Applicative
  19. def apply[A, B](fa: F[A])(f: (A) => B): F[B]

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  20. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J])(f: (A, B, C, D, E, FF, G, H, I, J) => R): F[R]
    Definition Classes
    Apply
  21. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) => R): F[R]
    Definition Classes
    Apply
  22. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K], fl: => F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): F[R]
    Definition Classes
    Apply
  23. def apply2[A, B, C](fa: => F[A], fb: => F[B])(f: (A, B) => C): F[C]
    Definition Classes
    BindApply
  24. def apply3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: (A, B, C) => D): F[D]
    Definition Classes
    Apply
  25. def apply4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: (A, B, C, D) => E): F[E]
    Definition Classes
    Apply
  26. def apply5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: (A, B, C, D, E) => R): F[R]
    Definition Classes
    Apply
  27. def apply6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: (A, B, C, D, E, FF) => R): F[R]
    Definition Classes
    Apply
  28. def apply7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: (A, B, C, D, E, FF, G) => R): F[R]
    Definition Classes
    Apply
  29. def apply8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: (A, B, C, D, E, FF, G, H) => R): F[R]
    Definition Classes
    Apply
  30. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I])(f: (A, B, C, D, E, FF, G, H, I) => R): F[R]
    Definition Classes
    Apply
  31. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  32. def applyLaw: ApplyLaw
    Definition Classes
    Apply
  33. val applySyntax: ApplySyntax[F]
    Definition Classes
    Apply
  34. final def applying1[Z, A1](f: (A1) => Z)(implicit a1: F[A1]): F[Z]
    Definition Classes
    Apply
  35. final def applying2[Z, A1, A2](f: (A1, A2) => Z)(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    Apply
  36. final def applying3[Z, A1, A2, A3](f: (A1, A2, A3) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    Apply
  37. final def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    Apply
  38. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  39. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  40. def bindLaw: BindLaw
    Definition Classes
    Bind
  41. val bindSyntax: BindSyntax[F]
    Definition Classes
    Bind
  42. def both[A, B](a: F[A], b: F[B]): F[(A, B)]

    Obtain results from both a and b, nondeterministically ordering their effects.

  43. def choose[A, B](a: F[A], b: F[B]): F[\/[(A, F[B]), (F[A], B)]]

    A commutative operation which chooses nondeterministically to obtain a value from either a or b.

    A commutative operation which chooses nondeterministically to obtain a value from either a or b. If a 'wins', a 'residual' context for b is returned; if b wins, a residual context for a is returned. The residual is useful for various instances like Future, which may race the two computations and require a residual to ensure the result of the 'losing' computation is not discarded.

    This function can be defined in terms of chooseAny or vice versa. The default implementation calls chooseAny with a two-element list and uses the Functor for F to fix up types.

  44. def chooseAny[A](a: IList[F[A]]): Option[F[(A, IList[F[A]])]]

    A commutative operation which chooses nondeterministically to obtain a value from any of the elements of as.

    A commutative operation which chooses nondeterministically to obtain a value from any of the elements of as. In the language of posets, this constructs an antichain (a set of elements which are all incomparable) in the effect poset for this computation.

    returns

    None, if the input is empty.

  45. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  46. def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α]F[G[α]]]

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    Definition Classes
    Applicative
  47. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  48. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  49. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
    Definition Classes
    Functor
  50. def discardLeft[A, B](fa: => F[A], fb: => F[B]): F[B]

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    Apply
  51. def discardRight[A, B](fa: => F[A], fb: => F[B]): F[A]

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    Apply
  52. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  53. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  54. def filterM[A](l: IList[A])(f: (A) => F[Boolean]): F[IList[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  55. def filterM[A](l: List[A])(f: (A) => F[Boolean]): F[List[A]]

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  56. def filterM[A, B](map: ==>>[A, B])(f: (B) => F[Boolean])(implicit O: Order[A]): F[==>>[A, B]]

    Filter map according to an applicative predicate.

    Filter map according to an applicative predicate. *

    Definition Classes
    Applicative
  57. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  58. def firstCompletedOf[A](as: Iterable[F[A]]): Option[F[A]]

    A commutative operation which chooses nondeterministically to obtain a value from any of the elements of as and discards other values.

    A commutative operation which chooses nondeterministically to obtain a value from any of the elements of as and discards other values.

    Note

    A Nondeterminism instance could choose to override this function when a native implementation is available.

  59. def flip: Applicative[F]

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    ApplicativeApply
  60. def forever[A, B](fa: F[A]): F[B]

    Repeats an applicative action infinitely

    Repeats an applicative action infinitely

    Definition Classes
    Apply
  61. def fpair[A](fa: F[A]): F[(A, A)]

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  62. def fproduct[A, B](fa: F[A])(f: (A) => B): F[(A, B)]

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  63. def functorLaw: FunctorLaw
    Definition Classes
    Functor
  64. val functorSyntax: FunctorSyntax[F]
    Definition Classes
    Functor
  65. def gather[A](fs: IList[F[A]]): F[IList[A]]

    Nondeterministically gather results from the given sequence of actions.

    Nondeterministically gather results from the given sequence of actions. This function is the nondeterministic analogue of sequence and should behave identically to sequence so long as there is no interaction between the effects being gathered. However, unlike sequence, which decides on a total order of effects, the effects in a gather are unordered with respect to each other.

    Although the effects are unordered, we ensure the order of results matches the order of the input sequence. Also see gatherUnordered.

  66. def gather1[A](fs: NonEmptyList[F[A]]): F[NonEmptyList[A]]
  67. def gatherUnordered[A](fs: IList[F[A]]): F[IList[A]]

    Nondeterministically gather results from the given sequence of actions to a list.

    Nondeterministically gather results from the given sequence of actions to a list. Same as calling reduceUnordered with the List Monoid.

    To preserve the order of the output list while allowing nondetermininstic ordering of effects, use gather.

  68. def gatherUnordered1[A](fs: NonEmptyList[F[A]]): F[NonEmptyList[A]]
  69. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  70. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  71. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  72. def ifM[B](value: F[Boolean], ifTrue: => F[B], ifFalse: => F[B]): F[B]

    if lifted into a binding.

    if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

    Definition Classes
    Bind
  73. val invariantApplicativeSyntax: InvariantApplicativeSyntax[F]
    Definition Classes
    InvariantApplicative
  74. def invariantFunctorLaw: InvariantFunctorLaw
    Definition Classes
    InvariantFunctor
  75. val invariantFunctorSyntax: InvariantFunctorSyntax[F]
    Definition Classes
    InvariantFunctor
  76. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  77. def iterateUntil[A](f: F[A])(p: (A) => Boolean): F[A]

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  78. def iterateWhile[A](f: F[A])(p: (A) => Boolean): F[A]

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  79. def join[A](ffa: F[F[A]]): F[A]

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Definition Classes
    Bind
  80. def lift[A, B](f: (A) => B): (F[A]) => F[B]

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  81. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) => F[R]
    Definition Classes
    Apply
  82. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) => F[R]
    Definition Classes
    Apply
  83. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) => F[R]
    Definition Classes
    Apply
  84. def lift2[A, B, C](f: (A, B) => C): (F[A], F[B]) => F[C]
    Definition Classes
    Apply
  85. def lift3[A, B, C, D](f: (A, B, C) => D): (F[A], F[B], F[C]) => F[D]
    Definition Classes
    Apply
  86. def lift4[A, B, C, D, E](f: (A, B, C, D) => E): (F[A], F[B], F[C], F[D]) => F[E]
    Definition Classes
    Apply
  87. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) => R): (F[A], F[B], F[C], F[D], F[E]) => F[R]
    Definition Classes
    Apply
  88. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) => R): (F[A], F[B], F[C], F[D], F[E], F[FF]) => F[R]
    Definition Classes
    Apply
  89. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) => F[R]
    Definition Classes
    Apply
  90. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) => F[R]
    Definition Classes
    Apply
  91. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) => F[R]
    Definition Classes
    Apply
  92. def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F[A], F[B]]
    Definition Classes
    Apply
  93. def map[A, B](fa: F[A])(f: (A) => B): F[B]

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    MonadApplicativeFunctor
  94. def mapBoth[A, B, C](a: F[A], b: F[B])(f: (A, B) => C): F[C]

    Apply a function to the results of a and b, nondeterminstically ordering their effects.

  95. def mapply[A, B](a: A)(f: F[(A) => B]): F[B]

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  96. def monadLaw: MonadLaw
    Definition Classes
    Monad
  97. val monadSyntax: MonadSyntax[F]
    Definition Classes
    Monad
  98. def mproduct[A, B](fa: F[A])(f: (A) => F[B]): F[(A, B)]

    Pair A with the result of function application.

    Pair A with the result of function application.

    Definition Classes
    Bind
  99. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  100. def nmap2[A, B, C](a: F[A], b: F[B])(f: (A, B) => C): F[C]

    Apply a function to 2 results, nondeterminstically ordering their effects, alias of mapBoth

  101. def nmap3[A, B, C, R](a: F[A], b: F[B], c: F[C])(f: (A, B, C) => R): F[R]

    Apply a function to 3 results, nondeterminstically ordering their effects

  102. def nmap4[A, B, C, D, R](a: F[A], b: F[B], c: F[C], d: F[D])(f: (A, B, C, D) => R): F[R]

    Apply a function to 4 results, nondeterminstically ordering their effects

  103. def nmap5[A, B, C, D, E, R](a: F[A], b: F[B], c: F[C], d: F[D], e: F[E])(f: (A, B, C, D, E) => R): F[R]

    Apply a function to 5 results, nondeterminstically ordering their effects

  104. def nmap6[A, B, C, D, E, FF, R](a: F[A], b: F[B], c: F[C], d: F[D], e: F[E], ff: F[FF])(f: (A, B, C, D, E, FF) => R): F[R]

    Apply a function to 6 results, nondeterminstically ordering their effects

  105. val nondeterminismSyntax: NondeterminismSyntax[F]
  106. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  107. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  108. def par: Par[F]

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g.

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

    Definition Classes
    Applicative
  109. def parallel: Applicative[[α]TagKind.@@[F[α], Parallel]]
  110. def plusA[A](x: => F[A], y: => F[A])(implicit sa: Semigroup[A]): F[A]

    Semigroups can be added within an Applicative

    Semigroups can be added within an Applicative

    Definition Classes
    Applicative
  111. def product[G[_]](implicit G0: Monad[G]): Monad[[α](F[α], G[α])]

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    Definition Classes
    Monad
  112. def product[G[_]](implicit G0: Bind[G]): Bind[[α](F[α], G[α])]

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    Definition Classes
    Bind
  113. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  114. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  115. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  116. final def pure[A](a: => A): F[A]
    Definition Classes
    Applicative
  117. def reduceUnordered[A, M](fs: IList[F[A]])(implicit R: Reducer[A, M], M: Monoid[M]): F[M]

    Nondeterministically gather results from the given sequence of actions.

    Nondeterministically gather results from the given sequence of actions. The result will be arbitrarily reordered, depending on the order results come back in a sequence of calls to chooseAny.

  118. def replicateM[A](n: Int, fa: F[A]): F[IList[A]]

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  119. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  120. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]
    Definition Classes
    Applicative
  121. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]
    Definition Classes
    Apply
  122. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  123. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  124. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  125. def toString(): String
    Definition Classes
    AnyRef → Any
  126. def traverse[A, G[_], B](value: G[A])(f: (A) => F[B])(implicit G: Traverse[G]): F[G[B]]
    Definition Classes
    Applicative
  127. def traverse1[A, G[_], B](value: G[A])(f: (A) => F[B])(implicit G: Traverse1[G]): F[G[B]]
    Definition Classes
    Apply
  128. def tuple2[A, B](fa: => F[A], fb: => F[B]): F[(A, B)]
    Definition Classes
    Apply
  129. def tuple3[A, B, C](fa: => F[A], fb: => F[B], fc: => F[C]): F[(A, B, C)]
    Definition Classes
    Apply
  130. def tuple4[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D]): F[(A, B, C, D)]
    Definition Classes
    Apply
  131. def tuple5[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E]): F[(A, B, C, D, E)]
    Definition Classes
    Apply
  132. def unfoldrOpt[S, A, B](seed: S)(f: (S) => Maybe[(F[A], S)])(implicit R: Reducer[A, B]): Maybe[F[B]]

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values.

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

    Definition Classes
    Apply
  133. def unlessM[A](cond: Boolean)(f: => F[A]): F[Unit]

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  134. def untilM[G[_], A](f: F[A], cond: => F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  135. def untilM_[A](f: F[A], cond: => F[Boolean]): F[Unit]

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

    Definition Classes
    Monad
  136. def void[A](fa: F[A]): F[Unit]

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  137. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  138. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  139. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  140. def whenM[A](cond: Boolean)(f: => F[A]): F[Unit]

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  141. def whileM[G[_], A](p: F[Boolean], body: => F[A])(implicit G: MonadPlus[G]): F[G[A]]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  142. def whileM_[A](p: F[Boolean], body: => F[A]): F[Unit]

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

    Definition Classes
    Monad
  143. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  144. final def xderiving0[Z](z: => Z): F[Z]
    Definition Classes
    InvariantApplicative
  145. final def xderiving1[Z, A1](f: (A1) => Z, g: (Z) => A1)(implicit a1: F[A1]): F[Z]
    Definition Classes
    InvariantApplicative
  146. final def xderiving2[Z, A1, A2](f: (A1, A2) => Z, g: (Z) => (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
    Definition Classes
    InvariantApplicative
  147. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
    Definition Classes
    InvariantApplicative
  148. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
    Definition Classes
    InvariantApplicative
  149. def xmap[A, B](fa: F[A], f: (A) => B, g: (B) => A): F[B]

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  150. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  151. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  152. def xproduct0[Z](z: => Z): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative
  153. def xproduct1[Z, A1](a1: => F[A1])(f: (A1) => Z, g: (Z) => A1): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative
  154. def xproduct2[Z, A1, A2](a1: => F[A1], a2: => F[A2])(f: (A1, A2) => Z, g: (Z) => (A1, A2)): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative
  155. def xproduct3[Z, A1, A2, A3](a1: => F[A1], a2: => F[A2], a3: => F[A3])(f: (A1, A2, A3) => Z, g: (Z) => (A1, A2, A3)): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative
  156. def xproduct4[Z, A1, A2, A3, A4](a1: => F[A1], a2: => F[A2], a3: => F[A3], a4: => F[A4])(f: (A1, A2, A3, A4) => Z, g: (Z) => (A1, A2, A3, A4)): F[Z]
    Definition Classes
    ApplicativeInvariantApplicative

Inherited from Monad[F]

Inherited from Bind[F]

Inherited from Applicative[F]

Inherited from InvariantApplicative[F]

Inherited from Apply[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped