MonadCatchIO

trait MonadCatchIO[F[_]] extends MonadIO[F]
Companion
object
trait MonadIO[F]
trait Monad[F]
trait Bind[F]
trait Applicative[F]
trait Apply[F]
trait Functor[F]
trait LiftIO[F]
class Object
trait Matchable
class Any

Type members

Inherited classlikes

Implicitly added by KleisliMonadCatchIO
Inherited from
Applicative
Inherited from
Applicative
trait ApplyLaw
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
trait ApplyLaw
Inherited from
Apply
trait BindLaw
Implicitly added by KleisliMonadCatchIO
Inherited from
Bind
trait BindLaw
Inherited from
Bind
Implicitly added by KleisliMonadCatchIO
Inherited from
Functor
Inherited from
Functor
Implicitly added by KleisliMonadCatchIO
Inherited from
InvariantFunctor
trait MonadLaw
Implicitly added by KleisliMonadCatchIO
Inherited from
Monad
trait MonadLaw
Inherited from
Monad

Value members

Abstract methods

def except[A](ma: F[A])(handler: Throwable => F[A]): F[A]
Implicitly added by KleisliMonadCatchIO

Executes the handler if an exception is raised.

Executes the handler if an exception is raised.

def except[A](ma: F[A])(handler: Throwable => F[A]): F[A]

Executes the handler if an exception is raised.

Executes the handler if an exception is raised.

Inherited methods

override
def ap[A, B](fa: => F[A])(f: => F[A => B]): F[B]
Definition Classes
Inherited from
Bind
def ap2[A, B, C](fa: => F[A], fb: => F[B])(f: F[(A, B) => C]): F[C]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def ap2[A, B, C](fa: => F[A], fb: => F[B])(f: F[(A, B) => C]): F[C]
Inherited from
Apply
def ap3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: F[(A, B, C) => D]): F[D]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def ap3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: F[(A, B, C) => D]): F[D]
Inherited from
Apply
def ap4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: F[(A, B, C, D) => E]): F[E]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def ap4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: F[(A, B, C, D) => E]): F[E]
Inherited from
Apply
def ap5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: F[(A, B, C, D, E) => R]): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def ap5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: F[(A, B, C, D, E) => R]): F[R]
Inherited from
Apply
def ap6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: F[(A, B, C, D, E, FF) => R]): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def ap6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: F[(A, B, C, D, E, FF) => R]): F[R]
Inherited from
Apply
def ap7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: F[(A, B, C, D, E, FF, G) => R]): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def ap7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: F[(A, B, C, D, E, FF, G) => R]): F[R]
Inherited from
Apply
def ap8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: F[(A, B, C, D, E, FF, G, H) => R]): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def ap8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: F[(A, B, C, D, E, FF, G, H) => R]): F[R]
Inherited from
Apply
def apF[A, B](f: => F[A => B]): F[A] => F[B]
Implicitly added by KleisliMonadCatchIO

Flipped variant of ap.

Flipped variant of ap.

Inherited from
Apply
def apF[A, B](f: => F[A => B]): F[A] => F[B]

Flipped variant of ap.

Flipped variant of ap.

Inherited from
Apply
Implicitly added by KleisliMonadCatchIO
Inherited from
Applicative
def apply[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by KleisliMonadCatchIO

Alias for map.

Alias for map.

Inherited from
Functor
def apply[A, B](fa: F[A])(f: A => B): F[B]

Alias for map.

Alias for map.

Inherited from
Functor
def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J])(f: (A, B, C, D, E, FF, G, H, I, J) => R): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J])(f: (A, B, C, D, E, FF, G, H, I, J) => R): F[R]
Inherited from
Apply
def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) => R): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) => R): F[R]
Inherited from
Apply
def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K], fl: => F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I], fj: => F[J], fk: => F[K], fl: => F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): F[R]
Inherited from
Apply
override
def apply2[A, B, C](fa: => F[A], fb: => F[B])(f: (A, B) => C): F[C]
Definition Classes
Inherited from
Bind
def apply3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: (A, B, C) => D): F[D]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply3[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C])(f: (A, B, C) => D): F[D]
Inherited from
Apply
def apply4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: (A, B, C, D) => E): F[E]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply4[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D])(f: (A, B, C, D) => E): F[E]
Inherited from
Apply
def apply5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: (A, B, C, D, E) => R): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply5[A, B, C, D, E, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E])(f: (A, B, C, D, E) => R): F[R]
Inherited from
Apply
def apply6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: (A, B, C, D, E, FF) => R): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply6[A, B, C, D, E, FF, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF])(f: (A, B, C, D, E, FF) => R): F[R]
Inherited from
Apply
def apply7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: (A, B, C, D, E, FF, G) => R): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply7[A, B, C, D, E, FF, G, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G])(f: (A, B, C, D, E, FF, G) => R): F[R]
Inherited from
Apply
def apply8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: (A, B, C, D, E, FF, G, H) => R): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply8[A, B, C, D, E, FF, G, H, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H])(f: (A, B, C, D, E, FF, G, H) => R): F[R]
Inherited from
Apply
def apply9[A, B, C, D, E, FF, G, H, I, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I])(f: (A, B, C, D, E, FF, G, H, I) => R): F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def apply9[A, B, C, D, E, FF, G, H, I, R](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E], ff: => F[FF], fg: => F[G], fh: => F[H], fi: => F[I])(f: (A, B, C, D, E, FF, G, H, I) => R): F[R]
Inherited from
Apply
def applyApplicative: Applicative[[α] =>> F[α] \/ α]
Implicitly added by KleisliMonadCatchIO

Add a unit to any Apply to form an Applicative.

Add a unit to any Apply to form an Applicative.

Inherited from
Apply
def applyApplicative: Applicative[[α] =>> F[α] \/ α]

Add a unit to any Apply to form an Applicative.

Add a unit to any Apply to form an Applicative.

Inherited from
Apply
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
Inherited from
Apply
final
def applying1[Z, A1](f: A1 => Z)(implicit a1: F[A1]): F[Z]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
final
def applying1[Z, A1](f: A1 => Z)(implicit a1: F[A1]): F[Z]
Inherited from
Apply
final
def applying2[Z, A1, A2](f: (A1, A2) => Z)(implicit a1: F[A1], a2: F[A2]): F[Z]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
final
def applying2[Z, A1, A2](f: (A1, A2) => Z)(implicit a1: F[A1], a2: F[A2]): F[Z]
Inherited from
Apply
final
def applying3[Z, A1, A2, A3](f: (A1, A2, A3) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
final
def applying3[Z, A1, A2, A3](f: (A1, A2, A3) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Inherited from
Apply
final
def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
final
def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Inherited from
Apply
def bicompose[G[_, _] : Bifunctor]: Bifunctor[[α, β] =>> F[G[α, β]]]
Implicitly added by KleisliMonadCatchIO

The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

Inherited from
Functor
def bicompose[G[_, _] : Bifunctor]: Bifunctor[[α, β] =>> F[G[α, β]]]

The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

Inherited from
Functor
def bind[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by KleisliMonadCatchIO

Equivalent to join(map(fa)(f)).

Equivalent to join(map(fa)(f)).

Inherited from
Bind
def bind[A, B](fa: F[A])(f: A => F[B]): F[B]

Equivalent to join(map(fa)(f)).

Equivalent to join(map(fa)(f)).

Inherited from
Bind
Implicitly added by KleisliMonadCatchIO
Inherited from
Bind
Inherited from
Bind
def compose[G[_]](implicit G0: Apply[G]): Apply[[α] =>> F[G[α]]]
Implicitly added by KleisliMonadCatchIO

The composition of Applys F and G, [x]F[G[x]], is a Apply

The composition of Applys F and G, [x]F[G[x]], is a Apply

Inherited from
Apply
def compose[G[_]](implicit G0: Functor[G]): Functor[[α] =>> F[G[α]]]
Implicitly added by KleisliMonadCatchIO

The composition of Functors F and G, [x]F[G[x]], is a Functor

The composition of Functors F and G, [x]F[G[x]], is a Functor

Inherited from
Functor
def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Implicitly added by KleisliMonadCatchIO

The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

Inherited from
Applicative
def compose[G[_]](implicit G0: Apply[G]): Apply[[α] =>> F[G[α]]]

The composition of Applys F and G, [x]F[G[x]], is a Apply

The composition of Applys F and G, [x]F[G[x]], is a Apply

Inherited from
Apply
def compose[G[_]](implicit G0: Functor[G]): Functor[[α] =>> F[G[α]]]

The composition of Functors F and G, [x]F[G[x]], is a Functor

The composition of Functors F and G, [x]F[G[x]], is a Functor

Inherited from
Functor
def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α] =>> F[G[α]]]

The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

Inherited from
Applicative
def counzip[A, B](a: F[A] \/ F[B]): F[A \/ B]
Implicitly added by KleisliMonadCatchIO
Inherited from
Functor
def counzip[A, B](a: F[A] \/ F[B]): F[A \/ B]
Inherited from
Functor
def discardLeft[A, B](fa: => F[A], fb: => F[B]): F[B]
Implicitly added by KleisliMonadCatchIO

Combine fa and fb according to Apply[F] with a function that discards the A(s)

Combine fa and fb according to Apply[F] with a function that discards the A(s)

Inherited from
Apply
def discardLeft[A, B](fa: => F[A], fb: => F[B]): F[B]

Combine fa and fb according to Apply[F] with a function that discards the A(s)

Combine fa and fb according to Apply[F] with a function that discards the A(s)

Inherited from
Apply
def discardRight[A, B](fa: => F[A], fb: => F[B]): F[A]
Implicitly added by KleisliMonadCatchIO

Combine fa and fb according to Apply[F] with a function that discards the B(s)

Combine fa and fb according to Apply[F] with a function that discards the B(s)

Inherited from
Apply
def discardRight[A, B](fa: => F[A], fb: => F[B]): F[A]

Combine fa and fb according to Apply[F] with a function that discards the B(s)

Combine fa and fb according to Apply[F] with a function that discards the B(s)

Inherited from
Apply
def filterM[A](l: IList[A])(f: A => F[Boolean]): F[IList[A]]
Implicitly added by KleisliMonadCatchIO

Filter l according to an applicative predicate.

Filter l according to an applicative predicate.

Inherited from
Applicative
def filterM[A](l: List[A])(f: A => F[Boolean]): F[List[A]]
Implicitly added by KleisliMonadCatchIO

Filter l according to an applicative predicate.

Filter l according to an applicative predicate.

Inherited from
Applicative
def filterM[A, B](map: A ==>> B)(f: B => F[Boolean])(implicit O: Order[A]): F[A ==>> B]
Implicitly added by KleisliMonadCatchIO

Filter map according to an applicative predicate. *

Filter map according to an applicative predicate. *

Inherited from
Applicative
def filterM[A](l: IList[A])(f: A => F[Boolean]): F[IList[A]]

Filter l according to an applicative predicate.

Filter l according to an applicative predicate.

Inherited from
Applicative
def filterM[A](l: List[A])(f: A => F[Boolean]): F[List[A]]

Filter l according to an applicative predicate.

Filter l according to an applicative predicate.

Inherited from
Applicative
def filterM[A, B](map: A ==>> B)(f: B => F[Boolean])(implicit O: Order[A]): F[A ==>> B]

Filter map according to an applicative predicate. *

Filter map according to an applicative predicate. *

Inherited from
Applicative
override

An Applicative for F in which effects happen in the opposite order.

An Applicative for F in which effects happen in the opposite order.

Definition Classes
Inherited from
Applicative
def forever[A, B](fa: F[A]): F[B]
Implicitly added by KleisliMonadCatchIO

Repeats an applicative action infinitely

Repeats an applicative action infinitely

Inherited from
Apply
def forever[A, B](fa: F[A]): F[B]

Repeats an applicative action infinitely

Repeats an applicative action infinitely

Inherited from
Apply
def fpair[A](fa: F[A]): F[(A, A)]
Implicitly added by KleisliMonadCatchIO

Twin all As in fa.

Twin all As in fa.

Inherited from
Functor
def fpair[A](fa: F[A]): F[(A, A)]

Twin all As in fa.

Twin all As in fa.

Inherited from
Functor
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by KleisliMonadCatchIO

Pair all As in fa with the result of function application.

Pair all As in fa with the result of function application.

Inherited from
Functor
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]

Pair all As in fa with the result of function application.

Pair all As in fa with the result of function application.

Inherited from
Functor
Implicitly added by KleisliMonadCatchIO
Inherited from
Functor
Inherited from
Functor
def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α] =>> F[G[α]]]
Implicitly added by KleisliMonadCatchIO

The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

Inherited from
Functor
def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α] =>> F[G[α]]]

The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

Inherited from
Functor
def ifM[B](value: F[Boolean], ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by KleisliMonadCatchIO

if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

Inherited from
Bind
def ifM[B](value: F[Boolean], ifTrue: => F[B], ifFalse: => F[B]): F[B]

if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

Inherited from
Bind
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by KleisliMonadCatchIO

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by KleisliMonadCatchIO

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from
Monad
def join[A](ffa: F[F[A]]): F[A]
Implicitly added by KleisliMonadCatchIO

Sequence the inner F of FFA after the outer F, forming a single F[A].

Sequence the inner F of FFA after the outer F, forming a single F[A].

Inherited from
Bind
def join[A](ffa: F[F[A]]): F[A]

Sequence the inner F of FFA after the outer F, forming a single F[A].

Sequence the inner F of FFA after the outer F, forming a single F[A].

Inherited from
Bind
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by KleisliMonadCatchIO

Lift f into F.

Lift f into F.

Inherited from
Functor
def lift[A, B](f: A => B): F[A] => F[B]

Lift f into F.

Lift f into F.

Inherited from
Functor
def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) => F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) => F[R]
Inherited from
Apply
def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) => F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) => F[R]
Inherited from
Apply
def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) => F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) => F[R]
Inherited from
Apply
def lift2[A, B, C](f: (A, B) => C): (F[A], F[B]) => F[C]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift2[A, B, C](f: (A, B) => C): (F[A], F[B]) => F[C]
Inherited from
Apply
def lift3[A, B, C, D](f: (A, B, C) => D): (F[A], F[B], F[C]) => F[D]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift3[A, B, C, D](f: (A, B, C) => D): (F[A], F[B], F[C]) => F[D]
Inherited from
Apply
def lift4[A, B, C, D, E](f: (A, B, C, D) => E): (F[A], F[B], F[C], F[D]) => F[E]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift4[A, B, C, D, E](f: (A, B, C, D) => E): (F[A], F[B], F[C], F[D]) => F[E]
Inherited from
Apply
def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) => R): (F[A], F[B], F[C], F[D], F[E]) => F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) => R): (F[A], F[B], F[C], F[D], F[E]) => F[R]
Inherited from
Apply
def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) => R): (F[A], F[B], F[C], F[D], F[E], F[FF]) => F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) => R): (F[A], F[B], F[C], F[D], F[E], F[FF]) => F[R]
Inherited from
Apply
def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) => F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) => F[R]
Inherited from
Apply
def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) => F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) => F[R]
Inherited from
Apply
def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) => F[R]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) => R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) => F[R]
Inherited from
Apply
def liftIO[A](ioa: IO[A]): F[A]
Implicitly added by KleisliMonadCatchIO
Inherited from
LiftIO
def liftIO[A](ioa: IO[A]): F[A]
Inherited from
LiftIO
def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F[A], F[B]]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F[A], F[B]]
Inherited from
Apply
override
def map[A, B](fa: F[A])(f: A => B): F[B]
Definition Classes
Inherited from
Monad
def mapply[A, B](a: A)(f: F[A => B]): F[B]
Implicitly added by KleisliMonadCatchIO

Lift apply(a), and apply the result to f.

Lift apply(a), and apply the result to f.

Inherited from
Functor
def mapply[A, B](a: A)(f: F[A => B]): F[B]

Lift apply(a), and apply the result to f.

Lift apply(a), and apply the result to f.

Inherited from
Functor
Implicitly added by KleisliMonadCatchIO
Inherited from
Monad
Inherited from
Monad
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by KleisliMonadCatchIO

Pair A with the result of function application.

Pair A with the result of function application.

Inherited from
Bind
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]

Pair A with the result of function application.

Pair A with the result of function application.

Inherited from
Bind
def par: Par[F]
Implicitly added by KleisliMonadCatchIO

A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

Inherited from
Applicative
def par: Par[F]

A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

Inherited from
Applicative
def plusA[A](x: => F[A], y: => F[A])(implicit sa: Semigroup[A]): F[A]
Implicitly added by KleisliMonadCatchIO

Semigroups can be added within an Applicative

Semigroups can be added within an Applicative

Inherited from
Applicative
def plusA[A](x: => F[A], y: => F[A])(implicit sa: Semigroup[A]): F[A]

Semigroups can be added within an Applicative

Semigroups can be added within an Applicative

Inherited from
Applicative
def point[A](a: => A): F[A]
Implicitly added by KleisliMonadCatchIO
Inherited from
Applicative
def point[A](a: => A): F[A]
Inherited from
Applicative
def product[G[_]](implicit G0: Monad[G]): Monad[[α] =>> (F[α], G[α])]
Implicitly added by KleisliMonadCatchIO

The product of Monad F and G, [x](F[x], G[x]]), is a Monad

The product of Monad F and G, [x](F[x], G[x]]), is a Monad

Inherited from
Monad
def product[G[_]](implicit G0: Bind[G]): Bind[[α] =>> (F[α], G[α])]
Implicitly added by KleisliMonadCatchIO

The product of Bind F and G, [x](F[x], G[x]]), is a Bind

The product of Bind F and G, [x](F[x], G[x]]), is a Bind

Inherited from
Bind
def product[G[_]](implicit G0: Apply[G]): Apply[[α] =>> (F[α], G[α])]
Implicitly added by KleisliMonadCatchIO

The product of Applys F and G, [x](F[x], G[x]]), is a Apply

The product of Applys F and G, [x](F[x], G[x]]), is a Apply

Inherited from
Apply
def product[G[_]](implicit G0: Functor[G]): Functor[[α] =>> (F[α], G[α])]
Implicitly added by KleisliMonadCatchIO

The product of Functors F and G, [x](F[x], G[x]]), is a Functor

The product of Functors F and G, [x](F[x], G[x]]), is a Functor

Inherited from
Functor
def product[G[_]](implicit G0: Applicative[G]): Applicative[[α] =>> (F[α], G[α])]
Implicitly added by KleisliMonadCatchIO

The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

Inherited from
Applicative
def product[G[_]](implicit G0: Monad[G]): Monad[[α] =>> (F[α], G[α])]

The product of Monad F and G, [x](F[x], G[x]]), is a Monad

The product of Monad F and G, [x](F[x], G[x]]), is a Monad

Inherited from
Monad
def product[G[_]](implicit G0: Bind[G]): Bind[[α] =>> (F[α], G[α])]

The product of Bind F and G, [x](F[x], G[x]]), is a Bind

The product of Bind F and G, [x](F[x], G[x]]), is a Bind

Inherited from
Bind
def product[G[_]](implicit G0: Apply[G]): Apply[[α] =>> (F[α], G[α])]

The product of Applys F and G, [x](F[x], G[x]]), is a Apply

The product of Applys F and G, [x](F[x], G[x]]), is a Apply

Inherited from
Apply
def product[G[_]](implicit G0: Functor[G]): Functor[[α] =>> (F[α], G[α])]

The product of Functors F and G, [x](F[x], G[x]]), is a Functor

The product of Functors F and G, [x](F[x], G[x]]), is a Functor

Inherited from
Functor
def product[G[_]](implicit G0: Applicative[G]): Applicative[[α] =>> (F[α], G[α])]

The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

Inherited from
Applicative
final
def pure[A](a: => A): F[A]
Implicitly added by KleisliMonadCatchIO
Inherited from
Applicative
final
def pure[A](a: => A): F[A]
Inherited from
Applicative
def replicateM[A](n: Int, fa: F[A]): F[IList[A]]
Implicitly added by KleisliMonadCatchIO

Performs the action n times, returning the list of results.

Performs the action n times, returning the list of results.

Inherited from
Applicative
def replicateM[A](n: Int, fa: F[A]): F[IList[A]]

Performs the action n times, returning the list of results.

Performs the action n times, returning the list of results.

Inherited from
Applicative
def replicateM_[A](n: Int, fa: F[A]): F[Unit]
Implicitly added by KleisliMonadCatchIO

Performs the action n times, returning nothing.

Performs the action n times, returning nothing.

Inherited from
Applicative
def replicateM_[A](n: Int, fa: F[A]): F[Unit]

Performs the action n times, returning nothing.

Performs the action n times, returning nothing.

Inherited from
Applicative
def sequence[A, G[_] : Traverse](as: G[F[A]]): F[G[A]]
Implicitly added by KleisliMonadCatchIO
Inherited from
Applicative
def sequence[A, G[_] : Traverse](as: G[F[A]]): F[G[A]]
Inherited from
Applicative
def sequence1[A, G[_] : Traverse1](as: G[F[A]]): F[G[A]]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def sequence1[A, G[_] : Traverse1](as: G[F[A]]): F[G[A]]
Inherited from
Apply
def strengthL[A, B](a: A, f: F[B]): F[(A, B)]
Implicitly added by KleisliMonadCatchIO

Inject a to the left of Bs in f.

Inject a to the left of Bs in f.

Inherited from
Functor
def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

Inject a to the left of Bs in f.

Inject a to the left of Bs in f.

Inherited from
Functor
def strengthR[A, B](f: F[A], b: B): F[(A, B)]
Implicitly added by KleisliMonadCatchIO

Inject b to the right of As in f.

Inject b to the right of As in f.

Inherited from
Functor
def strengthR[A, B](f: F[A], b: B): F[(A, B)]

Inject b to the right of As in f.

Inject b to the right of As in f.

Inherited from
Functor
def traverse[A, G[_], B](value: G[A])(f: A => F[B])(implicit G: Traverse[G]): F[G[B]]
Implicitly added by KleisliMonadCatchIO
Inherited from
Applicative
def traverse[A, G[_], B](value: G[A])(f: A => F[B])(implicit G: Traverse[G]): F[G[B]]
Inherited from
Applicative
def traverse1[A, G[_], B](value: G[A])(f: A => F[B])(implicit G: Traverse1[G]): F[G[B]]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def traverse1[A, G[_], B](value: G[A])(f: A => F[B])(implicit G: Traverse1[G]): F[G[B]]
Inherited from
Apply
def tuple2[A, B](fa: => F[A], fb: => F[B]): F[(A, B)]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def tuple2[A, B](fa: => F[A], fb: => F[B]): F[(A, B)]
Inherited from
Apply
def tuple3[A, B, C](fa: => F[A], fb: => F[B], fc: => F[C]): F[(A, B, C)]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def tuple3[A, B, C](fa: => F[A], fb: => F[B], fc: => F[C]): F[(A, B, C)]
Inherited from
Apply
def tuple4[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D]): F[(A, B, C, D)]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def tuple4[A, B, C, D](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D]): F[(A, B, C, D)]
Inherited from
Apply
def tuple5[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E]): F[(A, B, C, D, E)]
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
def tuple5[A, B, C, D, E](fa: => F[A], fb: => F[B], fc: => F[C], fd: => F[D], fe: => F[E]): F[(A, B, C, D, E)]
Inherited from
Apply
def unfoldrOpt[S, A, B](seed: S)(f: S => Maybe[(F[A], S)])(implicit R: Reducer[A, B]): Maybe[F[B]]
Implicitly added by KleisliMonadCatchIO

Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

Inherited from
Apply
def unfoldrOpt[S, A, B](seed: S)(f: S => Maybe[(F[A], S)])(implicit R: Reducer[A, B]): Maybe[F[B]]

Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

Inherited from
Apply
def unlessM[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by KleisliMonadCatchIO

Returns the given argument if cond is false, otherwise, unit lifted into F.

Returns the given argument if cond is false, otherwise, unit lifted into F.

Inherited from
Applicative
def unlessM[A](cond: Boolean)(f: => F[A]): F[Unit]

Returns the given argument if cond is false, otherwise, unit lifted into F.

Returns the given argument if cond is false, otherwise, unit lifted into F.

Inherited from
Applicative
def untilM[G[_], A](f: F[A], cond: => F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]
Implicitly added by KleisliMonadCatchIO

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

Inherited from
Monad
def untilM[G[_], A](f: F[A], cond: => F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

Inherited from
Monad
def untilM_[A](f: F[A], cond: => F[Boolean]): F[Unit]
Implicitly added by KleisliMonadCatchIO

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from
Monad
def untilM_[A](f: F[A], cond: => F[Boolean]): F[Unit]

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from
Monad
def void[A](fa: F[A]): F[Unit]
Implicitly added by KleisliMonadCatchIO

Empty fa of meaningful pure values, preserving its structure.

Empty fa of meaningful pure values, preserving its structure.

Inherited from
Functor
def void[A](fa: F[A]): F[Unit]

Empty fa of meaningful pure values, preserving its structure.

Empty fa of meaningful pure values, preserving its structure.

Inherited from
Functor
def whenM[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by KleisliMonadCatchIO

Returns the given argument if cond is true, otherwise, unit lifted into F.

Returns the given argument if cond is true, otherwise, unit lifted into F.

Inherited from
Applicative
def whenM[A](cond: Boolean)(f: => F[A]): F[Unit]

Returns the given argument if cond is true, otherwise, unit lifted into F.

Returns the given argument if cond is true, otherwise, unit lifted into F.

Inherited from
Applicative
def whileM[G[_], A](p: F[Boolean], body: => F[A])(implicit G: MonadPlus[G]): F[G[A]]
Implicitly added by KleisliMonadCatchIO

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

Inherited from
Monad
def whileM[G[_], A](p: F[Boolean], body: => F[A])(implicit G: MonadPlus[G]): F[G[A]]

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

Inherited from
Monad
def whileM_[A](p: F[Boolean], body: => F[A]): F[Unit]
Implicitly added by KleisliMonadCatchIO

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from
Monad
def whileM_[A](p: F[Boolean], body: => F[A]): F[Unit]

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from
Monad
def widen[A, B](fa: F[A])(implicit ev: Liskov[A, B]): F[B]
Implicitly added by KleisliMonadCatchIO

Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

Inherited from
Functor
def widen[A, B](fa: F[A])(implicit ev: Liskov[A, B]): F[B]

Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

Inherited from
Functor
final
def xderiving0[Z](z: => Z): F[Z]
Implicitly added by KleisliMonadCatchIO
Inherited from
InvariantApplicative
final
def xderiving0[Z](z: => Z): F[Z]
Inherited from
InvariantApplicative
final
def xderiving1[Z, A1](f: A1 => Z, g: Z => A1)(implicit a1: F[A1]): F[Z]
Implicitly added by KleisliMonadCatchIO
Inherited from
InvariantApplicative
final
def xderiving1[Z, A1](f: A1 => Z, g: Z => A1)(implicit a1: F[A1]): F[Z]
Inherited from
InvariantApplicative
final
def xderiving2[Z, A1, A2](f: (A1, A2) => Z, g: Z => (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
Implicitly added by KleisliMonadCatchIO
Inherited from
InvariantApplicative
final
def xderiving2[Z, A1, A2](f: (A1, A2) => Z, g: Z => (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]
Inherited from
InvariantApplicative
final
def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) => Z, g: Z => (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Implicitly added by KleisliMonadCatchIO
Inherited from
InvariantApplicative
final
def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) => Z, g: Z => (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]
Inherited from
InvariantApplicative
final
def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z, g: Z => (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Implicitly added by KleisliMonadCatchIO
Inherited from
InvariantApplicative
final
def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) => Z, g: Z => (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]
Inherited from
InvariantApplicative
def xmap[A, B](fa: F[A], f: A => B, g: B => A): F[B]
Implicitly added by KleisliMonadCatchIO
Inherited from
Functor
def xmap[A, B](fa: F[A], f: A => B, g: B => A): F[B]
Inherited from
Functor
def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]
Implicitly added by KleisliMonadCatchIO

Converts ma to a value of type F[B] using the provided bijection.

Converts ma to a value of type F[B] using the provided bijection.

Inherited from
InvariantFunctor
def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

Converts ma to a value of type F[B] using the provided bijection.

Converts ma to a value of type F[B] using the provided bijection.

Inherited from
InvariantFunctor
def xmapi[A, B](ma: F[A])(iso: IsoSet[A, B]): F[B]
Implicitly added by KleisliMonadCatchIO

Converts ma to a value of type F[B] using the provided isomorphism.

Converts ma to a value of type F[B] using the provided isomorphism.

Inherited from
InvariantFunctor
def xmapi[A, B](ma: F[A])(iso: IsoSet[A, B]): F[B]

Converts ma to a value of type F[B] using the provided isomorphism.

Converts ma to a value of type F[B] using the provided isomorphism.

Inherited from
InvariantFunctor
override
def xproduct0[Z](z: => Z): F[Z]
Definition Classes
Inherited from
Applicative
override
def xproduct1[Z, A1](a1: => F[A1])(f: A1 => Z, g: Z => A1): F[Z]
Definition Classes
Inherited from
Applicative
override
def xproduct2[Z, A1, A2](a1: => F[A1], a2: => F[A2])(f: (A1, A2) => Z, g: Z => (A1, A2)): F[Z]
Definition Classes
Inherited from
Applicative
override
def xproduct3[Z, A1, A2, A3](a1: => F[A1], a2: => F[A2], a3: => F[A3])(f: (A1, A2, A3) => Z, g: Z => (A1, A2, A3)): F[Z]
Definition Classes
Inherited from
Applicative
override
def xproduct4[Z, A1, A2, A3, A4](a1: => F[A1], a2: => F[A2], a3: => F[A3], a4: => F[A4])(f: (A1, A2, A3, A4) => Z, g: Z => (A1, A2, A3, A4)): F[Z]
Definition Classes
Inherited from
Applicative

Inherited fields

Implicitly added by KleisliMonadCatchIO
Inherited from
Applicative
Implicitly added by KleisliMonadCatchIO
Inherited from
Apply
Inherited from
Apply
Implicitly added by KleisliMonadCatchIO
Inherited from
Bind
Inherited from
Bind
Implicitly added by KleisliMonadCatchIO
Inherited from
Functor
Inherited from
Functor
Implicitly added by KleisliMonadCatchIO
Inherited from
LiftIO
Inherited from
LiftIO
Implicitly added by KleisliMonadCatchIO
Inherited from
MonadIO
Inherited from
MonadIO
Implicitly added by KleisliMonadCatchIO
Inherited from
Monad
Inherited from
Monad