GenSpawn

trait GenSpawn[F[_], E] extends MonadCancel[F, E] with Unique[F]

A typeclass that characterizes monads which support spawning and racing of fibers. GenSpawn extends the capabilities of MonadCancel, so an instance of this typeclass must also provide a lawful instance for MonadCancel.

This documentation builds upon concepts introduced in the MonadCancel documentation.

==Concurrency==

GenSpawn introduces a notion of concurrency that enables fibers to safely interact with each other via three special functions. start spawns a fiber that executes concurrently with the spawning fiber. join semantically blocks the joining fiber until the joinee fiber terminates, after which the Outcome of the joinee is returned. cancel requests a fiber to abnormally terminate, and semantically blocks the canceller until the cancellee has completed finalization.

Just like threads, fibers can execute concurrently with respect to each other. This means that the effects of independent fibers may be interleaved nondeterministically. This mode of concurrency reaps benefits for modular program design; fibers that are described separately can execute simultaneously without requiring programmers to explicitly yield back to the runtime system.

The interleaving of effects is illustrated in the following program:


 for {
   fa <- (println("A1") *> println("A2")).start
   fb <- (println("B1") *> println("B2")).start
 } yield ()

In this program, two fibers A and B are spawned concurrently. There are six possible executions, each of which exhibits a different ordering of effects. The observed output of each execution is shown below:

  1. A1, A2, B1, B2
  2. A1, B1, A2, B2
  3. A1, B1, B2, A2
  4. B1, B2, A1, A2
  5. B1, A1, B2, A2
  6. B1, A1, A2, B3

Notice how every execution preserves sequential consistency of the effects within each fiber: A1 always prints before A2, and B1 always prints before B2. However, there are no guarantees around how the effects of both fibers will be ordered with respect to each other; it is entirely nondeterministic.

==Cancelation==

MonadCancel introduces a simple means of cancelation, particularly self-cancelation, where a fiber can request the abnormal termination of its own execution. This is achieved by calling canceled.

GenSpawn expands on the cancelation model described by MonadCancel by introducing a means of external cancelation. With external cancelation, a fiber can request the abnormal termination of another fiber by calling Fiber!.cancel.

The cancelation model dictates that external cancelation behaves identically to self-cancelation. To guarantee consistent behavior between the two, the following semantics are shared:

  1. Masking: if a fiber is canceled while it is masked, cancelation is suppressed until it reaches a completely unmasked state. See MonadCancel documentation for more details.
  2. Backpressure: cancel semantically blocks all callers until finalization is complete.
  3. Idempotency: once a fiber's cancelation has been requested, subsequent cancelations have no effect on cancelation status.
  4. Terminal: Cancelation of a fiber that has terminated immediately returns.

External cancelation contrasts with self-cancelation in one aspect: the former may require synchronization between multiple threads to communicate a cancelation request. As a result, cancelation may not be immediately observed by a fiber. Implementations are free to decide how and when this synchronization takes place.

==Cancelation safety==

A function or effect is considered to be cancelation-safe if it can be run in the absence of masking without violating effectful lifecycles or leaking resources. These functions require extra attention and care from users to ensure safe usage.

start and racePair are both considered to be cancelation-unsafe effects because they return a Fiber, which is a resource that has a lifecycle.


 // Start a fiber that continuously prints "A".
 // After 10 seconds, cancel the fiber.
 F.start(F.delay(println("A")).foreverM).flatMap { fiber =>
   F.sleep(10.seconds) *> fiber.cancel
 }

In the above example, imagine the spawning fiber is canceled after it starts the printing fiber, but before the latter is canceled. In this situation, the printing fiber is not canceled and will continue executing forever, contending with other fibers for system resources. Fiber leaks like this typically happen because some fiber that holds a reference to a child fiber is canceled before the child terminates; like threads, fibers will not automatically be cleaned up.

Resource leaks like this are unfavorable when writing applications. In the case of start and racePair, it is recommended not to use these methods; instead, use background and race respectively.

The following example depicts a safer version of the start example above:


 // Starts a fiber that continously prints "A".
 // After 10 seconds, the resource scope exits so the fiber is canceled.
 F.background(F.delay(println("A")).foreverM).use { _ =>
   F.sleep(10.seconds)
 }

==Scheduling==

Fibers are commonly referred to as ''lightweight threads'' or ''green threads''. This alludes to the nature by which fibers are scheduled by runtime systems: many fibers are multiplexed onto one or more native threads.

For applications running on the JVM, the scheduler typically manages a thread pool onto which fibers are scheduled. These fibers are executed simultaneously by the threads in the pool, achieving both concurrency and parallelism. For applications running on JavaScript platforms, all compute is restricted to a single worker thread, so multiple fibers must share that worker thread (dictated by fairness properties), achieving concurrency without parallelism.

cede is a special function that interacts directly with the underlying scheduler. It is a means of cooperative multitasking by which a fiber signals to the runtime system that it intends to pause execution and resume at some later time at the discretion of the scheduler. This is in contrast to preemptive multitasking, in which threads of control are forcibly yielded after a well-defined time slice.

Preemptive and cooperative multitasking are both features of runtime systems that influence the fairness and throughput properties of an application. These modes of scheduling are not necessarily mutually exclusive: a runtime system may incorporate a blend of the two, where fibers can explicitly yield back to the scheduler, but the runtime preempts a fiber if it has not yielded for some time.

For more details on schedulers, see the following resources:

  1. https://gist.github.com/djspiewak/3ac3f3f55a780e8ab6fa2ca87160ca40
  2. https://gist.github.com/djspiewak/46b543800958cf61af6efa8e072bfd5c
Companion
object
trait Unique[F]
trait MonadCancel[F, E]
trait MonadError[F, E]
trait Monad[F]
trait FlatMap[F]
trait ApplicativeError[F, E]
trait Applicative[F]
trait InvariantMonoidal[F]
trait Apply[F]
trait ApplyArityFunctions[F]
trait InvariantSemigroupal[F]
trait Semigroupal[F]
trait Functor[F]
trait Invariant[F]
trait Serializable
class Object
trait Matchable
class Any
trait GenConcurrent[F, E]
trait GenTemporal[F, E]

Value members

Abstract methods

def cede: F[Unit]
Implicitly added by genSpawnForOptionT

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Note that cede is merely a hint to the runtime system; implementations have the liberty to interpret this method to their liking as long as it obeys the respective laws. For example, a lawful, but atypical, implementation of this function is F.unit, in which case the fairness boundary is a no-op.

def cede: F[Unit]
Implicitly added by genSpawnForEitherT

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Note that cede is merely a hint to the runtime system; implementations have the liberty to interpret this method to their liking as long as it obeys the respective laws. For example, a lawful, but atypical, implementation of this function is F.unit, in which case the fairness boundary is a no-op.

def cede: F[Unit]
Implicitly added by genSpawnForKleisli

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Note that cede is merely a hint to the runtime system; implementations have the liberty to interpret this method to their liking as long as it obeys the respective laws. For example, a lawful, but atypical, implementation of this function is F.unit, in which case the fairness boundary is a no-op.

def cede: F[Unit]

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Introduces a fairness boundary that yields control back to the scheduler of the runtime system. This allows the carrier thread to resume execution of another waiting fiber.

Note that cede is merely a hint to the runtime system; implementations have the liberty to interpret this method to their liking as long as it obeys the respective laws. For example, a lawful, but atypical, implementation of this function is F.unit, in which case the fairness boundary is a no-op.

def never[A]: F[A]
Implicitly added by genSpawnForOptionT

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A fiber that is suspended in never can be canceled if it is completely unmasked before it suspends:


 // ignoring race conditions between `start` and `cancel`
 F.never.start.flatMap(_.cancel) <-> F.unit

However, if the fiber is masked, cancellers will be semantically blocked forever:


 // ignoring race conditions between `start` and `cancel`
 F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never

def never[A]: F[A]
Implicitly added by genSpawnForEitherT

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A fiber that is suspended in never can be canceled if it is completely unmasked before it suspends:


 // ignoring race conditions between `start` and `cancel`
 F.never.start.flatMap(_.cancel) <-> F.unit

However, if the fiber is masked, cancellers will be semantically blocked forever:


 // ignoring race conditions between `start` and `cancel`
 F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never

def never[A]: F[A]
Implicitly added by genSpawnForKleisli

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A fiber that is suspended in never can be canceled if it is completely unmasked before it suspends:


 // ignoring race conditions between `start` and `cancel`
 F.never.start.flatMap(_.cancel) <-> F.unit

However, if the fiber is masked, cancellers will be semantically blocked forever:


 // ignoring race conditions between `start` and `cancel`
 F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never

def never[A]: F[A]

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A non-terminating effect that never completes, which causes a fiber to semantically block indefinitely. This is the purely functional, asynchronous equivalent of an infinite while loop in Java, but no native threads are blocked.

A fiber that is suspended in never can be canceled if it is completely unmasked before it suspends:


 // ignoring race conditions between `start` and `cancel`
 F.never.start.flatMap(_.cancel) <-> F.unit

However, if the fiber is masked, cancellers will be semantically blocked forever:


 // ignoring race conditions between `start` and `cancel`
 F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never

def racePair[A, B](fa: F[A], fb: F[B]): F[Either[(Outcome[F, E, A], Fiber[F, E, B]), (Fiber[F, E, A], Outcome[F, E, B])]]
Implicitly added by genSpawnForOptionT

A low-level primitive for racing the evaluation of two fibers that returns the Outcome of the winner and the Fiber of the loser. The winner of the race is considered to be the first fiber that completes with an outcome.

A low-level primitive for racing the evaluation of two fibers that returns the Outcome of the winner and the Fiber of the loser. The winner of the race is considered to be the first fiber that completes with an outcome.

racePair is a cancelation-unsafe function; it is recommended to use the safer variants.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

raceOutcome and race for safer race variants.

def racePair[A, B](fa: F[A], fb: F[B]): F[Either[(Outcome[F, E, A], Fiber[F, E, B]), (Fiber[F, E, A], Outcome[F, E, B])]]
Implicitly added by genSpawnForEitherT

A low-level primitive for racing the evaluation of two fibers that returns the Outcome of the winner and the Fiber of the loser. The winner of the race is considered to be the first fiber that completes with an outcome.

A low-level primitive for racing the evaluation of two fibers that returns the Outcome of the winner and the Fiber of the loser. The winner of the race is considered to be the first fiber that completes with an outcome.

racePair is a cancelation-unsafe function; it is recommended to use the safer variants.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

raceOutcome and race for safer race variants.

def racePair[A, B](fa: F[A], fb: F[B]): F[Either[(Outcome[F, E, A], Fiber[F, E, B]), (Fiber[F, E, A], Outcome[F, E, B])]]
Implicitly added by genSpawnForKleisli

A low-level primitive for racing the evaluation of two fibers that returns the Outcome of the winner and the Fiber of the loser. The winner of the race is considered to be the first fiber that completes with an outcome.

A low-level primitive for racing the evaluation of two fibers that returns the Outcome of the winner and the Fiber of the loser. The winner of the race is considered to be the first fiber that completes with an outcome.

racePair is a cancelation-unsafe function; it is recommended to use the safer variants.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

raceOutcome and race for safer race variants.

def racePair[A, B](fa: F[A], fb: F[B]): F[Either[(Outcome[F, E, A], Fiber[F, E, B]), (Fiber[F, E, A], Outcome[F, E, B])]]

A low-level primitive for racing the evaluation of two fibers that returns the Outcome of the winner and the Fiber of the loser. The winner of the race is considered to be the first fiber that completes with an outcome.

A low-level primitive for racing the evaluation of two fibers that returns the Outcome of the winner and the Fiber of the loser. The winner of the race is considered to be the first fiber that completes with an outcome.

racePair is a cancelation-unsafe function; it is recommended to use the safer variants.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

raceOutcome and race for safer race variants.

def start[A](fa: F[A]): F[Fiber[F, E, A]]
Implicitly added by genSpawnForOptionT

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

start is a cancelation-unsafe function; it is recommended to use the safer variant, background, to spawn fibers.

Value Params
fa

the effect for the fiber

See also

background for the safer, recommended variant

def start[A](fa: F[A]): F[Fiber[F, E, A]]
Implicitly added by genSpawnForEitherT

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

start is a cancelation-unsafe function; it is recommended to use the safer variant, background, to spawn fibers.

Value Params
fa

the effect for the fiber

See also

background for the safer, recommended variant

def start[A](fa: F[A]): F[Fiber[F, E, A]]
Implicitly added by genSpawnForKleisli

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

start is a cancelation-unsafe function; it is recommended to use the safer variant, background, to spawn fibers.

Value Params
fa

the effect for the fiber

See also

background for the safer, recommended variant

def start[A](fa: F[A]): F[Fiber[F, E, A]]

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

A low-level primitive for starting the concurrent evaluation of a fiber. Returns a Fiber that can be used to wait for a fiber or cancel it.

start is a cancelation-unsafe function; it is recommended to use the safer variant, background, to spawn fibers.

Value Params
fa

the effect for the fiber

See also

background for the safer, recommended variant

Concrete methods

def applicative: Applicative[F]
Implicitly added by genSpawnForOptionT
def applicative: Applicative[F]
Implicitly added by genSpawnForEitherT
def applicative: Applicative[F]
Implicitly added by genSpawnForKleisli
def applicative: Applicative[F]
def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Implicitly added by genSpawnForOptionT

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

The child fiber is canceled in two cases: either the resource goes out of scope or the parent fiber is canceled. If the child fiber terminates before one of these cases occurs, then cancelation is a no-op. This avoids fiber leaks because the child fiber is always canceled before the parent fiber drops the reference to it.


 // Starts a fiber that continously prints "A".
 // After 10 seconds, the resource scope exits so the fiber is canceled.
 F.background(F.delay(println("A")).foreverM).use { _ =>
   F.sleep(10.seconds)
 }

Value Params
fa

the effect for the spawned fiber

def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Implicitly added by genSpawnForEitherT

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

The child fiber is canceled in two cases: either the resource goes out of scope or the parent fiber is canceled. If the child fiber terminates before one of these cases occurs, then cancelation is a no-op. This avoids fiber leaks because the child fiber is always canceled before the parent fiber drops the reference to it.


 // Starts a fiber that continously prints "A".
 // After 10 seconds, the resource scope exits so the fiber is canceled.
 F.background(F.delay(println("A")).foreverM).use { _ =>
   F.sleep(10.seconds)
 }

Value Params
fa

the effect for the spawned fiber

def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Implicitly added by genSpawnForKleisli

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

The child fiber is canceled in two cases: either the resource goes out of scope or the parent fiber is canceled. If the child fiber terminates before one of these cases occurs, then cancelation is a no-op. This avoids fiber leaks because the child fiber is always canceled before the parent fiber drops the reference to it.


 // Starts a fiber that continously prints "A".
 // After 10 seconds, the resource scope exits so the fiber is canceled.
 F.background(F.delay(println("A")).foreverM).use { _ =>
   F.sleep(10.seconds)
 }

Value Params
fa

the effect for the spawned fiber

def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

Returns a Resource that manages the concurrent execution of a fiber. The inner effect can be used to wait on the outcome of the child fiber; it is effectively a join.

The child fiber is canceled in two cases: either the resource goes out of scope or the parent fiber is canceled. If the child fiber terminates before one of these cases occurs, then cancelation is a no-op. This avoids fiber leaks because the child fiber is always canceled before the parent fiber drops the reference to it.


 // Starts a fiber that continously prints "A".
 // After 10 seconds, the resource scope exits so the fiber is canceled.
 F.background(F.delay(println("A")).foreverM).use { _ =>
   F.sleep(10.seconds)
 }

Value Params
fa

the effect for the spawned fiber

def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Implicitly added by genSpawnForOptionT

Races the evaluation of two fibers and returns the result of both.

Races the evaluation of two fibers and returns the result of both.

The following rules describe the semantics of both:

  1. If the winner completes with Outcome.Succeeded, the race waits for the loser to complete.
  2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled.
  3. If the winner completes with Outcome.Canceled, the loser and the race are canceled as well.
  4. If the loser completes with Outcome.Succeeded, the race returns the successful value of both fibers.
  5. If the loser completes with Outcome.Errored, the race returns the error.
  6. If the loser completes with Outcome.Canceled, the race is canceled.
  7. If the race is canceled before one or both participants complete, then whichever ones are incomplete are canceled.
  8. If the race is masked and is canceled because one or both participants canceled, the fiber will block indefinitely.
Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

bothOutcome for a variant that returns the Outcome of both fibers.

def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Implicitly added by genSpawnForEitherT

Races the evaluation of two fibers and returns the result of both.

Races the evaluation of two fibers and returns the result of both.

The following rules describe the semantics of both:

  1. If the winner completes with Outcome.Succeeded, the race waits for the loser to complete.
  2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled.
  3. If the winner completes with Outcome.Canceled, the loser and the race are canceled as well.
  4. If the loser completes with Outcome.Succeeded, the race returns the successful value of both fibers.
  5. If the loser completes with Outcome.Errored, the race returns the error.
  6. If the loser completes with Outcome.Canceled, the race is canceled.
  7. If the race is canceled before one or both participants complete, then whichever ones are incomplete are canceled.
  8. If the race is masked and is canceled because one or both participants canceled, the fiber will block indefinitely.
Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

bothOutcome for a variant that returns the Outcome of both fibers.

def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Implicitly added by genSpawnForKleisli

Races the evaluation of two fibers and returns the result of both.

Races the evaluation of two fibers and returns the result of both.

The following rules describe the semantics of both:

  1. If the winner completes with Outcome.Succeeded, the race waits for the loser to complete.
  2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled.
  3. If the winner completes with Outcome.Canceled, the loser and the race are canceled as well.
  4. If the loser completes with Outcome.Succeeded, the race returns the successful value of both fibers.
  5. If the loser completes with Outcome.Errored, the race returns the error.
  6. If the loser completes with Outcome.Canceled, the race is canceled.
  7. If the race is canceled before one or both participants complete, then whichever ones are incomplete are canceled.
  8. If the race is masked and is canceled because one or both participants canceled, the fiber will block indefinitely.
Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

bothOutcome for a variant that returns the Outcome of both fibers.

def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]

Races the evaluation of two fibers and returns the result of both.

Races the evaluation of two fibers and returns the result of both.

The following rules describe the semantics of both:

  1. If the winner completes with Outcome.Succeeded, the race waits for the loser to complete.
  2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled.
  3. If the winner completes with Outcome.Canceled, the loser and the race are canceled as well.
  4. If the loser completes with Outcome.Succeeded, the race returns the successful value of both fibers.
  5. If the loser completes with Outcome.Errored, the race returns the error.
  6. If the loser completes with Outcome.Canceled, the race is canceled.
  7. If the race is canceled before one or both participants complete, then whichever ones are incomplete are canceled.
  8. If the race is masked and is canceled because one or both participants canceled, the fiber will block indefinitely.
Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

bothOutcome for a variant that returns the Outcome of both fibers.

def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Implicitly added by genSpawnForOptionT

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

both for a simpler variant that returns the results of both fibers.

def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Implicitly added by genSpawnForEitherT

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

both for a simpler variant that returns the results of both fibers.

def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Implicitly added by genSpawnForKleisli

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

both for a simpler variant that returns the results of both fibers.

def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Races the evaluation of two fibers and returns the Outcome of both. If the race is canceled before one or both participants complete, then then whichever ones are incomplete are canceled.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

both for a simpler variant that returns the results of both fibers.

def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Implicitly added by genSpawnForOptionT

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

The semantics of race are described by the following rules:

  1. If the winner completes with Outcome.Succeeded, the race returns the successful value. The loser is canceled before returning.
  2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled before returning.
  3. If the winner completes with Outcome.Canceled, the race returns the result of the loser, consistent with the first two rules.
  4. If both the winner and loser complete with Outcome.Canceled, the race is canceled.
  5. If the race is masked and is canceled because both participants canceled, the fiber will block indefinitely.
Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

raceOutcome for a variant that returns the outcome of the winner.

def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Implicitly added by genSpawnForEitherT

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

The semantics of race are described by the following rules:

  1. If the winner completes with Outcome.Succeeded, the race returns the successful value. The loser is canceled before returning.
  2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled before returning.
  3. If the winner completes with Outcome.Canceled, the race returns the result of the loser, consistent with the first two rules.
  4. If both the winner and loser complete with Outcome.Canceled, the race is canceled.
  5. If the race is masked and is canceled because both participants canceled, the fiber will block indefinitely.
Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

raceOutcome for a variant that returns the outcome of the winner.

def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Implicitly added by genSpawnForKleisli

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

The semantics of race are described by the following rules:

  1. If the winner completes with Outcome.Succeeded, the race returns the successful value. The loser is canceled before returning.
  2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled before returning.
  3. If the winner completes with Outcome.Canceled, the race returns the result of the loser, consistent with the first two rules.
  4. If both the winner and loser complete with Outcome.Canceled, the race is canceled.
  5. If the race is masked and is canceled because both participants canceled, the fiber will block indefinitely.
Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

raceOutcome for a variant that returns the outcome of the winner.

def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

Races the evaluation of two fibers that returns the result of the winner, except in the case of cancelation.

The semantics of race are described by the following rules:

  1. If the winner completes with Outcome.Succeeded, the race returns the successful value. The loser is canceled before returning.
  2. If the winner completes with Outcome.Errored, the race raises the error. The loser is canceled before returning.
  3. If the winner completes with Outcome.Canceled, the race returns the result of the loser, consistent with the first two rules.
  4. If both the winner and loser complete with Outcome.Canceled, the race is canceled.
  5. If the race is masked and is canceled because both participants canceled, the fiber will block indefinitely.
Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

raceOutcome for a variant that returns the outcome of the winner.

def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Implicitly added by genSpawnForOptionT

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

race for a simpler variant that returns the successful outcome.

def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Implicitly added by genSpawnForEitherT

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

race for a simpler variant that returns the successful outcome.

def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Implicitly added by genSpawnForKleisli

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

race for a simpler variant that returns the successful outcome.

def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Races the evaluation of two fibers that returns the Outcome of the winner. The winner of the race is considered to be the first fiber that completes with an outcome. The loser of the race is canceled before returning.

Value Params
fa

the effect for the first racing fiber

fb

the effect for the second racing fiber

See also

race for a simpler variant that returns the successful outcome.

Implicitly added by genSpawnForOptionT
Implicitly added by genSpawnForEitherT
Implicitly added by genSpawnForKleisli

Inherited methods

@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genSpawnForOptionT

Alias for productR.

Alias for productR.

Inherited from
Apply
@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genSpawnForEitherT

Alias for productR.

Alias for productR.

Inherited from
Apply
@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genSpawnForKleisli

Alias for productR.

Alias for productR.

Inherited from
Apply
@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]

Alias for productR.

Alias for productR.

Inherited from
Apply
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by genSpawnForOptionT

Alias for productL.

Alias for productL.

Inherited from
Apply
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by genSpawnForEitherT

Alias for productL.

Alias for productL.

Inherited from
Apply
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by genSpawnForKleisli

Alias for productL.

Alias for productL.

Inherited from
Apply
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]

Alias for productL.

Alias for productL.

Inherited from
Apply
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by genSpawnForOptionT

Alias for ap.

Alias for ap.

Inherited from
Apply
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by genSpawnForEitherT

Alias for ap.

Alias for ap.

Inherited from
Apply
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by genSpawnForKleisli

Alias for ap.

Alias for ap.

Inherited from
Apply
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]

Alias for ap.

Alias for ap.

Inherited from
Apply
override def adaptError[A](fa: F[A])(pf: PartialFunction[E, E]): F[A]
Definition Classes
MonadError -> ApplicativeError
Inherited from
MonadError
override def ap[A, B](ff: F[A => B])(fa: F[A]): F[B]
Definition Classes
FlatMap -> Apply
Inherited from
FlatMap
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Inherited from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Inherited from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Inherited from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Inherited from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Inherited from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Inherited from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Inherited from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Inherited from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Inherited from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Inherited from
ApplyArityFunctions
override def ap2[A, B, Z](ff: F[(A, B) => Z])(fa: F[A], fb: F[B]): F[Z]
Definition Classes
FlatMap -> Apply
Inherited from
FlatMap
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Inherited from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Inherited from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Inherited from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Inherited from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Inherited from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Inherited from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Inherited from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Inherited from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Inherited from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Inherited from
ApplyArityFunctions
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by genSpawnForOptionT

Replaces the A value in F[A] with the supplied value.

Replaces the A value in F[A] with the supplied value.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
Inherited from
Functor
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by genSpawnForEitherT

Replaces the A value in F[A] with the supplied value.

Replaces the A value in F[A] with the supplied value.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
Inherited from
Functor
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by genSpawnForKleisli

Replaces the A value in F[A] with the supplied value.

Replaces the A value in F[A] with the supplied value.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
Inherited from
Functor
def as[A, B](fa: F[A], b: B): F[B]

Replaces the A value in F[A] with the supplied value.

Replaces the A value in F[A] with the supplied value.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
Inherited from
Functor
def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by genSpawnForOptionT

Handle errors by turning them into scala.util.Either values.

Handle errors by turning them into scala.util.Either values.

If there is no error, then an scala.util.Right value will be returned instead.

All non-fatal errors should be handled by this method.

Inherited from
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by genSpawnForEitherT

Handle errors by turning them into scala.util.Either values.

Handle errors by turning them into scala.util.Either values.

If there is no error, then an scala.util.Right value will be returned instead.

All non-fatal errors should be handled by this method.

Inherited from
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by genSpawnForKleisli

Handle errors by turning them into scala.util.Either values.

Handle errors by turning them into scala.util.Either values.

If there is no error, then an scala.util.Right value will be returned instead.

All non-fatal errors should be handled by this method.

Inherited from
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]

Handle errors by turning them into scala.util.Either values.

Handle errors by turning them into scala.util.Either values.

If there is no error, then an scala.util.Right value will be returned instead.

All non-fatal errors should be handled by this method.

Inherited from
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(implicit tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by genSpawnForOptionT

Similar to attempt, but it only handles errors of type EE.

Similar to attempt, but it only handles errors of type EE.

Inherited from
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(implicit tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by genSpawnForEitherT

Similar to attempt, but it only handles errors of type EE.

Similar to attempt, but it only handles errors of type EE.

Inherited from
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(implicit tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by genSpawnForKleisli

Similar to attempt, but it only handles errors of type EE.

Similar to attempt, but it only handles errors of type EE.

Inherited from
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(implicit tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]

Similar to attempt, but it only handles errors of type EE.

Similar to attempt, but it only handles errors of type EE.

Inherited from
ApplicativeError
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by genSpawnForOptionT

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Inherited from
ApplicativeError
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by genSpawnForEitherT

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Inherited from
ApplicativeError
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by genSpawnForKleisli

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Inherited from
ApplicativeError
def attemptT[A](fa: F[A]): EitherT[F, E, A]

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Similar to attempt, but wraps the result in a cats.data.EitherT for convenience.

Inherited from
ApplicativeError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by genSpawnForOptionT

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Note that if the effect returned by f fails, the resulting effect will fail too.

Alias for fa.attempt.flatTap(f).rethrow for convenience.

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}

scala> def checkError(result: Either[Throwable, Int]): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))

scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by genSpawnForEitherT

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Note that if the effect returned by f fails, the resulting effect will fail too.

Alias for fa.attempt.flatTap(f).rethrow for convenience.

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}

scala> def checkError(result: Either[Throwable, Int]): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))

scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by genSpawnForKleisli

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Note that if the effect returned by f fails, the resulting effect will fail too.

Alias for fa.attempt.flatTap(f).rethrow for convenience.

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}

scala> def checkError(result: Either[Throwable, Int]): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))

scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Reifies the value or error of the source and performs an effect on the result, then recovers the original value or error back into F.

Note that if the effect returned by f fails, the resulting effect will fail too.

Alias for fa.attempt.flatTap(f).rethrow for convenience.

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}

scala> def checkError(result: Either[Throwable, Int]): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))

scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by genSpawnForOptionT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action

release

the lifecycle release action

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also

bracketCase for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from
MonadCancel
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by genSpawnForEitherT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action

release

the lifecycle release action

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also

bracketCase for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from
MonadCancel
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by genSpawnForKleisli

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action

release

the lifecycle release action

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also

bracketCase for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from
MonadCancel
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action

release

the lifecycle release action

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also

bracketCase for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from
MonadCancel
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genSpawnForOptionT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also

bracketFull for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from
MonadCancel
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genSpawnForEitherT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also

bracketFull for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from
MonadCancel
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genSpawnForKleisli

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also

bracketFull for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from
MonadCancel
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

acquire is uncancelable. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

See also

bracketFull for a more powerful variant

Resource for a composable datatype encoding of effectful lifecycles

Inherited from
MonadCancel
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genSpawnForOptionT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

If use succeeds the returned value B is returned. If use returns an exception, the exception is returned.

acquire is uncancelable by default, but can be unmasked. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action which can be canceled

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

Inherited from
MonadCancel
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genSpawnForEitherT

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

If use succeeds the returned value B is returned. If use returns an exception, the exception is returned.

acquire is uncancelable by default, but can be unmasked. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action which can be canceled

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

Inherited from
MonadCancel
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genSpawnForKleisli

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

If use succeeds the returned value B is returned. If use returns an exception, the exception is returned.

acquire is uncancelable by default, but can be unmasked. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action which can be canceled

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

Inherited from
MonadCancel
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]

A pattern for safely interacting with effectful lifecycles.

A pattern for safely interacting with effectful lifecycles.

If acquire completes successfully, use is called. If use succeeds, fails, or is canceled, release is guaranteed to be called exactly once.

If use succeeds the returned value B is returned. If use returns an exception, the exception is returned.

acquire is uncancelable by default, but can be unmasked. release is uncancelable. use is cancelable by default, but can be masked.

Value Params
acquire

the lifecycle acquisition action which can be canceled

release

the lifecycle release action which depends on the outcome of use

use

the effect to which the lifecycle is scoped, whose result is the return value of this function

Inherited from
MonadCancel
def canceled: F[Unit]
Implicitly added by genSpawnForOptionT

An effect that requests self-cancelation on the current fiber.

An effect that requests self-cancelation on the current fiber.

In the following example, the fiber requests self-cancelation in a masked region, so cancelation is suppressed until the fiber is completely unmasked. fa will run but fb will not.


 F.uncancelable { _ =>
   F.canceled *> fa
 } *> fb

Inherited from
MonadCancel
def canceled: F[Unit]
Implicitly added by genSpawnForEitherT

An effect that requests self-cancelation on the current fiber.

An effect that requests self-cancelation on the current fiber.

In the following example, the fiber requests self-cancelation in a masked region, so cancelation is suppressed until the fiber is completely unmasked. fa will run but fb will not.


 F.uncancelable { _ =>
   F.canceled *> fa
 } *> fb

Inherited from
MonadCancel
def canceled: F[Unit]
Implicitly added by genSpawnForKleisli

An effect that requests self-cancelation on the current fiber.

An effect that requests self-cancelation on the current fiber.

In the following example, the fiber requests self-cancelation in a masked region, so cancelation is suppressed until the fiber is completely unmasked. fa will run but fb will not.


 F.uncancelable { _ =>
   F.canceled *> fa
 } *> fb

Inherited from
MonadCancel
def canceled: F[Unit]

An effect that requests self-cancelation on the current fiber.

An effect that requests self-cancelation on the current fiber.

In the following example, the fiber requests self-cancelation in a masked region, so cancelation is suppressed until the fiber is completely unmasked. fa will run but fb will not.


 F.uncancelable { _ =>
   F.canceled *> fa
 } *> fb

Inherited from
MonadCancel
def catchNonFatal[A](a: => A)(implicit ev: Throwable <:< E): F[A]
Implicitly added by genSpawnForOptionT

Often E is Throwable. Here we try to call pure or catch and raise.

Often E is Throwable. Here we try to call pure or catch and raise.

Inherited from
ApplicativeError
def catchNonFatal[A](a: => A)(implicit ev: Throwable <:< E): F[A]
Implicitly added by genSpawnForEitherT

Often E is Throwable. Here we try to call pure or catch and raise.

Often E is Throwable. Here we try to call pure or catch and raise.

Inherited from
ApplicativeError
def catchNonFatal[A](a: => A)(implicit ev: Throwable <:< E): F[A]
Implicitly added by genSpawnForKleisli

Often E is Throwable. Here we try to call pure or catch and raise.

Often E is Throwable. Here we try to call pure or catch and raise.

Inherited from
ApplicativeError
def catchNonFatal[A](a: => A)(implicit ev: Throwable <:< E): F[A]

Often E is Throwable. Here we try to call pure or catch and raise.

Often E is Throwable. Here we try to call pure or catch and raise.

Inherited from
ApplicativeError
def catchNonFatalEval[A](a: Eval[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genSpawnForOptionT

Often E is Throwable. Here we try to call pure or catch and raise

Often E is Throwable. Here we try to call pure or catch and raise

Inherited from
ApplicativeError
def catchNonFatalEval[A](a: Eval[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genSpawnForEitherT

Often E is Throwable. Here we try to call pure or catch and raise

Often E is Throwable. Here we try to call pure or catch and raise

Inherited from
ApplicativeError
def catchNonFatalEval[A](a: Eval[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genSpawnForKleisli

Often E is Throwable. Here we try to call pure or catch and raise

Often E is Throwable. Here we try to call pure or catch and raise

Inherited from
ApplicativeError
def catchNonFatalEval[A](a: Eval[A])(implicit ev: Throwable <:< E): F[A]

Often E is Throwable. Here we try to call pure or catch and raise

Often E is Throwable. Here we try to call pure or catch and raise

Inherited from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by genSpawnForOptionT

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Inherited from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by genSpawnForEitherT

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Inherited from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by genSpawnForKleisli

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Inherited from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.

Inherited from
ApplicativeError
def compose[G[_]](implicit evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Implicitly added by genSpawnForOptionT

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Applicative[List].compose[Option]

scala> alo.pure(3)
res0: List[Option[Int]] = List(Some(3))

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Applicative
def compose[G[_]](implicit evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genSpawnForOptionT

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def compose[G[_]](implicit evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]
Implicitly added by genSpawnForOptionT

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Apply
def compose[G[_]](implicit evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Implicitly added by genSpawnForOptionT
Inherited from
Functor
def compose[G[_]](implicit evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Implicitly added by genSpawnForEitherT

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Applicative[List].compose[Option]

scala> alo.pure(3)
res0: List[Option[Int]] = List(Some(3))

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Applicative
def compose[G[_]](implicit evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genSpawnForEitherT

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def compose[G[_]](implicit evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]
Implicitly added by genSpawnForEitherT

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Apply
def compose[G[_]](implicit evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Implicitly added by genSpawnForEitherT
Inherited from
Functor
def compose[G[_]](implicit evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Implicitly added by genSpawnForKleisli

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Applicative[List].compose[Option]

scala> alo.pure(3)
res0: List[Option[Int]] = List(Some(3))

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Applicative
def compose[G[_]](implicit evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genSpawnForKleisli

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def compose[G[_]](implicit evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]
Implicitly added by genSpawnForKleisli

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Apply
def compose[G[_]](implicit evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Implicitly added by genSpawnForKleisli
Inherited from
Functor
def compose[G[_]](implicit evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Compose an Applicative[F] and an Applicative[G] into an Applicative[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Applicative[List].compose[Option]

scala> alo.pure(3)
res0: List[Option[Int]] = List(Some(3))

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Applicative
def compose[G[_]](implicit evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup].compose[List].imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def compose[G[_]](implicit evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].

Example:

scala> import cats.implicits._

scala> val alo = Apply[List].compose[Option]

scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)]] = List(None, None, Some((true,2)), None, Some((false,2)), None)
Inherited from
Apply
def compose[G[_]](implicit evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Inherited from
Functor
def composeApply[G[_]](implicit evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by genSpawnForOptionT
Inherited from
InvariantSemigroupal
def composeApply[G[_]](implicit evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by genSpawnForEitherT
Inherited from
InvariantSemigroupal
def composeApply[G[_]](implicit evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by genSpawnForKleisli
Inherited from
InvariantSemigroupal
def composeApply[G[_]](implicit evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Inherited from
InvariantSemigroupal
override def composeContravariant[G[_]](implicit evidence$2: Contravariant[G]): Contravariant[[α] =>> F[G[α]]]
Definition Classes
Functor -> Invariant
Inherited from
Functor
def composeContravariantMonoidal[G[_]](implicit evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]
Implicitly added by genSpawnForOptionT

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Example:

scala> import cats.kernel.Comparison
scala> import cats.implicits._

// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]

// compares strings by their length
scala> val strLength: Order[String] = Order.by[String, Int](_.length)

scala> val stringOrders: List[Order[String]] = List(alpha, strLength)

// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)

scala> val le = Applicative[List].composeContravariantMonoidal[Order]

// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString)

// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)

// create the `product` of the string order list and the int order list
// `p` contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders)

scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
Inherited from
Applicative
def composeContravariantMonoidal[G[_]](implicit evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]
Implicitly added by genSpawnForEitherT

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Example:

scala> import cats.kernel.Comparison
scala> import cats.implicits._

// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]

// compares strings by their length
scala> val strLength: Order[String] = Order.by[String, Int](_.length)

scala> val stringOrders: List[Order[String]] = List(alpha, strLength)

// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)

scala> val le = Applicative[List].composeContravariantMonoidal[Order]

// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString)

// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)

// create the `product` of the string order list and the int order list
// `p` contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders)

scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
Inherited from
Applicative
def composeContravariantMonoidal[G[_]](implicit evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]
Implicitly added by genSpawnForKleisli

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Example:

scala> import cats.kernel.Comparison
scala> import cats.implicits._

// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]

// compares strings by their length
scala> val strLength: Order[String] = Order.by[String, Int](_.length)

scala> val stringOrders: List[Order[String]] = List(alpha, strLength)

// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)

scala> val le = Applicative[List].composeContravariantMonoidal[Order]

// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString)

// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)

// create the `product` of the string order list and the int order list
// `p` contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders)

scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
Inherited from
Applicative
def composeContravariantMonoidal[G[_]](implicit evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Compose an Applicative[F] and a ContravariantMonoidal[G] into a ContravariantMonoidal[λ[α => F[G[α]]]].

Example:

scala> import cats.kernel.Comparison
scala> import cats.implicits._

// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]

// compares strings by their length
scala> val strLength: Order[String] = Order.by[String, Int](_.length)

scala> val stringOrders: List[Order[String]] = List(alpha, strLength)

// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)

scala> val le = Applicative[List].composeContravariantMonoidal[Order]

// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int]] = le.contramap(stringOrders)(_.toString)

// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)

// create the `product` of the string order list and the int order list
// `p` contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)]] = le.product(stringOrders, intOrders)

scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
Inherited from
Applicative
def composeFunctor[G[_]](implicit evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genSpawnForOptionT

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup]
    |   .composeFunctor[List]
    |   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def composeFunctor[G[_]](implicit evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genSpawnForEitherT

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup]
    |   .composeFunctor[List]
    |   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def composeFunctor[G[_]](implicit evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genSpawnForKleisli

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup]
    |   .composeFunctor[List]
    |   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def composeFunctor[G[_]](implicit evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]] using F's imap and G's map.

Example:

scala> import cats.implicits._
scala> import scala.concurrent.duration._

scala> val durSemigroupList: Semigroup[List[FiniteDuration]] =
    | Invariant[Semigroup]
    |   .composeFunctor[List]
    |   .imap(Semigroup[List[Long]])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
Inherited from
Invariant
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by genSpawnForOptionT

Turns a successful value into an error if it does not satisfy a given predicate.

Turns a successful value into an error if it does not satisfy a given predicate.

Inherited from
MonadError
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by genSpawnForEitherT

Turns a successful value into an error if it does not satisfy a given predicate.

Turns a successful value into an error if it does not satisfy a given predicate.

Inherited from
MonadError
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by genSpawnForKleisli

Turns a successful value into an error if it does not satisfy a given predicate.

Turns a successful value into an error if it does not satisfy a given predicate.

Inherited from
MonadError
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]

Turns a successful value into an error if it does not satisfy a given predicate.

Turns a successful value into an error if it does not satisfy a given predicate.

Inherited from
MonadError
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by genSpawnForOptionT

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Inherited from
MonadError
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by genSpawnForEitherT

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Inherited from
MonadError
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by genSpawnForKleisli

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Inherited from
MonadError
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.

Inherited from
MonadError
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by genSpawnForOptionT
Inherited from
FlatMap
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by genSpawnForEitherT
Inherited from
FlatMap
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by genSpawnForKleisli
Inherited from
FlatMap
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Inherited from
FlatMap
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by genSpawnForOptionT

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
Inherited from
FlatMap
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by genSpawnForEitherT

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
Inherited from
FlatMap
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by genSpawnForKleisli

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
Inherited from
FlatMap
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]

Apply a monadic function and discard the result while keeping the effect.

Apply a monadic function and discard the result while keeping the effect.

scala> import cats._, implicits._
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> List[Int](0).flatTap(nCats)
res2: List[Int] = List()
scala> List[Int](4).flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
Inherited from
FlatMap
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by genSpawnForOptionT

"flatten" a nested F of F structure into a single-layer F structure.

"flatten" a nested F of F structure into a single-layer F structure.

This is also commonly called join.

Example:

scala> import cats.Eval
scala> import cats.implicits._

scala> val nested: Eval[Eval[Int]] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
Inherited from
FlatMap
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by genSpawnForEitherT

"flatten" a nested F of F structure into a single-layer F structure.

"flatten" a nested F of F structure into a single-layer F structure.

This is also commonly called join.

Example:

scala> import cats.Eval
scala> import cats.implicits._

scala> val nested: Eval[Eval[Int]] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
Inherited from
FlatMap
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by genSpawnForKleisli

"flatten" a nested F of F structure into a single-layer F structure.

"flatten" a nested F of F structure into a single-layer F structure.

This is also commonly called join.

Example:

scala> import cats.Eval
scala> import cats.implicits._

scala> val nested: Eval[Eval[Int]] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
Inherited from
FlatMap
def flatten[A](ffa: F[F[A]]): F[A]

"flatten" a nested F of F structure into a single-layer F structure.

"flatten" a nested F of F structure into a single-layer F structure.

This is also commonly called join.

Example:

scala> import cats.Eval
scala> import cats.implicits._

scala> val nested: Eval[Eval[Int]] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
Inherited from
FlatMap
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by genSpawnForOptionT

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Example:

scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
Inherited from
Functor
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by genSpawnForEitherT

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Example:

scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
Inherited from
Functor
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by genSpawnForKleisli

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Example:

scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
Inherited from
Functor
final def fmap[A, B](fa: F[A])(f: A => B): F[B]

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Alias for map, since map can't be injected as syntax if the implementing type already had a built-in .map method.

Example:

scala> import cats.implicits._

scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")

scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
Inherited from
Functor
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genSpawnForOptionT

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Inherited from
MonadCancel
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genSpawnForEitherT

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Inherited from
MonadCancel
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genSpawnForKleisli

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Inherited from
MonadCancel
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Analogous to productR, but suppresses short-circuiting behavior except for cancelation.

Inherited from
MonadCancel
@noop
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by genSpawnForOptionT

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Inherited from
FlatMap
@noop
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by genSpawnForEitherT

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Inherited from
FlatMap
@noop
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by genSpawnForKleisli

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Inherited from
FlatMap
@noop
def foreverM[A, B](fa: F[A]): F[B]

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

Like an infinite loop of >> calls. This is most useful effect loops that you want to run forever in for instance a server.

This will be an infinite loop, or it will return an F[Nothing].

Be careful using this. For instance, a List of length k will produce a list of length k^n at iteration n. This means if k = 0, we return an empty list, if k = 1, we loop forever allocating single element lists, but if we have a k > 1, we will allocate exponentially increasing memory and very quickly OOM.

Inherited from
FlatMap
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by genSpawnForOptionT

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
Inherited from
Functor
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by genSpawnForEitherT

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
Inherited from
Functor
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by genSpawnForKleisli

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
Inherited from
Functor
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]

Tuple the values in fa with the result of applying a function with the value

Tuple the values in fa with the result of applying a function with the value

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
Inherited from
Functor
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by genSpawnForOptionT

Pair the result of function application with A.

Pair the result of function application with A.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
Inherited from
Functor
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by genSpawnForEitherT

Pair the result of function application with A.

Pair the result of function application with A.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
Inherited from
Functor
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by genSpawnForKleisli

Pair the result of function application with A.

Pair the result of function application with A.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
Inherited from
Functor
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]

Pair the result of function application with A.

Pair the result of function application with A.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> Functor[Option].fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
Inherited from
Functor
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by genSpawnForOptionT

Convert from scala.Either

Convert from scala.Either

Example:

scala> import cats.ApplicativeError
scala> import cats.instances.option._

scala> ApplicativeError[Option, Unit].fromEither(Right(1))
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromEither(Left(()))
res1: scala.Option[Nothing] = None
Inherited from
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by genSpawnForEitherT

Convert from scala.Either

Convert from scala.Either

Example:

scala> import cats.ApplicativeError
scala> import cats.instances.option._

scala> ApplicativeError[Option, Unit].fromEither(Right(1))
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromEither(Left(()))
res1: scala.Option[Nothing] = None
Inherited from
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by genSpawnForKleisli

Convert from scala.Either

Convert from scala.Either

Example:

scala> import cats.ApplicativeError
scala> import cats.instances.option._

scala> ApplicativeError[Option, Unit].fromEither(Right(1))
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromEither(Left(()))
res1: scala.Option[Nothing] = None
Inherited from
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]

Convert from scala.Either

Convert from scala.Either

Example:

scala> import cats.ApplicativeError
scala> import cats.instances.option._

scala> ApplicativeError[Option, Unit].fromEither(Right(1))
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromEither(Left(()))
res1: scala.Option[Nothing] = None
Inherited from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by genSpawnForOptionT

Convert from scala.Option

Convert from scala.Option

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *], String]

scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)

scala> F.fromOption(Option.empty[Int], "Empty")
res1: scala.Either[String, Int] = Left(Empty)
Inherited from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by genSpawnForEitherT

Convert from scala.Option

Convert from scala.Option

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *], String]

scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)

scala> F.fromOption(Option.empty[Int], "Empty")
res1: scala.Either[String, Int] = Left(Empty)
Inherited from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by genSpawnForKleisli

Convert from scala.Option

Convert from scala.Option

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *], String]

scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)

scala> F.fromOption(Option.empty[Int], "Empty")
res1: scala.Either[String, Int] = Left(Empty)
Inherited from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]

Convert from scala.Option

Convert from scala.Option

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *], String]

scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)

scala> F.fromOption(Option.empty[Int], "Empty")
res1: scala.Either[String, Int] = Left(Empty)
Inherited from
ApplicativeError
def fromTry[A](t: Try[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genSpawnForOptionT

If the error type is Throwable, we can convert from a scala.util.Try

If the error type is Throwable, we can convert from a scala.util.Try

Inherited from
ApplicativeError
def fromTry[A](t: Try[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genSpawnForEitherT

If the error type is Throwable, we can convert from a scala.util.Try

If the error type is Throwable, we can convert from a scala.util.Try

Inherited from
ApplicativeError
def fromTry[A](t: Try[A])(implicit ev: Throwable <:< E): F[A]
Implicitly added by genSpawnForKleisli

If the error type is Throwable, we can convert from a scala.util.Try

If the error type is Throwable, we can convert from a scala.util.Try

Inherited from
ApplicativeError
def fromTry[A](t: Try[A])(implicit ev: Throwable <:< E): F[A]

If the error type is Throwable, we can convert from a scala.util.Try

If the error type is Throwable, we can convert from a scala.util.Try

Inherited from
ApplicativeError
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by genSpawnForOptionT

Convert from cats.data.Validated

Convert from cats.data.Validated

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError

scala> ApplicativeError[Option, Unit].fromValidated(1.valid[Unit])
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromValidated(().invalid[Int])
res1: scala.Option[Int] = None
Inherited from
ApplicativeError
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by genSpawnForEitherT

Convert from cats.data.Validated

Convert from cats.data.Validated

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError

scala> ApplicativeError[Option, Unit].fromValidated(1.valid[Unit])
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromValidated(().invalid[Int])
res1: scala.Option[Int] = None
Inherited from
ApplicativeError
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by genSpawnForKleisli

Convert from cats.data.Validated

Convert from cats.data.Validated

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError

scala> ApplicativeError[Option, Unit].fromValidated(1.valid[Unit])
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromValidated(().invalid[Int])
res1: scala.Option[Int] = None
Inherited from
ApplicativeError
def fromValidated[A](x: Validated[E, A]): F[A]

Convert from cats.data.Validated

Convert from cats.data.Validated

Example:

scala> import cats.implicits._
scala> import cats.ApplicativeError

scala> ApplicativeError[Option, Unit].fromValidated(1.valid[Unit])
res0: scala.Option[Int] = Some(1)

scala> ApplicativeError[Option, Unit].fromValidated(().invalid[Int])
res1: scala.Option[Int] = None
Inherited from
ApplicativeError
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genSpawnForOptionT

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value Params
fa

The effect that is run after fin is registered.

fin

The effect to run in the event of a cancelation or error.

See also

guaranteeCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from
MonadCancel
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genSpawnForEitherT

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value Params
fa

The effect that is run after fin is registered.

fin

The effect to run in the event of a cancelation or error.

See also

guaranteeCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from
MonadCancel
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genSpawnForKleisli

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value Params
fa

The effect that is run after fin is registered.

fin

The effect to run in the event of a cancelation or error.

See also

guaranteeCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from
MonadCancel
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, regardless of the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value Params
fa

The effect that is run after fin is registered.

fin

The effect to run in the event of a cancelation or error.

See also

guaranteeCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from
MonadCancel
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Implicitly added by genSpawnForOptionT

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value Params
fa

The effect that is run after fin is registered.

fin

A function that returns the effect to run based on the outcome.

See also

bracketCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from
MonadCancel
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Implicitly added by genSpawnForEitherT

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value Params
fa

The effect that is run after fin is registered.

fin

A function that returns the effect to run based on the outcome.

See also

bracketCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from
MonadCancel
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Implicitly added by genSpawnForKleisli

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value Params
fa

The effect that is run after fin is registered.

fin

A function that returns the effect to run based on the outcome.

See also

bracketCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from
MonadCancel
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

Specifies an effect that is always invoked after evaluation of fa completes, but depends on the outcome.

This function can be thought of as a combination of flatTap, onError, and onCancel.

Value Params
fa

The effect that is run after fin is registered.

fin

A function that returns the effect to run based on the outcome.

See also

bracketCase for a more powerful variant

Outcome for the various outcomes of evaluation

Inherited from
MonadCancel
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by genSpawnForOptionT

Handle any error, by mapping it to an A value.

Handle any error, by mapping it to an A value.

See also

handleErrorWith to map to an F[A] value instead of simply an A value.

recover to only recover from certain errors.

Inherited from
ApplicativeError
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by genSpawnForEitherT

Handle any error, by mapping it to an A value.

Handle any error, by mapping it to an A value.

See also

handleErrorWith to map to an F[A] value instead of simply an A value.

recover to only recover from certain errors.

Inherited from
ApplicativeError
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by genSpawnForKleisli

Handle any error, by mapping it to an A value.

Handle any error, by mapping it to an A value.

See also

handleErrorWith to map to an F[A] value instead of simply an A value.

recover to only recover from certain errors.

Inherited from
ApplicativeError
def handleError[A](fa: F[A])(f: E => A): F[A]

Handle any error, by mapping it to an A value.

Handle any error, by mapping it to an A value.

See also

handleErrorWith to map to an F[A] value instead of simply an A value.

recover to only recover from certain errors.

Inherited from
ApplicativeError
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by genSpawnForOptionT

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

See also

handleError to handle any error by simply mapping it to an A value instead of an F[A].

recoverWith to recover from only certain errors.

Inherited from
ApplicativeError
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by genSpawnForEitherT

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

See also

handleError to handle any error by simply mapping it to an A value instead of an F[A].

recoverWith to recover from only certain errors.

Inherited from
ApplicativeError
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by genSpawnForKleisli

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

See also

handleError to handle any error by simply mapping it to an A value instead of an F[A].

recoverWith to recover from only certain errors.

Inherited from
ApplicativeError
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

Handle any error, potentially recovering from it, by mapping it to an F[A] value.

See also

handleError to handle any error by simply mapping it to an A value instead of an F[A].

recoverWith to recover from only certain errors.

Inherited from
ApplicativeError
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by genSpawnForOptionT

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

The value of the result is, depending on the value of the condition, the value of the first argument, or the value of the second argument.

Example:

scala> import cats.implicits._

scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option].ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1

scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option].ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0

scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option].ifA(b3)(Some(1), None)
asInt2: Option[Int] = None

Inherited from
Apply
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by genSpawnForEitherT

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

The value of the result is, depending on the value of the condition, the value of the first argument, or the value of the second argument.

Example:

scala> import cats.implicits._

scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option].ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1

scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option].ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0

scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option].ifA(b3)(Some(1), None)
asInt2: Option[Int] = None

Inherited from
Apply
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by genSpawnForKleisli

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

The value of the result is, depending on the value of the condition, the value of the first argument, or the value of the second argument.

Example:

scala> import cats.implicits._

scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option].ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1

scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option].ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0

scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option].ifA(b3)(Some(1), None)
asInt2: Option[Int] = None

Inherited from
Apply
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

An if-then-else lifted into the F context. This function combines the effects of the fcond condition and of the two branches, in the order in which they are given.

The value of the result is, depending on the value of the condition, the value of the first argument, or the value of the second argument.

Example:

scala> import cats.implicits._

scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option].ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1

scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option].ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0

scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option].ifA(b3)(Some(1), None)
asInt2: Option[Int] = None

Inherited from
Apply
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by genSpawnForOptionT

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

scala> import cats._
scala> Monad[Eval].ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2

Based on a gist by Daniel Spiewak with a stack-safe implementation due to P. Oscar Boykin

See also
Inherited from
Monad
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by genSpawnForEitherT

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

scala> import cats._
scala> Monad[Eval].ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2

Based on a gist by Daniel Spiewak with a stack-safe implementation due to P. Oscar Boykin

See also
Inherited from
Monad
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by genSpawnForKleisli

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

scala> import cats._
scala> Monad[Eval].ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2

Based on a gist by Daniel Spiewak with a stack-safe implementation due to P. Oscar Boykin

See also
Inherited from
Monad
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

Simulates an if/else-if/else in the context of an F. It evaluates conditions until one evaluates to true, and returns the associated F[A]. If no condition is true, returns els.

scala> import cats._
scala> Monad[Eval].ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2

Based on a gist by Daniel Spiewak with a stack-safe implementation due to P. Oscar Boykin

See also
Inherited from
Monad
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by genSpawnForOptionT

Lifts if to Functor

Lifts if to Functor

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
Inherited from
Functor
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by genSpawnForEitherT

Lifts if to Functor

Lifts if to Functor

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
Inherited from
Functor
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by genSpawnForKleisli

Lifts if to Functor

Lifts if to Functor

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
Inherited from
Functor
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]

Lifts if to Functor

Lifts if to Functor

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
Inherited from
Functor
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by genSpawnForOptionT

if lifted into monad.

if lifted into monad.

Inherited from
FlatMap
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by genSpawnForEitherT

if lifted into monad.

if lifted into monad.

Inherited from
FlatMap
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by genSpawnForKleisli

if lifted into monad.

if lifted into monad.

Inherited from
FlatMap
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]

if lifted into monad.

if lifted into monad.

Inherited from
FlatMap
override def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]
Definition Classes
Functor -> Invariant
Inherited from
Functor
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by genSpawnForOptionT

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Inherited from
FlatMap
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by genSpawnForEitherT

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Inherited from
FlatMap
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by genSpawnForKleisli

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Inherited from
FlatMap
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

iterateForeverM is almost exclusively useful for effect types. For instance, A may be some state, we may take the current state, run some effect to get a new state and repeat.

Inherited from
FlatMap
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForOptionT

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForEitherT

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForKleisli

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForOptionT

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Inherited from
Monad
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForEitherT

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Inherited from
Monad
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForKleisli

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Inherited from
Monad
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Apply a monadic function iteratively until its result satisfies the given predicate and return that result.

Inherited from
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForOptionT

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForEitherT

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForKleisli

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

Inherited from
Monad
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForOptionT

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Inherited from
Monad
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForEitherT

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Inherited from
Monad
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genSpawnForKleisli

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Inherited from
Monad
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Apply a monadic function iteratively until its result fails to satisfy the given predicate and return that result.

Inherited from
Monad
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by genSpawnForOptionT

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
Inherited from
Functor
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by genSpawnForEitherT

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
Inherited from
Functor
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by genSpawnForKleisli

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
Inherited from
Functor
def lift[A, B](f: A => B): F[A] => F[B]

Lift a function f to operate on Functors

Lift a function f to operate on Functors

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val o = Option(42)
scala> Functor[Option].lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
Inherited from
Functor
override def map[A, B](fa: F[A])(f: A => B): F[B]
Definition Classes
Monad -> Applicative -> Functor
Inherited from
Monad
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Inherited from
ApplyArityFunctions
override def map2[A, B, Z](fa: F[A], fb: F[B])(f: (A, B) => Z): F[Z]
Definition Classes
FlatMap -> Apply
Inherited from
FlatMap
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Implicitly added by genSpawnForOptionT

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

NOTE: the default implementation of map2Eval does not short-circuit computations. For data structures that can benefit from laziness, Apply instances should override this method.

In the following example, x.map2(bomb)(_ + _) would result in an error, but map2Eval "short-circuits" the computation. x is None and thus the result of bomb doesn't even need to be evaluated in order to determine that the result of map2Eval should be None.

scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int]] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
Inherited from
Apply
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Implicitly added by genSpawnForEitherT

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

NOTE: the default implementation of map2Eval does not short-circuit computations. For data structures that can benefit from laziness, Apply instances should override this method.

In the following example, x.map2(bomb)(_ + _) would result in an error, but map2Eval "short-circuits" the computation. x is None and thus the result of bomb doesn't even need to be evaluated in order to determine that the result of map2Eval should be None.

scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int]] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
Inherited from
Apply
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Implicitly added by genSpawnForKleisli

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

NOTE: the default implementation of map2Eval does not short-circuit computations. For data structures that can benefit from laziness, Apply instances should override this method.

In the following example, x.map2(bomb)(_ + _) would result in an error, but map2Eval "short-circuits" the computation. x is None and thus the result of bomb doesn't even need to be evaluated in order to determine that the result of map2Eval should be None.

scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int]] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
Inherited from
Apply
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

Similar to map2 but uses Eval to allow for laziness in the F[B] argument. This can allow for "short-circuiting" of computations.

NOTE: the default implementation of map2Eval does not short-circuit computations. For data structures that can benefit from laziness, Apply instances should override this method.

In the following example, x.map2(bomb)(_ + _) would result in an error, but map2Eval "short-circuits" the computation. x is None and thus the result of bomb doesn't even need to be evaluated in order to determine that the result of map2Eval should be None.

scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int]] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
Inherited from
Apply
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Inherited from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Inherited from
ApplyArityFunctions
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by genSpawnForOptionT

Pair A with the result of function application.

Pair A with the result of function application.

Example:

scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
Inherited from
FlatMap
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by genSpawnForEitherT

Pair A with the result of function application.

Pair A with the result of function application.

Example:

scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
Inherited from
FlatMap
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by genSpawnForKleisli

Pair A with the result of function application.

Pair A with the result of function application.

Example:

scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
Inherited from
FlatMap
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]

Pair A with the result of function application.

Pair A with the result of function application.

Example:

scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
Inherited from
FlatMap
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genSpawnForOptionT

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

During finalization, all actively registered finalizers are run exactly once. The order by which finalizers are run is dictated by nesting: innermost finalizers are run before outermost finalizers. For example, in the following program, the finalizer f1 is run before the finalizer f2:


 F.onCancel(F.onCancel(F.canceled, f1), f2)

If a finalizer throws an error during evaluation, the error is suppressed, and implementations may choose to report it via a side channel. Finalizers are always uncancelable, so cannot otherwise be interrupted.

Value Params
fa

The effect that is evaluated after fin is registered.

fin

The finalizer to register before evaluating fa.

Inherited from
MonadCancel
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genSpawnForEitherT

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

During finalization, all actively registered finalizers are run exactly once. The order by which finalizers are run is dictated by nesting: innermost finalizers are run before outermost finalizers. For example, in the following program, the finalizer f1 is run before the finalizer f2:


 F.onCancel(F.onCancel(F.canceled, f1), f2)

If a finalizer throws an error during evaluation, the error is suppressed, and implementations may choose to report it via a side channel. Finalizers are always uncancelable, so cannot otherwise be interrupted.

Value Params
fa

The effect that is evaluated after fin is registered.

fin

The finalizer to register before evaluating fa.

Inherited from
MonadCancel
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genSpawnForKleisli

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

During finalization, all actively registered finalizers are run exactly once. The order by which finalizers are run is dictated by nesting: innermost finalizers are run before outermost finalizers. For example, in the following program, the finalizer f1 is run before the finalizer f2:


 F.onCancel(F.onCancel(F.canceled, f1), f2)

If a finalizer throws an error during evaluation, the error is suppressed, and implementations may choose to report it via a side channel. Finalizers are always uncancelable, so cannot otherwise be interrupted.

Value Params
fa

The effect that is evaluated after fin is registered.

fin

The finalizer to register before evaluating fa.

Inherited from
MonadCancel
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

Registers a finalizer that is invoked if cancelation is observed during the evaluation of fa. If the evaluation of fa completes without encountering a cancelation, the finalizer is unregistered before proceeding.

During finalization, all actively registered finalizers are run exactly once. The order by which finalizers are run is dictated by nesting: innermost finalizers are run before outermost finalizers. For example, in the following program, the finalizer f1 is run before the finalizer f2:


 F.onCancel(F.onCancel(F.canceled, f1), f2)

If a finalizer throws an error during evaluation, the error is suppressed, and implementations may choose to report it via a side channel. Finalizers are always uncancelable, so cannot otherwise be interrupted.

Value Params
fa

The effect that is evaluated after fin is registered.

fin

The finalizer to register before evaluating fa.

Inherited from
MonadCancel
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by genSpawnForOptionT

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

In the following example, only one of the errors is logged, but they are both rethrown, to be possibly handled by another layer of the program:

scala> import cats._, data._, implicits._

scala> case class Err(msg: String)

scala> type F[A] = EitherT[State[String, *], Err, A]

scala> val action: PartialFunction[Err, F[Unit]] = {
    |   case Err("one") => EitherT.liftF(State.set("one"))
    | }

scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]

scala> prog1.onError(action).value.run("").value

res0: (String, Either[Err,Int]) = (one,Left(Err(one)))

scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int]) = ("",Left(Err(two)))
Inherited from
ApplicativeError
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by genSpawnForEitherT

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

In the following example, only one of the errors is logged, but they are both rethrown, to be possibly handled by another layer of the program:

scala> import cats._, data._, implicits._

scala> case class Err(msg: String)

scala> type F[A] = EitherT[State[String, *], Err, A]

scala> val action: PartialFunction[Err, F[Unit]] = {
    |   case Err("one") => EitherT.liftF(State.set("one"))
    | }

scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]

scala> prog1.onError(action).value.run("").value

res0: (String, Either[Err,Int]) = (one,Left(Err(one)))

scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int]) = ("",Left(Err(two)))
Inherited from
ApplicativeError
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by genSpawnForKleisli

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

In the following example, only one of the errors is logged, but they are both rethrown, to be possibly handled by another layer of the program:

scala> import cats._, data._, implicits._

scala> case class Err(msg: String)

scala> type F[A] = EitherT[State[String, *], Err, A]

scala> val action: PartialFunction[Err, F[Unit]] = {
    |   case Err("one") => EitherT.liftF(State.set("one"))
    | }

scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]

scala> prog1.onError(action).value.run("").value

res0: (String, Either[Err,Int]) = (one,Left(Err(one)))

scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int]) = ("",Left(Err(two)))
Inherited from
ApplicativeError
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

Execute a callback on certain errors, then rethrow them. Any non matching error is rethrown as well.

In the following example, only one of the errors is logged, but they are both rethrown, to be possibly handled by another layer of the program:

scala> import cats._, data._, implicits._

scala> case class Err(msg: String)

scala> type F[A] = EitherT[State[String, *], Err, A]

scala> val action: PartialFunction[Err, F[Unit]] = {
    |   case Err("one") => EitherT.liftF(State.set("one"))
    | }

scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]

scala> prog1.onError(action).value.run("").value

res0: (String, Either[Err,Int]) = (one,Left(Err(one)))

scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int]) = ("",Left(Err(two)))
Inherited from
ApplicativeError
def point[A](a: A): F[A]
Implicitly added by genSpawnForOptionT

point lifts any value into a Monoidal Functor.

point lifts any value into a Monoidal Functor.

Example:

scala> import cats.implicits._

scala> InvariantMonoidal[Option].point(10)
res0: Option[Int] = Some(10)
Inherited from
InvariantMonoidal
def point[A](a: A): F[A]
Implicitly added by genSpawnForEitherT

point lifts any value into a Monoidal Functor.

point lifts any value into a Monoidal Functor.

Example:

scala> import cats.implicits._

scala> InvariantMonoidal[Option].point(10)
res0: Option[Int] = Some(10)
Inherited from
InvariantMonoidal
def point[A](a: A): F[A]
Implicitly added by genSpawnForKleisli

point lifts any value into a Monoidal Functor.

point lifts any value into a Monoidal Functor.

Example:

scala> import cats.implicits._

scala> InvariantMonoidal[Option].point(10)
res0: Option[Int] = Some(10)
Inherited from
InvariantMonoidal
def point[A](a: A): F[A]

point lifts any value into a Monoidal Functor.

point lifts any value into a Monoidal Functor.

Example:

scala> import cats.implicits._

scala> InvariantMonoidal[Option].point(10)
res0: Option[Int] = Some(10)
Inherited from
InvariantMonoidal
override def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Definition Classes
FlatMap -> Apply -> Semigroupal
Inherited from
FlatMap
override def productL[A, B](fa: F[A])(fb: F[B]): F[A]
Definition Classes
FlatMap -> Apply
Inherited from
FlatMap
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by genSpawnForOptionT

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
Inherited from
FlatMap
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by genSpawnForEitherT

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
Inherited from
FlatMap
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by genSpawnForKleisli

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
Inherited from
FlatMap
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the second. This variant of productL also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int].productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
Inherited from
FlatMap
override def productR[A, B](fa: F[A])(fb: F[B]): F[B]
Definition Classes
FlatMap -> Apply
Inherited from
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by genSpawnForOptionT

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
Inherited from
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by genSpawnForEitherT

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
Inherited from
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by genSpawnForKleisli

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
Inherited from
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

Sequentially compose two actions, discarding any value produced by the first. This variant of productR also lets you define the evaluation strategy of the second action. For instance you can evaluate it only ''after'' the first action has finished:

scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
Inherited from
FlatMap
def pure[A](x: A): F[A]
Implicitly added by genSpawnForOptionT

pure lifts any value into the Applicative Functor.

pure lifts any value into the Applicative Functor.

Example:

scala> import cats.implicits._

scala> Applicative[Option].pure(10)
res0: Option[Int] = Some(10)
Inherited from
Applicative
def pure[A](x: A): F[A]
Implicitly added by genSpawnForEitherT

pure lifts any value into the Applicative Functor.

pure lifts any value into the Applicative Functor.

Example:

scala> import cats.implicits._

scala> Applicative[Option].pure(10)
res0: Option[Int] = Some(10)
Inherited from
Applicative
def pure[A](x: A): F[A]
Implicitly added by genSpawnForKleisli

pure lifts any value into the Applicative Functor.

pure lifts any value into the Applicative Functor.

Example:

scala> import cats.implicits._

scala> Applicative[Option].pure(10)
res0: Option[Int] = Some(10)
Inherited from
Applicative
def pure[A](x: A): F[A]

pure lifts any value into the Applicative Functor.

pure lifts any value into the Applicative Functor.

Example:

scala> import cats.implicits._

scala> Applicative[Option].pure(10)
res0: Option[Int] = Some(10)
Inherited from
Applicative
def raiseError[A](e: E): F[A]
Implicitly added by genSpawnForOptionT

Lift an error into the F context.

Lift an error into the F context.

Example:

scala> import cats.implicits._

// integer-rounded division
scala> def divide[F[_]](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String]): F[Int] =
    | if (divisor === 0) F.raiseError("division by zero")
    | else F.pure(dividend / divisor)

scala> type ErrorOr[A] = Either[String, A]

scala> divide[ErrorOr](6, 3)
res0: ErrorOr[Int] = Right(2)

scala> divide[ErrorOr](6, 0)
res1: ErrorOr[Int] = Left(division by zero)
Inherited from
ApplicativeError
def raiseError[A](e: E): F[A]
Implicitly added by genSpawnForEitherT

Lift an error into the F context.

Lift an error into the F context.

Example:

scala> import cats.implicits._

// integer-rounded division
scala> def divide[F[_]](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String]): F[Int] =
    | if (divisor === 0) F.raiseError("division by zero")
    | else F.pure(dividend / divisor)

scala> type ErrorOr[A] = Either[String, A]

scala> divide[ErrorOr](6, 3)
res0: ErrorOr[Int] = Right(2)

scala> divide[ErrorOr](6, 0)
res1: ErrorOr[Int] = Left(division by zero)
Inherited from
ApplicativeError
def raiseError[A](e: E): F[A]
Implicitly added by genSpawnForKleisli

Lift an error into the F context.

Lift an error into the F context.

Example:

scala> import cats.implicits._

// integer-rounded division
scala> def divide[F[_]](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String]): F[Int] =
    | if (divisor === 0) F.raiseError("division by zero")
    | else F.pure(dividend / divisor)

scala> type ErrorOr[A] = Either[String, A]

scala> divide[ErrorOr](6, 3)
res0: ErrorOr[Int] = Right(2)

scala> divide[ErrorOr](6, 0)
res1: ErrorOr[Int] = Left(division by zero)
Inherited from
ApplicativeError
def raiseError[A](e: E): F[A]

Lift an error into the F context.

Lift an error into the F context.

Example:

scala> import cats.implicits._

// integer-rounded division
scala> def divide[F[_]](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String]): F[Int] =
    | if (divisor === 0) F.raiseError("division by zero")
    | else F.pure(dividend / divisor)

scala> type ErrorOr[A] = Either[String, A]

scala> divide[ErrorOr](6, 3)
res0: ErrorOr[Int] = Right(2)

scala> divide[ErrorOr](6, 0)
res1: ErrorOr[Int] = Left(division by zero)
Inherited from
ApplicativeError
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by genSpawnForOptionT

Recover from certain errors by mapping them to an A value.

Recover from certain errors by mapping them to an A value.

See also

handleError to handle any/all errors.

recoverWith to recover from certain errors by mapping them to F[A] values.

Inherited from
ApplicativeError
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by genSpawnForEitherT

Recover from certain errors by mapping them to an A value.

Recover from certain errors by mapping them to an A value.

See also

handleError to handle any/all errors.

recoverWith to recover from certain errors by mapping them to F[A] values.

Inherited from
ApplicativeError
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by genSpawnForKleisli

Recover from certain errors by mapping them to an A value.

Recover from certain errors by mapping them to an A value.

See also

handleError to handle any/all errors.

recoverWith to recover from certain errors by mapping them to F[A] values.

Inherited from
ApplicativeError
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]

Recover from certain errors by mapping them to an A value.

Recover from certain errors by mapping them to an A value.

See also

handleError to handle any/all errors.

recoverWith to recover from certain errors by mapping them to F[A] values.

Inherited from
ApplicativeError
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by genSpawnForOptionT

Recover from certain errors by mapping them to an F[A] value.

Recover from certain errors by mapping them to an F[A] value.

See also

handleErrorWith to handle any/all errors.

recover to recover from certain errors by mapping them to A values.

Inherited from
ApplicativeError
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by genSpawnForEitherT

Recover from certain errors by mapping them to an F[A] value.

Recover from certain errors by mapping them to an F[A] value.

See also

handleErrorWith to handle any/all errors.

recover to recover from certain errors by mapping them to A values.

Inherited from
ApplicativeError
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by genSpawnForKleisli

Recover from certain errors by mapping them to an F[A] value.

Recover from certain errors by mapping them to an F[A] value.

See also

handleErrorWith to handle any/all errors.

recover to recover from certain errors by mapping them to A values.

Inherited from
ApplicativeError
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]

Recover from certain errors by mapping them to an F[A] value.

Recover from certain errors by mapping them to an F[A] value.

See also

handleErrorWith to handle any/all errors.

recover to recover from certain errors by mapping them to A values.

Inherited from
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by genSpawnForOptionT

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and map, this equivalence being available:

 fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))

Usage of redeem subsumes handleError because:

 fa.redeem(fe, id) <-> fa.handleError(fe)

Implementations are free to override it in order to optimize error recovery.

Value Params
fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

MonadError.redeemWith, attempt and handleError

Inherited from
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by genSpawnForEitherT

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and map, this equivalence being available:

 fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))

Usage of redeem subsumes handleError because:

 fa.redeem(fe, id) <-> fa.handleError(fe)

Implementations are free to override it in order to optimize error recovery.

Value Params
fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

MonadError.redeemWith, attempt and handleError

Inherited from
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by genSpawnForKleisli

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and map, this equivalence being available:

 fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))

Usage of redeem subsumes handleError because:

 fa.redeem(fe, id) <-> fa.handleError(fe)

Implementations are free to override it in order to optimize error recovery.

Value Params
fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

MonadError.redeemWith, attempt and handleError

Inherited from
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or map functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and map, this equivalence being available:

 fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))

Usage of redeem subsumes handleError because:

 fa.redeem(fe, id) <-> fa.handleError(fe)

Implementations are free to override it in order to optimize error recovery.

Value Params
fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

MonadError.redeemWith, attempt and handleError

Inherited from
ApplicativeError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by genSpawnForOptionT

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and flatMap, this equivalence being available:

 fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))

Usage of redeemWith subsumes handleErrorWith because:

 fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)

Usage of redeemWith also subsumes flatMap because:

 fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)

Implementations are free to override it in order to optimize error recovery.

Value Params
bind

is the function that gets to transform the source in case of success

fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

redeem, attempt and handleErrorWith

Inherited from
MonadError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by genSpawnForEitherT

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and flatMap, this equivalence being available:

 fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))

Usage of redeemWith subsumes handleErrorWith because:

 fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)

Usage of redeemWith also subsumes flatMap because:

 fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)

Implementations are free to override it in order to optimize error recovery.

Value Params
bind

is the function that gets to transform the source in case of success

fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

redeem, attempt and handleErrorWith

Inherited from
MonadError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by genSpawnForKleisli

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and flatMap, this equivalence being available:

 fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))

Usage of redeemWith subsumes handleErrorWith because:

 fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)

Usage of redeemWith also subsumes flatMap because:

 fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)

Implementations are free to override it in order to optimize error recovery.

Value Params
bind

is the function that gets to transform the source in case of success

fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

redeem, attempt and handleErrorWith

Inherited from
MonadError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

Returns a new value that transforms the result of the source, given the recover or bind functions, which get executed depending on whether the result is successful or if it ends in error.

This is an optimization on usage of attempt and flatMap, this equivalence being available:

 fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))

Usage of redeemWith subsumes handleErrorWith because:

 fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)

Usage of redeemWith also subsumes flatMap because:

 fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)

Implementations are free to override it in order to optimize error recovery.

Value Params
bind

is the function that gets to transform the source in case of success

fa

is the source whose result is going to get transformed

recover

is the function that gets called to recover the source in case of error

See also

redeem, attempt and handleErrorWith

Inherited from
MonadError
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by genSpawnForOptionT

Given fa and n, apply fa n times to construct an F[List[A]] value.

Given fa and n, apply fa n times to construct an F[List[A]] value.

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int]] =
    | Applicative[Counter].replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
Inherited from
Applicative
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by genSpawnForEitherT

Given fa and n, apply fa n times to construct an F[List[A]] value.

Given fa and n, apply fa n times to construct an F[List[A]] value.

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int]] =
    | Applicative[Counter].replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
Inherited from
Applicative
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by genSpawnForKleisli

Given fa and n, apply fa n times to construct an F[List[A]] value.

Given fa and n, apply fa n times to construct an F[List[A]] value.

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int]] =
    | Applicative[Counter].replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
Inherited from
Applicative
def replicateA[A](n: Int, fa: F[A]): F[List[A]]

Given fa and n, apply fa n times to construct an F[List[A]] value.

Given fa and n, apply fa n times to construct an F[List[A]] value.

Example:

scala> import cats.data.State

scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int]] =
    | Applicative[Counter].replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int]) = (5,List(0, 1, 2, 3, 4))
Inherited from
Applicative
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by genSpawnForOptionT

Inverse of attempt

Inverse of attempt

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success}

scala> val a: Try[Either[Throwable, Int]] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Either[Throwable, Int]] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by genSpawnForEitherT

Inverse of attempt

Inverse of attempt

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success}

scala> val a: Try[Either[Throwable, Int]] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Either[Throwable, Int]] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by genSpawnForKleisli

Inverse of attempt

Inverse of attempt

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success}

scala> val a: Try[Either[Throwable, Int]] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Either[Throwable, Int]] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]

Inverse of attempt

Inverse of attempt

Example:

scala> import cats.implicits._
scala> import scala.util.{Try, Success}

scala> val a: Try[Either[Throwable, Int]] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)

scala> val b: Try[Either[Throwable, Int]] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
Inherited from
MonadError
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by genSpawnForOptionT

Keeps calling f until a scala.util.Right[B] is returned.

Keeps calling f until a scala.util.Right[B] is returned.

Based on Phil Freeman's Stack Safety for Free.

Implementations of this method should use constant stack space relative to f.

Inherited from
FlatMap
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by genSpawnForEitherT

Keeps calling f until a scala.util.Right[B] is returned.

Keeps calling f until a scala.util.Right[B] is returned.

Based on Phil Freeman's Stack Safety for Free.

Implementations of this method should use constant stack space relative to f.

Inherited from
FlatMap
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by genSpawnForKleisli

Keeps calling f until a scala.util.Right[B] is returned.

Keeps calling f until a scala.util.Right[B] is returned.

Based on Phil Freeman's Stack Safety for Free.

Implementations of this method should use constant stack space relative to f.

Inherited from
FlatMap
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]

Keeps calling f until a scala.util.Right[B] is returned.

Keeps calling f until a scala.util.Right[B] is returned.

Based on Phil Freeman's Stack Safety for Free.

Implementations of this method should use constant stack space relative to f.

Inherited from
FlatMap
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Inherited from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Inherited from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Inherited from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Inherited from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Inherited from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Inherited from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Inherited from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Inherited from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Inherited from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Inherited from
ApplyArityFunctions
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Inherited from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Inherited from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Inherited from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Inherited from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Inherited from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Inherited from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Inherited from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Inherited from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Inherited from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Inherited from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by genSpawnForOptionT
Inherited from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by genSpawnForEitherT
Inherited from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by genSpawnForKleisli
Inherited from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Inherited from
ApplyArityFunctions
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by genSpawnForOptionT

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
Inherited from
Functor
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by genSpawnForEitherT

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
Inherited from
Functor
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by genSpawnForKleisli

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
Inherited from
Functor
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Tuples the A value in F[A] with the supplied B value, with the B value on the left.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
Inherited from
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by genSpawnForOptionT

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
Inherited from
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by genSpawnForEitherT

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
Inherited from
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by genSpawnForKleisli

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
Inherited from
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Tuples the A value in F[A] with the supplied B value, with the B value on the right.

Example:

scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue

scala> Functor[Queue].tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
Inherited from
Functor
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Implicitly added by genSpawnForOptionT

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

In the following example, cancelation can be observed only within fb and nowhere else:


 F.uncancelable { poll =>
   fa *> poll(fb) *> fc
 }

If a fiber is canceled while it is masked, the cancelation is suppressed for as long as the fiber remains masked. Whenever the fiber is completely unmasked again, the cancelation will be respected.

Masks can also be stacked or nested within each other. If multiple masks are active, all masks must be undone so that cancelation can be observed. In order to completely unmask within a multi-masked region, the poll corresponding to each mask must be applied, innermost-first.


 F.uncancelable { p1 =>
   F.uncancelable { p2 =>
     fa *> p2(p1(fb)) *> fc
   }
 }

The following operations are no-ops:

  1. Polling in the wrong order
  2. Applying the same poll more than once: poll(poll(fa))
  3. Applying a poll bound to one fiber within another fiber
Value Params
body

A function which takes a Poll and returns the effect that we wish to make uncancelable.

Inherited from
MonadCancel
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Implicitly added by genSpawnForEitherT

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

In the following example, cancelation can be observed only within fb and nowhere else:


 F.uncancelable { poll =>
   fa *> poll(fb) *> fc
 }

If a fiber is canceled while it is masked, the cancelation is suppressed for as long as the fiber remains masked. Whenever the fiber is completely unmasked again, the cancelation will be respected.

Masks can also be stacked or nested within each other. If multiple masks are active, all masks must be undone so that cancelation can be observed. In order to completely unmask within a multi-masked region, the poll corresponding to each mask must be applied, innermost-first.


 F.uncancelable { p1 =>
   F.uncancelable { p2 =>
     fa *> p2(p1(fb)) *> fc
   }
 }

The following operations are no-ops:

  1. Polling in the wrong order
  2. Applying the same poll more than once: poll(poll(fa))
  3. Applying a poll bound to one fiber within another fiber
Value Params
body

A function which takes a Poll and returns the effect that we wish to make uncancelable.

Inherited from
MonadCancel
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Implicitly added by genSpawnForKleisli

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

In the following example, cancelation can be observed only within fb and nowhere else:


 F.uncancelable { poll =>
   fa *> poll(fb) *> fc
 }

If a fiber is canceled while it is masked, the cancelation is suppressed for as long as the fiber remains masked. Whenever the fiber is completely unmasked again, the cancelation will be respected.

Masks can also be stacked or nested within each other. If multiple masks are active, all masks must be undone so that cancelation can be observed. In order to completely unmask within a multi-masked region, the poll corresponding to each mask must be applied, innermost-first.


 F.uncancelable { p1 =>
   F.uncancelable { p2 =>
     fa *> p2(p1(fb)) *> fc
   }
 }

The following operations are no-ops:

  1. Polling in the wrong order
  2. Applying the same poll more than once: poll(poll(fa))
  3. Applying a poll bound to one fiber within another fiber
Value Params
body

A function which takes a Poll and returns the effect that we wish to make uncancelable.

Inherited from
MonadCancel
def uncancelable[A](body: Poll[F] => F[A]): F[A]

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

Masks cancelation on the current fiber. The argument to body of type Poll[F] is a natural transformation F ~> F that enables polling. Polling causes a fiber to unmask within a masked region so that cancelation can be observed again.

In the following example, cancelation can be observed only within fb and nowhere else:


 F.uncancelable { poll =>
   fa *> poll(fb) *> fc
 }

If a fiber is canceled while it is masked, the cancelation is suppressed for as long as the fiber remains masked. Whenever the fiber is completely unmasked again, the cancelation will be respected.

Masks can also be stacked or nested within each other. If multiple masks are active, all masks must be undone so that cancelation can be observed. In order to completely unmask within a multi-masked region, the poll corresponding to each mask must be applied, innermost-first.


 F.uncancelable { p1 =>
   F.uncancelable { p2 =>
     fa *> p2(p1(fb)) *> fc
   }
 }

The following operations are no-ops:

  1. Polling in the wrong order
  2. Applying the same poll more than once: poll(poll(fa))
  3. Applying a poll bound to one fiber within another fiber
Value Params
body

A function which takes a Poll and returns the effect that we wish to make uncancelable.

Inherited from
MonadCancel
def unique: F[Token]
Implicitly added by genSpawnForOptionT
Inherited from
Unique
def unique: F[Token]
Implicitly added by genSpawnForEitherT
Inherited from
Unique
def unique: F[Token]
Implicitly added by genSpawnForKleisli
Inherited from
Unique
def unique: F[Token]
Inherited from
Unique
def unit: F[Unit]
Implicitly added by genSpawnForOptionT

Returns an F[Unit] value, equivalent with pure(()).

Returns an F[Unit] value, equivalent with pure(()).

A useful shorthand, also allowing implementations to optimize the returned reference (e.g. it can be a val).

Example:

scala> import cats.implicits._

scala> Applicative[Option].unit
res0: Option[Unit] = Some(())
Inherited from
Applicative
def unit: F[Unit]
Implicitly added by genSpawnForEitherT

Returns an F[Unit] value, equivalent with pure(()).

Returns an F[Unit] value, equivalent with pure(()).

A useful shorthand, also allowing implementations to optimize the returned reference (e.g. it can be a val).

Example:

scala> import cats.implicits._

scala> Applicative[Option].unit
res0: Option[Unit] = Some(())
Inherited from
Applicative
def unit: F[Unit]
Implicitly added by genSpawnForKleisli

Returns an F[Unit] value, equivalent with pure(()).

Returns an F[Unit] value, equivalent with pure(()).

A useful shorthand, also allowing implementations to optimize the returned reference (e.g. it can be a val).

Example:

scala> import cats.implicits._

scala> Applicative[Option].unit
res0: Option[Unit] = Some(())
Inherited from
Applicative
def unit: F[Unit]

Returns an F[Unit] value, equivalent with pure(()).

Returns an F[Unit] value, equivalent with pure(()).

A useful shorthand, also allowing implementations to optimize the returned reference (e.g. it can be a val).

Example:

scala> import cats.implicits._

scala> Applicative[Option].unit
res0: Option[Unit] = Some(())
Inherited from
Applicative
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genSpawnForOptionT

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())

scala> Applicative[List].unlessA(true)(List.empty[Int])
res2: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List.empty[Int])
res3: List[Unit] = List()
Inherited from
Applicative
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genSpawnForEitherT

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())

scala> Applicative[List].unlessA(true)(List.empty[Int])
res2: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List.empty[Int])
res3: List[Unit] = List()
Inherited from
Applicative
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genSpawnForKleisli

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())

scala> Applicative[List].unlessA(true)(List.empty[Int])
res2: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List.empty[Int])
res3: List[Unit] = List()
Inherited from
Applicative
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is false, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())

scala> Applicative[List].unlessA(true)(List.empty[Int])
res2: List[Unit] = List(())

scala> Applicative[List].unlessA(false)(List.empty[Int])
res3: List[Unit] = List()
Inherited from
Applicative
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by genSpawnForOptionT

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Inherited from
FlatMap
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by genSpawnForEitherT

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Inherited from
FlatMap
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by genSpawnForKleisli

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Inherited from
FlatMap
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

This repeats an F until we get defined values. This can be useful for polling type operations on State (or RNG) Monads, or in effect monads.

Inherited from
FlatMap
def untilM[G[_], A](f: F[A])(cond: => F[Boolean])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genSpawnForOptionT

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
def untilM[G[_], A](f: F[A])(cond: => F[Boolean])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genSpawnForEitherT

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
def untilM[G[_], A](f: F[A])(cond: => F[Boolean])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genSpawnForKleisli

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
def untilM[G[_], A](f: F[A])(cond: => F[Boolean])(implicit G: Alternative[G]): F[G[A]]

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by genSpawnForOptionT

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from
Monad
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by genSpawnForEitherT

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from
Monad
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by genSpawnForKleisli

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from
Monad
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

Inherited from
Monad
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by genSpawnForOptionT

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
Inherited from
Functor
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by genSpawnForEitherT

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
Inherited from
Functor
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by genSpawnForKleisli

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
Inherited from
Functor
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.

NOTE: Check for effect duplication, possibly memoize before

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].unzip(List((1,2), (3, 4)))
res0: (List[Int], List[Int]) = (List(1, 3),List(2, 4))
Inherited from
Functor
def void[A](fa: F[A]): F[Unit]
Implicitly added by genSpawnForOptionT

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())
Inherited from
Functor
def void[A](fa: F[A]): F[Unit]
Implicitly added by genSpawnForEitherT

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())
Inherited from
Functor
def void[A](fa: F[A]): F[Unit]
Implicitly added by genSpawnForKleisli

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())
Inherited from
Functor
def void[A](fa: F[A]): F[Unit]

Empty the fa of the values, preserving the structure

Empty the fa of the values, preserving the structure

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList

scala> Functor[List].void(List(1,2,3))
res0: List[Unit] = List((), (), ())
Inherited from
Functor
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genSpawnForOptionT

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())

scala> Applicative[List].whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())

scala> Applicative[List].whenA(true)(List.empty[Int])
res2: List[Unit] = List()

scala> Applicative[List].whenA(false)(List.empty[Int])
res3: List[Unit] = List(())
Inherited from
Applicative
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genSpawnForEitherT

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())

scala> Applicative[List].whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())

scala> Applicative[List].whenA(true)(List.empty[Int])
res2: List[Unit] = List()

scala> Applicative[List].whenA(false)(List.empty[Int])
res3: List[Unit] = List(())
Inherited from
Applicative
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genSpawnForKleisli

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())

scala> Applicative[List].whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())

scala> Applicative[List].whenA(true)(List.empty[Int])
res2: List[Unit] = List()

scala> Applicative[List].whenA(false)(List.empty[Int])
res3: List[Unit] = List(())
Inherited from
Applicative
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Returns the given argument (mapped to Unit) if cond is true, otherwise, unit lifted into F.

Example:

scala> import cats.implicits._

scala> Applicative[List].whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())

scala> Applicative[List].whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())

scala> Applicative[List].whenA(true)(List.empty[Int])
res2: List[Unit] = List()

scala> Applicative[List].whenA(false)(List.empty[Int])
res3: List[Unit] = List(())
Inherited from
Applicative
@noop
def whileM[G[_], A](p: F[Boolean])(body: => F[A])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genSpawnForOptionT

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
@noop
def whileM[G[_], A](p: F[Boolean])(body: => F[A])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genSpawnForEitherT

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
@noop
def whileM[G[_], A](p: F[Boolean])(body: => F[A])(implicit G: Alternative[G]): F[G[A]]
Implicitly added by genSpawnForKleisli

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
@noop
def whileM[G[_], A](p: F[Boolean])(body: => F[A])(implicit G: Alternative[G]): F[G[A]]

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary Alternative value, such as a Vector. This implementation uses append on each evaluation result, so avoid data structures with non-constant append performance, e.g. List.

Inherited from
Monad
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by genSpawnForOptionT

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from
Monad
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by genSpawnForEitherT

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from
Monad
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by genSpawnForKleisli

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from
Monad
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

Inherited from
Monad
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by genSpawnForOptionT

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)
Inherited from
Functor
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by genSpawnForEitherT

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)
Inherited from
Functor
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by genSpawnForKleisli

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)
Inherited from
Functor
def widen[A, B >: A](fa: F[A]): F[B]

Lifts natural subtyping covariance of covariant Functors.

Lifts natural subtyping covariance of covariant Functors.

NOTE: In certain (perhaps contrived) situations that rely on universal equality this can result in a ClassCastException, because it is implemented as a type cast. It could be implemented as map(identity), but according to the functor laws, that should be equal to fa, and a type cast is often much more performant. See this example of widen creating a ClassCastException.

Example:

scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption

scala> val s = Some(42)
scala> Functor[Option].widen(s)
res0: Option[Int] = Some(42)
Inherited from
Functor